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Abstract
Recent advances in neuroimaging techniques have provided significant insights into developmental

trajectories of human brain function. Characterizations of typical neurodevelopment provide a

framework for understanding altered neurodevelopment, including differences in brain function

related to developmental disorders and psychopathology. Historically, most functional connectivity

studies of typical and atypical development operate under the assumption that connectivity

remains static over time. We hypothesized that relaxing stationarity assumptions would reveal

novel features of both typical brain development related to children on the autism spectrum. We

employed a “chronnectomic” (recurring, time-varying patterns of connectivity) approach to evalu-

ate transient states of connectivity using resting-state functional MRI in a population-based

sample of 774 6- to 10-year-old children. Dynamic connectivity was evaluated using a sliding-

window approach, and revealed four transient states. Internetwork connectivity increased with

age in modularized dynamic states, illustrating an important pattern of connectivity in the develop-

ing brain. Furthermore, we demonstrated that higher levels of autistic traits and ASD diagnosis

were associated with longer dwell times in a globally disconnected state. These results provide a

roadmap to the chronnectomic organization of the developing brain and suggest that characteris-

tics of functional brain connectivity are related to children on the autism spectrum.
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1 | INTRODUCTION

Human cognition and behavior are driven by a wide array of complex

and dynamic processes that occur throughout development (Brenhouse

& Andersen, 2011). Recent techniques that offer insight into the com-

plexity of functional brain development can be used to quantify brain

functional connectivity; referring to the correlated temporal fluctua-

tions among distant brain regions. These techniques have been used to

study the functional connectivity of the brain in both typically develop-

ing children and children with developmental and psychiatric disorders.

Evidence suggests that short-range or intranetwork functional con-

nectivity is more dominant during infancy (Fransson et al., 2007; Gao

et al., 2011) and decreases with age during childhood and adolescence,

with long-range or internetwork connectivity becoming more dominant

in early adulthood (Dosenbach et al., 2010). Atypical development of

neural interactions is considered a major basis in theoretical models of

neuropsychiatric disorders (Geschwind & Levitt, 2007; Uddin, Supekar,

& Menon, 2013b). Indeed, one of the prominent hypotheses on the ori-

gins of autism spectrum disorder (ASD) is an aberrant development of

neuronal connections throughout the brain (i.e., “developmental discon-

nection syndrome,” Geschwind & Levitt, 2007). Thus, the study of

functional connectivity of the brain in children is well suited for identi-

fying neurobiological correlates associated with ASD.

ASD is a heterogeneous neurodevelopmental condition, with cen-

tral features of impairment in reciprocal social interactions, as well as

restricted, stereotypical behaviors. With an estimated prevalence

between 1% and 3%, ASD is generally recognized in early childhood

and is accompanied by severe burden, both for the affected individual

as well as for caregivers (Baxter et al., 2015). Despite the presence of

an extensive and expanding literature, the neurobiological etiology of

autism spectrum disorder remains elusive. Along with most psychiatric

disorders, ASD has traditionally been conceptualized categorically, but

is increasingly recognized as the severe end of a continuum of traits

that extend into the general population (Constantino & Todd, 2003).

While not strictly pathological, such variation in autistic traits in the

general population serves as an important dimensional behavioral phe-

notype for clinical autism. Thus, imaging studies using this phenotype

of quantitative social impairment can complement case–control studies

to better understand the underlying neurobiology of ASD.

Recent studies exploring functional connectivity in ASD have shown

conflicting results, with studies that show both stronger and weaker con-

nectivity (Hull, Jacokes, Torgerson, Irimia, & Van Horn, 2016). These dis-

crepancies have previously been attributed to small sample sizes,

differences in study populations, as well as differences in methodologies.

However, it has been suggested that such discrepancies could also be

related age-related changes in connectivity, which is different in

individuals with ASD (i.e., younger children display hyperconnectivity

while adults display hypoconnectivity) (Nomi & Uddin, 2015). Alterna-

tively, recent work has suggested that the traditional static approach to

measure functional connectivity may contribute to such discrepancies in

the literature (Chen, Nomi, Uddin, Duan, & Chen, 2017).

Along these lines, the majority of existing models applied to the con-

nectome operate under the assumption that the spatial characteristics of

the brain’s functional architecture are static over a period of multiple

minutes. This has been shown to be a major limitation, as important tran-

sient spatial patterns of connectivity could be overlooked (Calhoun,

Miller, Pearlson, & Adalı, 2014). The concept of dynamic connectivity

estimation and its application was introduced earlier in the decade by

Sako�glu et al. (2010), where they studied the task-modulation of func-

tional brain connections. Most recently, chronnectomic approaches relax-

ing traditional stationarity assumptions aim to more accurately model the

brain’s independent component networks (ICNs), avoiding the omission

of transient, yet potentially relevant, patterns of functional connectivity

(Allen et al., 2014). Dynamic functional network connectivity (dFNC) has

already been shown to offer unique chronnectomic information (Allen

et al., 2014; Hutchison et al., 2013a). Furthermore, it is sensitive to neu-

robiological features of normal brain development (Hutchison & Morton,

2015) and psychopathology (Rashid, Damaraju, Pearlson, & Calhoun,

2014). Interestingly, a recent study (Wee, Yap, & Shen, 2016) proposed a

cluster-based framework to diagnose ASD using temporally independent

dynamic connectivity networks and achieved 71% classification accuracy,

suggesting improvement in autism diagnosis by incorporating the tempo-

ral features of connectivity. Moreover, another classification study (Price,

Wee, Gao, & Shen, 2014) implemented the analysis of sliding-window-

based dynamic connectivity features in a multi-network, multi-scale

framework and classified childhood autism. The results showed signifi-

cant improvement in ASD classification with the features from multiple

integrated networks on different dynamic scales.

