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Abstract This study was designed to compare the per-

formances of four different non-destructive methods of

assessing onion quality, one of which was based on near-

infrared spectroscopy, and three of which were based on

spectral imaging. These methods involve a combination of

wavelengths from visible to near-infrared with different

acquisition systems that were applied to discriminate

between pre-sorted onions by in situ measurements of the

onion surface. Compared with the partial least squares

discriminant analysis classification models associated with

different methods, hyperspectral imaging (HSI) with both

static horizontal and rotating orientation obtained a higher

level of sensitivity and specificity with a lower classifica-

tion error than did other methods. Moreover, models built

with the reduced variables did not lower the model per-

formances. Overall, these results demonstrate that HSI with

selected wavelengths would be useful for further devel-

oping an improved real-time system for sorting onion

bulbs.

Keywords Multispectral imaging � Hyperspectral
imaging � Near-infrared spectroscopy � Principal
component analysis � Partial least squares discriminant

analysis � Allium cepa L.

Introduction

The onion is one of the most widely consumed vegeta-

bles in the world (Preedy and Watson 2014). After har-

vesting, field curing and drying, onion bulbs are kept in

cold storage to maintain quality throughout the year and to

satisfy consumers’ demand for extended availability

(Rabinowitch and Currah 2002). During storage, onions are

susceptible to various types of fungal and bacterial dis-

eases, and the diseases show specific characteristic

behaviors (Islam et al. 2017; Snowden 2010). The devel-

opment of diseases is still unacceptably high and accounts

for a large proportion of spoilage (pers. comm.).

Increased consumer awareness is making the marketing

of onions more competitive. Consumers demand high-

quality onions with clean and unblemished skins that are

not split or loose (Brewster 2008) and are free of defects

and diseases that can be achieved by non-destructive

optical quality sorting techniques (de Oliveira et al. 2016;

Zude 2008).

Near-infrared (NIR) spectroscopy is a non-destructive

technique that is very simple and safe to use and has been

intensively applied in the quality inspection of food over

the past two decades (Patel et al. 2012). NIR spectroscopy

measures one spatial point at a time, and it is suitable for

the analysis of products which are high in water and car-

bohydrate content, as absorbance is higher for samples

containing C–H, C–O and O–H molecules (Jha et al. 2010).

Moreover, water has a strong absorption rate in the NIR
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region; thus, spectra from products with high water content

([ 80%) are dominated by the spectral signature of water

(Büning-Pfaue 2003).

Conversely, spectral imaging allows the simultaneous

collection of spatial and spectral information about the

product (Lu and Chen 1999; Vetrekar et al. 2015), which

can be interpreted as a set of spectra on a two-dimensional

area or a succession of images recorded at a number of

specific wavelengths. If an application requires a real-time

application, multispectral imaging (MSI) with several

bands can be a practically viable solution. The processes

involved in MSI are image acquisition, the algorithm for

image processing and decision-making. MSI acquires

images with a relatively higher spatial resolution at several

wavelengths. In contrast, HSI often collects images with

higher spectral resolution; thus, it provides additional

information that MSI may have missed (Qin et al. 2013).

The full wavelength spectrum of HSI data can be reduced

to several key wavelengths for specific substances. Next,

these key wavelengths can be implemented to develop an

MSI system with enormous advantages.

Apart from different measurement techniques, the ori-

entation of products during measurement also influences

the results. Research has not been conducted to compare

advanced techniques when considering different acquisi-

tion systems. Recently, Kuroki et al. (2017) investigated

six different orientations of onions to predict rot levels

using the transmittance of visible near-infrared spec-

troscopy. The best model with the highest R2 and the

lowest error of prediction was obtained with the measure-

ment at the equatorial region.

Sorting machines based on conventional NIR spec-

troscopy are available for the size and quality sorting of

onions. These machines are working either on reflectance

or transmittance mode. At the end of the storage period,

during sorting, numerous misclassifications happen (pers.

comm.), and misclassification of healthy bulbs leads to

food loss and waste. Novel non-destructive techniques may

be applied to improve accuracy in the sorting of onions.