Within this context, we utilized resting-state fMRI scans from a

large, population-based study of children ages 6–10 years to search for

both underlying maturational and sex-specific properties of chronnec-

tivity, and an underlying neurobiological substrate of ASD traits in the

general population. We also isolated a subset of children from the

cohort with clinical ASD diagnoses and matched controls, to more

closely mirror traditional case–control designs and compliment the

dimensional, trait-based approach. Within this restricted and largely

prepubescent age range, marked improvements in various cognitive

and social abilities occur. Further, as many forms of psychopathology

either emerge or manifest at this time, it is crucial to first possess a

solid understanding of how the brain develops in the absence of psy-

chopathology before we can meaningfully interpret any related devia-

tions in functional networks (Di Martino et al., 2014).
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We hypothesized the presence of dynamic connectivity states in

children that are similar to those reported in adults, as reported by sev-

eral recent works (Faghiri, Stephen, Wang, Wilson, & Calhoun, 2018;

Hutchison & Morton, 2015). Another study showed evidence of corre-

lation between disrupted control network functions and altered

dynamic connectivity in adult ASD subjects, suggesting that dynamic

functional connectivity is an efficient measure while examining brain

development in subjects with ASD (de Lacy, Doherty, King, Racha-

konda, & Calhoun, 2017). Additional support for this hypothesis stems

from evidence that static connectivity networks are present at a young

age (Gao et al., 2011). Furthermore, we hypothesized age-related cor-

relates of dynamic connectivity to resemble previously observed adult-

like patterns, where increasing age is associated with states previously

reported in adults. (Allen et al., 2014) Last, as previous work has shown

aberrant connectivity dynamics in psychopathology, we hypothesized

to see an association between aberrant dynamic connectivity and fea-

tures of autism. As the static connectivity literature has uncovered

widespread patterns of both hyper- and hypoconnectivity in ASD, we

hypothesize multiple regions throughout the brain to associate with

autistic traits along a continuum in the general population. In particular,

given numerous reports of the default-mode network have shown

attenuated within- and between-network connectivity in ASD, we

hypothesize dynamic (hypo-)connectivity in this network to be of par-

ticular relevance.

2 | MATERIALS AND METHODS

2.1 | Participants

This study is embedded in the Generation R Study, which is a large,

population-based birth cohort in Rotterdam, the Netherlands (Jaddoe

et al., 2012). One thousand seventy children, aged 6–10 years, were

scanned between September 2009 and July 2013 as part of a substudy

within the Generation R Study (White et al., 2013). General exclusion

criteria for this study include severe motor or sensory disorders (deaf-

ness or blindness), neurological disorders, moderate to severe head

injuries with loss of consciousness, claustrophobia, and contraindica-

tions to MRI. Raw fMRI data from 964 subjects were available for our

study, and after excluding children with bad data (e.g., motion, for

details see below), 774 datasets were available for statistical analysis.

Informed consent was obtained from the parents, and all procedures

were approved by the Medical Ethics Committee of the Erasmus Medi-

cal Center. For more information on participant, see Supporting Infor-

mation, Tables S6 and S7 and Supporting Information, Section 5.

2.2 | Autistic traits and autism spectrum disorder

The Social Responsiveness Scale (SRS) was administered when children

were roughly age 6 years (range: 4.89–8.90 years) to measure autistic

traits based on parental observation during the last 6 months (Constan-

tino, 2002). The SRS score provides a valid, quantitative measure of

subclinical and clinical autistic traits, where higher scores indicate more

symptoms related to ASD (Constantino, 2002). We utilized the total

score derived from the abbreviated, 18-item short-form of the scale,

which shows correlates of 0.93 and higher with the full scale in three

different large studies (Blanken et al., 2015). Cutoffs used in sensitivity

analyses (described below) were based on recommendations for

screening in population-based settings (consistent with weighted

scores of 1.078 for boys and 1.000 for girls) (Constantino, 2002).

2.3 | Autism spectrum disorder diagnoses

At an approximate age of 7 years, children who scored in the top 15th

percentile on the Child Behavior Checklist-1.5–5 total score and those

who scored in the top 2nd percentile on the Pervasive Developmental

Problems sub-scale underwent a screening procedure for ASD using

the Social Communication Questionnaire (SCQ), a 40-item parent-

reported screening instrument to assess characteristic autistic behavior.

SCQ scores �15 are considered positive for screening (Berument, Rut-

ter, Lord, Pickles, & Bailey, 1999). We approached the general practi-

tioners of children who scored screen-positive on the SRS, SCQ, or for

whom the mother reported a diagnosis of ASD to confirm this diagno-

sis with medical records. In the Netherlands, the general practitioner

holds the central medical records, including information on treatment

by (medical) specialists. In this sample, 22 children with usable MRI

data also had a confirmed diagnosis of ASD.

2.4 | MRI data acquisition

Magnetic resonance imaging data were acquired on a 3 T scanner (Dis-

covery 750, General Electric, Milwaukee, WI) using a standard 8-

channel, receive-only head coil. A three-plane localizer was run first

and used to position all subsequent scans. Structural T1-weighted

images were acquired using a fast spoiled gradient-recalled echo

(FSPGR) sequence (TR510.3 ms, TE54.2 ms, TI5350 ms, NEX51,

flip angle5168, matrix5256 3 256, field of view (FOV)5230.4 mm,

slice thickness50.9 mm). Echo planar imaging was used for the rs-

fMRI session with the following parameters: TR52,000 ms, TE530

ms, flip angle5858, matrix564 3 64, FOV5230 mm 3 230 mm,

slice thickness54 mm (Muetzel et al., 2016). To determine the number

of TRs necessary for functional connectivity analyses, early acquisitions

acquired 250 TRs (acquisition time58 min 20 s). After it was deter-

mined fewer TRs were required for these analyses, the number of TRs

was reduced to 160 (acquisition time55 min 20 s)(White et al., 2014).

Children were instructed to stay awake and keep their eyes closed dur-

ing the rs-fMRI scan.

2.5 | Image preprocessing

Data preprocessing was performed using a combination of toolboxes

(AFNI, http://afni.nimh.nih.gov; SPM, http://www.fil.ion.ucl.ac.uk/spm;

GIFT, http://mialab.mrn.org/software/gift), and custom scripts were

written in Matlab. As mentioned above, some scans were collected

with 250 volumes, which were first trimmed at the end of the acquisi-

tion to match the majority of scans with 160 volumes. We performed

rigid body motion correction using the INRIAlign (Freire & Mangin,

2001) toolbox in SPM to correct for subject head motion followed by
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slice-timing correction to account for timing differences in slice acquisi-

tion. Then the fMRI data were despiked using AFNI’s 3dDespike algo-

rithm to mitigate the impact of outliers. The fMRI data were

subsequently nonlinearly warped to a Montreal Neurological Institute

(MNI) template (http://www.mni.mcgill.ca) and resampled to 3 mm3

isotropic voxels (see Supporting Information, Section 3.11 for addi-

tional information on template normalization). The data were then

smoothed with a Gaussian kernel to 5 mm full-width at half-maximum

(FWHM). Each voxel time course was variance normalized prior to per-

forming group-independent component analysis as this has shown to

better decompose subcortical sources in addition to cortical networks.

To limit the impact of severe head motion, we excluded subjects’ data

with a maximum translation of >5 mm and/or with signal-to-noise fluc-

tuation ratio (SFNR) <200 from our analyses, resulting in a final dataset

with 774 subjects.

2.6 | Group-independent component analysis (ICS)

After preprocessing the data, functional data were analyzed using spa-

tial group-independent component analysis (GICA) framework as imple-

mented in the GIFT software (Allen et al., 2012; Calhoun, Adali,

Pearlson, & Pekar, 2001a). Spatial ICA decomposes the subject data

into linear mixtures of spatially independent components that exhibit a

unique time course profile. A subject-specific data reduction step was

first used to reduce 160 time point data into 120 directions of maximal

variability using principal component analysis. Then subject-reduced

data were concatenated across time and a group data PCA step

reduced this matrix further into 100 components along directions of

maximal group variability. One hundred independent components were

obtained from the group PCA reduced matrix using the infomax algo-

rithm (Bell & Sejnowski, 1995). To ensure stability of estimation, we

repeated the ICA algorithm 20 times in ICASSO (http://www.cis.hut.fi/

projects/ica/icasso), and aggregated spatial maps were estimated as

the modes of component clusters (Himberg, Hyvarinen, & Esposito,

2004). Subject-specific spatial maps and time courses were obtained

using the spatiotemporal regression back reconstruction approach (Cal-

houn, Adali, Pearlson, & Pekar, 2001b; Erhardt et al., 2011) imple-

mented in GIFT software.

2.7 | Post-ICA processing

Subject-specific spatial maps and time courses underwent postprocess-

ing as described in our earlier work (Allen et al., 2014). Briefly, we

obtained one sample t-test maps for each spatial map across all sub-

jects and thresholded these maps to obtain clusters of voxels with

higher intensities for that component; we also computed mean power

spectra of the corresponding time courses.

The criteria for identifying independent components as intrinsic

connectivity networks (ICNs) were implemented in a semi-automated

framework. We identified a subset of the independent components to

be classified as ICNs (as opposed to physiological artifacts and motion-

related noisy components) in two steps. First, we used AFNI software

to automatically extract the peak MNI coordinates of each component

and their corresponding MNI regions. Next, we inspected the aggregate

spatial maps and average power spectra of each of the independent

components (Figure 2 and Supporting Information, Figure S9). Three

viewers were provided with the MNI regions as extracted by AFNI, and

they rated the components from 0 (definite artifact) to 1 (definite ICN)

based on expectations that ICNs should exhibit cluster of voxels with

higher intensities in gray matter, low spatial overlap with known vascu-

lar, ventricular, motion, and susceptibility artifacts, and time courses

dominated by low frequency fluctuations (Cordes et al., 2001). To facili-

tate evaluation, power spectra of the components were characterized

with two previously used metrics to classify components (Robinson

et al., 2009): dynamic range, defined by the difference between the

peak power and minimum power at frequencies to the right of the

peak, and low frequency to high frequency power ratio, the ratio of the

integral of spectral power below 0.10 Hz to the integral of power

between 0.15 and 0.25 Hz (Supporting Information, Figure S9). Com-

bined votes from the three raters were used to separate components

into three broad classes: artifact (score equal to zero), mixed (score

between zero and three), and RSN (score of three or greater and no

votes equal to zero). This selection procedure resulted in 38 ICNs out

of the 100 independent components obtained. Figures highlighting the

dynamic range (Supporting Information, Figure S9) and low-frequency

to high-frequency power ratio (Supporting Information, Figure S10) are

provided in Supporting Information.

The subject-specific time courses corresponding to the ICNs

selected from the back-reconstructed data were detrended, orthogon-

alized with respect to estimated subject motion parameters, and then

despiked. The despiking procedure involved detecting spikes as deter-

mined by AFNI’s 3dDespike algorithm and replacing spikes by values

obtained from third-order spline fit to neighboring clean portions of

the data. The despiking process reduces the impact/bias of outliers on

subsequent FNC measures (see Supplemental Fig. 1 in Allen et al.,

2014). Last, single-subject post-ICA motion parameters regression from

time-series at the voxel level was performed. This step, in combination

with despiking and the ability of group ICA to remove signals attribut-

able to noise and artifact (including motion) ensures the data are suita-

ble for statistical analysis.

2.8 | Static functional network connectivity (sFNC)

We computed functional network connectivity (FNC), defined as pair-

wise correlation between ICN time courses, as a measure of average

connectivity among different ICNs during the scan duration. In this

work, the FNC computed using the whole ICN time courses is referred

to as stationary or static FNC (sFNC). Since correlation among brain

networks is primarily shown to be driven by low frequency fluctuations

in BOLD fMRI data (Cordes et al., 2001), we band pass filtered the

processed ICN time courses between 0.01 and 0.154 Hz using fifth-

order Butterworth filter prior to computing FNC between ICNs. The

mean sFNC matrix was computed over subjects. For partitioning sFNC

matrix based on modularity, we followed our prior work (Allen et al.,

2014) to identify the main modules (subcortical, auditory, visual, senso-

rimotor, cognitive control, default mode network, and cerebellum), and
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using those same partitioned modules as our main modules, rather than

partitioning the frontal and attention networks as seen in some of the

prior published work. For organization of the ICNs inside these main

modules, we applied the Louvain algorithm of the brain connectivity tool-

box (https://sites.google.com/site/bctnet), and arranged the ICN compo-

nents accordingly. To address the stochastic nature of the Louvain

algorithm, we ran the Louvain algorithm 100 times and compared the

number of times we got the same arrangement of ICNs. Finally, we used

the arrangement that occurred maximum number of times. The rows of

sFNC matrix were partitioned into subcortical (SC), auditory (AUD), visual

(VIS), sensorimotor (SM), a broad set of regions involved in cognitive con-

trol (CCN) and attention, default-mode network (DMN) regions, and cere-

bellar (CB) components as shown in Supporting Information, Figure S1.

Note that the limitation of adopting a particular network modularity

scheme as presented in our earlier work (Allen et al., 2014) is that we

have grouped the identified salience components with default-mode

components, which are all grouped together in DMN module.

2.9 | Dynamic functional network connectivity (dFNC)

As recent studies both in animals and humans have highlighted the non-

stationary nature of functional connectivity in BOLD fMRI data (Chang &

Glover, 2010; Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013b;

Uddin et al., 2013b), we sought to determine whether the observed

sFNC differences were primarily driven by certain connectivity configura-

tions (Hutchison et al., 2013b). Following our recent work (Allen et al.,

2014), dynamic FNC (dFNC) between all ICA time courses was computed

using a sliding window approach with a window size of 22 TR (44 s) in

steps of 1 TR (Figure 1). As in our earlier work, the window constituted a

rectangular window of 22 time points convolved with Gaussian of sigma

3 TRs to obtain tapering along the edges (Allen et al., 2014). As estima-

tion of covariance using time series of shorter length can be noisy, we

estimated covariance from regularized inverse covariance matrix (ICOV)

(Smith et al., 2011; Varoquaux, Baronnet, Kleinschmidt, Fillard, & Thirion,

2010) using the graphical LASSO framework (Friedman, Hastie, & Tibshir-

ani, 2008). We imposed an additional L1 norm constraint on the inverse

covariance matrix to enforce sparsity. The regularization parameter was

optimized for each subject by evaluating the log-likelihood of unseen

data of the subject in a cross-validation framework. After computing

dFNC values for each subject, these covariance values were Fisher-Z

transformed to stabilize variance prior to further analysis.

2.10 | Clustering and dynamic states detection

Based on our observation that patterns of dFNC connectivity reoccur

within subjects across time and also across subjects, we used a k-

means algorithm to cluster these dynamic FNC windows, subdividing

the data into a set of separate clusters so as to maximize the correla-

tion within a cluster to the cluster centroid. Instead of clustering all of

the dFNC windows across all subjects, initial clustering was performed

on a subset of windows from each subject, called subject exemplars

hereafter, corresponding to windows of maximal variability in correla-

tion across component pairs. To obtain the exemplars (Supporting

Information, Figure S11), we first computed variance of dynamic con-

nectivity across all pairs at each window. We then selected windows

corresponding to local maxima in this variance time course. The optimal

number of centroid states was estimated using the elbow criterion,

defined as the ratio of within cluster to between cluster distances (see

Supporting Information, Section 3.6 and Figure S8 for detailed informa-

tion). A k of 4 was obtained using this method in a search window of k

from 2 to 9. The correlation distance metric was chosen, as it is more

sensitive to the connectivity pattern irrespective of magnitude. We

repeated the clustering method using different distance functions

(cosine and L1-norm, rather than the correlation function) and also

found very similar results. Once we identified these subject exemplars,

we then used them to initialize a clustering approach, which used all of

the windows (i.e., windowed connectivity matrices) from all of the sub-

jects and estimated the cluster centroids or connectivity states (more

details on clustering approach can be found in (Allen et al., 2014)).

Information on validation of the clustering approach with respect to a

null model can be found in Supporting Information, Section 3.9 and Fig-

ures S12 and S13. Moreover, a discussion on the assumption of

dynamic states is provided in Supporting Information, Section 6 and

Figures S15 and S16.

Also, summary measures such as mean dwell time (MDT) and frac-

tion of time (FT) were computed from the state transition vector. Using

the following equations 1 and 2, we computed MDT and FT for each

subject:

MDTstate kð Þ5mean end t–start tð Þ (1)

where,

start t5count difference state vectorsubjectðiÞ; state
� �

51
� �

end t5count difference state vectorsubjectðiÞ; state
� �

521
� �

FTstate kð Þ5
sum state vectorsubject ið Þ5 state

� �
Nymber of windows

(2)

The pseudo code for computing MDT using the above equation is

For each subject i and for each dynamic state k

1. Compute start_t by first taking the difference between the
adjacent elements of the state vector for that particular
subject, and then by finding the differences that are equal
to 1.
2. Compute end_t by first taking the difference between the
adjacent elements of the state vector for that particular
subject, and then by finding the differences that are equal
to 21.
3. If the first value of the state vector is equal to the current
state k, store start_t as [0;start_t].

4. If the last value of the state vector is equal to the current
state k, store end_t as [end_t,Number_of_windows].
5. subtract the start_t vector from the end_t vector, and take
the mean of the resulting vector to compute the mean dwell
time (MDT) of that subject on that particular state.
6. Repeat step 1 to step 5 for all subjects i and all states k.
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2.11 | Statistical analyses

Statistical analyses were carried out in Matlab (version R2011b)

using the statistics toolbox and linear model class. Multiple linear

regression was used to examine associations between connectivity

metrics and explanatory variables (i.e., age, sex, and autistic traits).

Two separate models were used to investigate associations with

sFNC, dFNC, and summary metrics from dFNC such as MDT and

FT: first, a model where age and sex were entered as independent

(predictor) variables and main effects for each were examined, and a

second model where autistic traits (SRS) was entered as the

FIGURE 1 Graphical depiction of the analysis method and key findings. (a) The static and dynamic functional network connectivity (FNC)
approach begins with group-independent component analysis (ICA) to decompose resting-state fMRI data into intrinsic connectivity net-
works (ICNs). The group ICA approach provides a measure of the component time courses and spatial maps for each subject using the
back-reconstruction technique. (b) Static FNC between components is estimated as the covariance of the time courses. (c) Dynamic FNC is
estimated as the covariance from windowed portions of the time courses. (d) K-means clustering is used to identify discrete dynamic con-
nectivity states. (e) Results obtained from k-means clustering are used to determine which state a given subject is occupying at a given
time, and summary measures of dynamic states, such as, mean dwell time (MDT) and fraction of time (FT) spent in each state over the dura-
tion of the measurement period are computed. (f) Highlights of the key findings for pairwise network analyses and summary measures anal-
yses in association with age, sex, and autistic traits [Color figure can be viewed at wileyonlinelibrary.com]
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independent variable and age and sex were added as covariates. All

the results reported correspond to a false discovery rate multiple

comparison correction threshold p< .05.

Note that for all of our analyses, we also started with a full model

that included interaction terms (age-sex and SRS-age and SRS-sex), and

the backward model selection led us to a first-order model. In the back-

ward model selection procedure, unimportant or less significant varia-

bles are eliminated one at a time. The process starts from the full

model, and isolates the least important predictor left in the model, and

checks its significance. We used the Akaike information criterion (AIC),

a penalized-likelihood criteria of the relative goodness-of-fit of a statis-

tical model to the observed data. A 0.10 significant level has been used

for this strategy while dropping the less significant variables. Final

results were corrected for false discovery rate (FDR) at p< .05 level.

We have used step () function from R Programming to employ this

approach. (https://www.rdocumentation.org/packages/stats/versions/

3.4.3/topics/step).

After backward model selection, the following models were used

for investigating associations with sFNC matrices:

Model21sFNC : sFNCi�b01b1agei1b2sexi1Ei

Model22sFNC : sFNCi�b01b1SRSi1b2agei1b3sexi1Ei

For dFNC analyses, we computed a subject median (computed ele-

ment-wise) for each subdivision from the subject windows that were

assigned to that subdivision as a representative pattern of connectivity of

the subject for that state. To investigate if the observed effects of age,

sex, and SRS on sFNC are primarily driven by certain dynamic FNC states,

we used these subject medians for each state, as well as the summary

matrices for each state, and evaluated the associations using two sepa-

rate models as mentioned above, and are adapted for the dFNC below:

FIGURE 2 Nonartefactual intrinsic connectivity networks (ICNs). Composite maps of the 38 identified intrinsic connectivity networks
(ICNs) used in static and dynamic functional network connectivity (FNC) analyses. The ICNs are divided into seven subcategories and
arranged based on their anatomical and functional properties. Within each functional network, each color in the composite maps
corresponds to a different ICN. Component labels and peak coordinates are provided in Supporting Information, Table S8 [Color figure can
be viewed at wileyonlinelibrary.com]
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Model23dFNC : dFNCi
state ðkÞ�b01b1agei1b2sexi1Ei

Model24dFNC : dFNCi
state ðkÞ�b01b1SRSi1b2agei1b3sexi1Ei

Similar to sFNCs, we started with a full model that included inter-

action terms (age-sex, age-SRS, and sex-SRS), and the backward model

selection led us to a first-order model.

Pair-wise associations from the above mentioned models are

depicted in connectivity matrices and in connectograms (Langen,

White, Ikram, Vernooij, & Niessen, 2015) as seen in Figure 4.

The following models were used for investigating associations with

summary metrics of dFNC (MDT and FT):

Model25MDT : MDTi�b01b1agei1b2sexi1Ei

Model26MDT : MDTi�b01b1SRSi1b2agei1b3sexi1Ei

Model27FT : FTi�b01b1agei1b2sexi1Ei

Model28FT : FTi�b01b1SRSi1b2agei1b3sexi1Ei

To ensure linear terms were the best fit for the data, quadratic and

cubic age terms were also tested; however, model fits were not

FIGURE 3 Dynamic functional network connectivity (FNC) states. The four dynamic states represented in connectivity matrices are
symmetrically grouped by functional networks, and colors represent the average strength and direction of the pairwise correlation between
two components, with red–yellow indicating a positive correlation, and blue indicating a negative correlation. Here, SC5 subcortical;
AUD5 auditory; SM5 sensorimotor; VIS5 visual; CCN5 cognitive control network; DMN5 default-mode network; CB5 cerebellar net-
work. Labels for the dynamic states include state-1: globally modularized; state-2: globally disconnected; state-3: DMN modularized; and
state-4: globally hyperconnected [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Connectogram and rendering maps showing age and sex associations across the dynamic connectivity states. Connectograms
are sorted by major brain lobes. Rendering maps are divided into average positive and negative effects. For age analyses, red lines indicate
positive association between a particular pairwise connection and age, whereas blue lines indicate a negative age association. For analyses
of sex, red lines indicate where female subjects showed stronger connectivity than male subjects, and blue lines indicate where male
subjects showed stronger connectivity compared to female subjects. All the results presented in the connectograms survived the false
discovery rate (FDR) multiple comparison correction threshold of pFDR5 .05 [Color figure can be viewed at wileyonlinelibrary.com]
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improved when these higher order terms were added. This has also

been evaluated using several residual plots, which showed linear trend

of the data.

Several sensitivity analyses were run in order to ensure results

were not influenced various confounding factors, and are reported in

the Supporting Information, Section 3. First, to ensure behavioral prob-

lems did not influence age- and sex-related associations, analyses were

run where children with high levels of behavioral problems were

excluded. Similarly, to test whether continuous associations between

autistic traits and connectivity were truly along a continuum and not

driven by extreme cases, analyses were run after excluding children

scoring above the screening threshold on the SRS and those with a

clinical ASD diagnosis. To disentangle the effects of SRS and age, an

SRS-by-age interaction term was added to MDT and FT models (note

that, the full model included age-sex, SRS-age, and SRS-sex interaction

terms, where the reduced model led to a first-order model). Further,

for SRS models examining MDT and FT, the sample was refined into an

age-restricted sample (ages 8–9 years only) to minimize the residual

confounding effects of age. Last, to ensure motion-related artifacts

were not responsible for any age-related or SRS-related associations,

children with more than 3 mm maximum translation during rs-fMRI

acquisition were dropped from analyses, and common motion parame-

ters (e.g., frame-wise displacement) were added to the models.

Note that, the motion parameters were only added to the models for

sensitivity analyses that are presented in Supporting Information,

Section 3.

FIGURE 5 Summary metrics and age- and sex- effects. Summary metrics from the four dynamic connectivity states in relation to age and
sex. Mean dwell time (MDT) represents how long an individual spends in a given state on average, and fraction of time (FT) is the summed
total time spent in a given state over the course of the measurement period. For age associations, positive beta coefficient (b) indicates
older children spend more time in that particular state whereas negative beta coefficient (b) indicates younger children spend more time in

a particular state. For sex analyses, positive beta coefficient (b) indicates girls spend more time in the state relative to boys and negative
beta coefficient (b) indicates that boys spend more time in the state relative to girls. Bar graphs indicate the unstandardized beta
coefficients (b) with standard error (S.E.) from regression models, and asterisks (*) indicate the results survived the false discovery rate
(FDR) multiple comparison correction threshold of pFDR5 .05. The rendering brain maps are showing modularized positive (red) and
negative (blue) connectivity for the corresponding dynamic states [Color figure can be viewed at wileyonlinelibrary.com]
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3 | RESULTS

3.1 | Characterizing static and dynamic functional

network connectivity in children

Our first goal was to characterize the connectivity in typical develop-

ment through age associations in a large sample of 774 school-age chil-

dren. This was accomplished by evaluating the properties of both static

and dynamic connectivity (Figure 1a–d) of the developing brain using

38 ICNs (extracted from a 100 component group independent compo-

nent analysis; Calhoun et al., 2001a) grouped into brain networks

according to their anatomical and functional properties (Figure 2). The

static FNC of the developing brain showed similar patterns as previous

large-scale analyses of adults (Allen et al., 2014; Damaraju et al., 2014)

for both intra- and internetwork connectivity. The default mode net-

work was strongly connected within itself, and less connected to other

brain networks (Supporting Information, Figure S1). Dynamic connec-

tivity analyses (Figure 3) identified two modularized (i.e., bearing resem-

blance to previously reported static connectivity configurations): State-

1: globally modularized, static-like, that is, FNCs were present globally

in intra- and internetwork connectivity, and State-3: default-mode

modularized, that is, strong intranetwork positive connectivity and

internetwork negative connectivity in DMN. In addition, a globally dis-

connected state was identified (State-2: globally loosely connected

intra- and internetwork connectivity) and one globally hyperconnected

state (State-4: high positive connectivity found globally). Previous

dynamic connectivity studies in adults reported each of these dynamic

states, except for State-2, the globally disconnected state (Allen et al.,

2014). Details on quantitative measures based dynamic state assign-

ment criteria can be found in Supporting Information, Section 4 and

Figure S14.

3.2 | Development of dynamic FNC states

Next, we evaluated the relationship of age and sex with the discrete

dynamic states to evaluate the development of transient states from

less-to-more mature representations of FNC (Figure 4). Age-related

associations were mostly localized in (but not limited to) State-1, the

globally modularized dynamic state. In particular, positive age-related

associations among frontal-temporal components, and both positive

and negative age-related associations among frontal-parietal and

temporal-parietal components were observed in State-1. Also, sex dif-

ferences were mostly localized in (but not limited to) State-3, a state

characterized by a modularized DMN. This particular dynamic state

showed greater connectivity among frontal-temporal and frontal-

occipital components in girls, and greater connectivity between a parie-

tal component (right angular gyrus, also a DMN component) and a tem-

poral component (right middle temporal gyrus) in boys. In other

dynamic states, the age- and sex-specific effects were mostly localized

to the DMN. Specifically, the left middle cingulate cortex (MCC) DMN

component showed stronger internetwork connectivity with age in all

FNC states, and stronger intranetwork connectivity with age in State-

4. Last, the left MCC showed higher internetwork connectivity for girls

in all FNC states, and higher intranetwork connectivity for boys in

State-3.

3.3 | Dwell time in dynamic states: Age associations

and sex differences

Next, we explored how different quantitative summary metrics of

dynamic connectivity, such as mean dwell time (MDT) and fraction of

time spent in dynamic states (FT), change as functions of age and sex

(Figure 5). For each of the dynamic FNC states, we computed the MDT

(how long an individual spends in a given state on average) and FT

(total time spent in a given state). We found that older children showed

longer MDT and FT in the globally modularized dFNC state (State-1).

Conversely, younger subjects showed longer MDT and FT in the glob-

ally disconnected state (State-2). We also investigated sex differences

in MDT and FT in the dynamic states and found that boys showed

higher FT in the disconnected state (State-2), whereas girls showed

higher MDT and FT in the DMN-modularized state (State-3). The other

two dynamic states, the globally modularized state (State-1) and the

globally hyperconnected state (State-4) showed trend-level sex effects,

where boys had higher MDT and FT compared to girls in States-1

and24.

3.4 | Characterization of dynamic chronnectopathy:

Autistic traits and autism spectrum disorder

In addition to characterizing static and dynamic FNCs in typical devel-

opment, we also studied the chronnectopathy, or disruption of the

typical dynamic connectivity patterns, through autistic traits in the

general population and in clinical autism spectrum disorder. We

assessed autistic traits using the Social Responsiveness Scale (SRS)

(Constantino et al., 2003) in a subset of children in the original sample

(n5560). For static connectivity, one component pair (the left supple-

mentary motor area, i.e., SMA, and the right supramarginal gyrus, i.e.,

SmG), showed an association with autistic traits. Specifically, children

with more autistic traits showed weaker static connectivity. Interest-

ingly, for dFNC State-3, children with more autistic traits showed

higher connectivity in three component pairs (right insula and left

superior frontal gyrus, right SmG, and left precuneus, i.e., preC, and

right insula and left preC) and lower connectivity in two component

pairs (right-insula and right SmG, and left SMA and right SmG). Next,

we assessed how MDT and FT vary with respect to autistic trait

scores (Figure 6). In the globally disconnected state (State-2), autistic

traits showed a positive association with MDT. In the DMN-

modularized state (State-3), autistic traits were negatively associated

with MDT. Thus, children with high levels of autistic traits had longer

dwell times in the globally disconnected state (State-2) and children

with fewer traits had longer dwell times in the DMN-modularized

state (State-3). Results remained highly consistent when models were

additionally adjusted for nonverbal IQ. Further, a similar pattern of

effects was observed at the severe end of the spectrum, when a sub-

sample of 22 children with clinical ASD were compared to 88 age, sex,

and IQ matched controls (Supporting Information, Figure S6). To
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assess whether the above-mentioned associations are a core feature

of the trait-continuum or if the associations were driven by the most

severely affected children, sensitivity analyses were run. When chil-

dren with clinical ASD or an autistic traits score above the screening

threshold were excluded, results remained consistent (Supporting

Information, Figure S7), demonstrating that underlying neurobiological

features covary with subclinical and clinical autistic traits.

4 | DISCUSSION

Here we implement a recent approach to the study of brain connectiv-

ity, in both typical and atypical child development. Complementing the

existing static functional connectivity literature, we show age-related

associations with discrete dynamic states that illustrate higher order

maturational effects on chronnectivity. We also provide additional sup-

port for a disconnection construct in children with autistic traits and

clinical ASD using dynamic functional connectivity. Last, we demon-

strate the utility and potential clinical relevance of quantitative metrics

that summarize large amounts of complex chronnectomic information.

4.1 | The development of whole-brain dynamic

connectivity in young children

In a large group of young children with a narrow age-range, we demon-

strate that older children on average have longer dwell times in

dynamic states typically observed in previous studies on healthy adults.

Age-related associations with static connectivity were consistent with

previous reports, including increased integration of brain networks

(Johnson & Munakata, 2005). This validation of the existing static con-

nectivity literature is nicely complemented with new information where

assumptions of network stationarity are relaxed, and quantitative sum-

mary metrics, such as mean dwell time, are examined (Hutchison &

Morton, 2015). Interestingly, evidence for sexual dimorphism in

dynamic connectivity was also observed with girls showing longer

dwell times in the modularized default-mode state and boys showing

longer dwell times in the globally disconnected state. While no age-by-

sex interaction was observed, given the narrow age range, this could

complement existing evidence showing neuromaturational processes

begin earlier in girls (Lenroot & Giedd, 2006; Simmonds, Hallquist,

Asato, & Luna, 2014).

4.2 | Functional connectivity, autistic traits, and

autism spectrum disorder

Novel neuroimaging findings in combination with a characteristic early

onset have brought momentum to ASD being conceptualized as a

developmental disconnection syndrome (Geschwind & Levitt, 2007).

Previous studies of static FNC in ASD have revealed mixed patterns of

increased and decreased connectivity strength (Uddin et al., 2013b).

Similarly, within the discrete dynamic FNC states, we found local pat-

terns of stronger and weaker connection strength. Specifically, we

observed decreased connectivity between the right supramarginal

gyrus and the right insula, which is consistent with findings of lower

insula activation in subjects with ASD in a large number task-based

neuroimaging studies, covering a range of social processing tasks (Di

Martino et al., 2009a). However, we also found hyperconnectivity in

the right insula, with the precuneus and the left superior frontal gyrus.

Hyperconnectivity of the salience network, in which the insula is a key

region, is particularly well replicated in the context of childhood ASD

(Uddin et al., 2013a). Our findings in children in a similar age range sug-

gest that the hyperconnectivity of the insula may also extend beyond

FIGURE 6 Summary metrics and autistic trait effects. Summary

metrics from the four dynamic connectivity states in relation to
autistic traits. Mean dwell time (MDT) represents how long an
individual spends in a given state on average, and fraction of time
(FT) is the summed total time spent in a given state over the
course of the measurement period. Positive beta coefficient (b)
indicates that higher levels of autistic traits are associated with
more time spent in a particular state, whereas negative beta
coefficient (b) indicates lower levels of autistic traits are associated
with more time spent in a particular state. Bar graphs indicate the
unstandardized beta coefficients (b) with standard error (S.E.) from
regression models, and asterisks (*) indicate the results survived
the false discovery rate (FDR) multiple comparison correction
threshold of pFDR5 .05. The rendering brain maps are showing
modularized positive (red) and negative (blue) connectivity for the
corresponding dynamic states [Color figure can be viewed at
wileyonlinelibrary.com]
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regions of the salience network. Furthermore, divergent findings of

hypo- and hyperconnectivity in this region across studies, which have

been previously attributed to developmental differences between sam-

ples (Uddin et al., 2013b), may be in fact be present at the same

developmental stage, but across different dynamic states, and thus

only be revealed simultaneously when using dynamic connectivity

approaches.

Here, in a large cohort of 774 children, we demonstrate that chil-

dren with higher levels of autistic traits have longer dwell times in a

globally disconnected state during rest, whereas children with lower

levels of autistic traits have longer dwell times in a globally modularized

state that more resembles an adult-like pattern of connectivity as previ-

ously found in adult subjects’ studies (Allen et al., 2014). Interestingly,

in schizophrenia, another disorder frequently classified as a disconnec-

tion syndrome, patients also spend more time in weakly connected

dynamic states compared to healthy controls (Damaraju et al., 2014;

Rashid et al., 2014), and showed decreased hemispheric connectivity

(Agcaoglu et al., 2017) . This also potentially fits with previous work in

adults showing that, at the individual level, those with ASD may have

distinct, noisy patterns of connectivity that may even mask “typical”

patterns of connectivity (Hasson et al., 2009). Higher levels of autistic

traits were also associated with lower dwell times in a default-mode

modularized state; a state where nodes from the well-documented

default-mode network were prominent. Despite heterogeneity in much

of the functional connectivity literature, there is a growing body of evi-

dence suggesting that the default mode network is more weakly con-

nected in individuals with ASD (Jung et al., 2014; Stigler, McDonald,

Anand, Saykin, & McDougle, 2011). Interestingly, task-based data

examining the effect of a cognitive load on the DMN has previously

suggested the DMN does not “deactivate” during a task in ASD (Ken-

nedy, Redcay, & Courchesne, 2006). However, in the context of our

findings and other reports of weaker connectivity in the DMN, it is

possible that rather failing to deactivate, the DMN actually fails to

“activate” in individuals with ASD; an alternative interpretation that

could be made from task-rest contrasts of BOLD activation. We also

demonstrated that, in the absence of clinically relevant cases, autistic

symptoms in the general pediatric population are related to dynamic

aspects of network connectivity. This is further evidence that aspects

of the neurobiology of autistic traits, similar to the symptomatology,

indeed lie on a continuum (Blanken et al., 2015; Constantino & Todd,

2003; Di Martino et al., 2009b). In addition to the dimensional trait

approach, children with clinical ASD were compared to a group of age-

and sex-matched controls, revealing similar patterns of longer dwell

time within the globally disconnected state. Thus, we show that these

dynamic functional connectivity features of autistic traits are also pres-

ent in the most severely affected children. We propose the label

“chronnectopathy” where patterns of dynamic functional connectivity

in clinical groups deviate from those observed in the reference group

without the disorder. While autistic traits in the general population are

by no means pathological, this dimensional behavioral phenotype for

clinical autism, which is considered pathological, serves as the basis for

the term chronnectopathy. Interestingly, the longer mean dwell time in

a less connected state observed in children with autistic traits and ASD

which mimics the patterns in younger, typically developing children,

potentially indicative of a delayed or halted trajectory (Di Martino

et al., 2014).

4.3 | Additional considerations

Strengths of this study include the large, population-based sample of

children in a narrow age range, enabling us to show subtle age effects

during a crucial, preadolescent period of development. Further, the

age-range included in the current study is particularly understudied in

the context of ASD (Uddin et al., 2013b). Another major strength is the

use of a dynamic approach to resting-state connectivity combined with

an efficient and interpretable presentation of a wealth of data. While

there is some consistency in the expansive static connectivity literature

in ASD, it is unfortunately plagued by heterogeneity in clinical charac-

teristics of the subjects, image acquisition, analysis strategy, and ulti-

mately the core findings (Hernandez, Rudie, Green, Bookheimer, &

Dapretto, 2015; Uddin et al., 2013b). The quantitative summary meas-

ures presented here could potentially aid in simplifying interpretations

of complex network information, which historically are often subjec-

tively evaluated. For instance, specific and isolated features of large

(e.g., 80 3 80) connectivity matrices are often summarized when

undoubtedly more complex patterns are present. While this study also

assigned labels to the four dynamic states, most of the interpretation

comes from quantitative metrics, such as MDT. The subjects were all

scanned on the same MRI scanner, which reduces vendor- and

hardware-dependent differences. Finally, the study of ASD is

approached dimensionally as well as from a traditional case–control

perspective, revealing dynamic connectivity features of ASD that lie

along a continuum in the general population. While many studies of

ASD include only boys, our sample was sex-balanced and also pre-

sented in the context of typical brain development. However, some

limitations deserve mention. While increased scan duration is likely to

reveal the complexity of dynamic connectivity states and their tempo-

ral aspects more accurately, our rs-fMRI scan was limited to just over 5

min to ensure high-quality data given the scale of the study and to min-

imize the burden on our young participants (White et al., 2014). Fur-

thermore, our study was cross-sectional and all participants were of

school-age, so the interpretation of our results cannot be extended to

other stages of development. Longitudinal studies are warranted to

reveal trajectories of dynamic connectivity in typical and atypical

development.

In conclusion, our approach suggests that a hallmark of childhood

is not limited to the underdevelopment of the frontal lobe, but also

about the efficient utilization of vast interconnections; in essence,

younger children are less frequently tapping into the resources that

they have. Also, children with higher levels of autistic traits are even

less likely to efficiently use such connections and may have less

capacity in this regard. This study revealed novel aspects of psychopa-

thology and future studies should evaluate the utility of this methodol-

ogy in, for example, the classification, evaluation and treatment

response prediction of conditions like ASD.
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