Hence, the objective of this study was to compare the

classification efficiency of the NIR spectroscopic system

and the NIR spectral imaging systems (MSI and HSI) with

different acquisition techniques for classifying healthy and

diseased onion bulbs. The comparison of these emerging

analytical methods is worth investigating due to their

interesting and direct applications for industrial process

lines, which may lead to quality improvement and eco-

nomic advantages.

Materials and methods

Plant material

An organically grown cultivar ‘Barito’ was selected for the

experiment. At the end of the cold storage (* 1 �C,
* 80–90% Relative Humidity) period (6 months), a total

of six sacks (* 120 kg) were blindly sampled from the

box and were sorted in an automated online sorting system.

Bulbs (40–80 mm diameter) were sorted into healthy and

diseased categories. From the healthy category, a total of

15 onions were blindly selected by hand based on a firm

feeling and from the diseased category, a total of 30 onions

were blindly selected. The selected bulbs were numbered

immediately and were brought to the laboratory of Post-

harvest Technology, Årslev, Denmark for further analysis.

Near-infrared spectroscopy

NIR spectroscopy was carried out using an AgriQuant (Q-

Interline, Tølløse, Denmark) Fourier transform near-in-

frared (FT-NIR) spectrometer as described by Travers et al.

(2014) (Online Resource 1a). The AgriQuant was operating

in the 300–2500 nm range. The instrument was fitted with

a fiber-optic cable and a direct contact probe working in

reflectance mode with a diameter of approximately 10 mm.

A white Teflon tile (polytetrafluoroethylene, PTFE) was

used to provide a reference spectrum before measurement.

The instrument was configured with PLCATS (Version

4.4) and InfraQuant 2.5 software. The spectral resolution

was 30 cm-1. Two points were marked in each onion;

point 1 is a random point at the maximum diameter (i.e.,

equatorial region) of the bulb, and point 2 is the opposite

side of point 1. Measurements were performed at both

points of each onion. As two measurements had been taken

per onion, the data in each of these sets were averaged to

provide one mean spectrum for each onion (Travers et al.

2014).

Multispectral imaging

Spectral imaging at the visible to NIR (VIS–NIR) region

with static horizontal orientation was carried out with a

multispectral imaging (MSI) system. VideometerLab

equipment (Videometer A/S, Hørsholm, Denmark) at 18

different wavelengths (405, 435, 450, 470, 505, 525, 570,

590, 630, 645, 660, 700, 780, 850, 870, 890, 940 and

970 nm) working on reflectance mode was used to capture

images (Online Resource 1b). In this setup, onions were

placed horizontally inside the acquisition system facing

point 1 (i.e., equatorial region) towards the camera, and the

reflection was recorded. The Videometer consisted of a
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high-resolution 1280 9 960, 45 lm monochrome grays-

cale CCD camera mounted at the top of the sphere, spe-

cially assembled 18 high power LED light sources, an

integrating sphere with a matte white coating to ensure that

the light is scattered evenly with a uniform, diffuse light at

illumination. A computer equipped with a data acquisition

system and the VideometerLab software version 3.0.30

(Videometer A/S, Hørsholm, Denmark) was used to

acquire images, image correction, and analysis. The

equipment was calibrated using bright, dark and geometric

references prior to measurement.

Hyperspectral imaging (VIS–NIR)

Spectral imaging at the visible to NIR (VIS–NIR) region

with a rotating orientation was performed with a hyper-

spectral imaging (HSI-VIS–NIR) system. Onions were

placed in a customized industrial sorting machine equipped

with a CMOS camera and LEDs covering the spectral

region from 425 to 968 nm and captured with 216 hyper-

spectral bands. The onions were rotated continuously dur-

ing data acquisition, making it possible to capture its entire

surface apart from the distal ends of the onion, thus

recording a data cube of almost the whole surface. This

setup resulted in high-quality images as diffused illumi-

nation reduced surface glare and high-speed recordings

with low exposure time avoided motion blur. The spatial

resolution in this set up was 0.625 mm/pixel.

Hyperspectral imaging (SWIR)

Spectral imaging at the short wave infrared (SWIR) region

with a horizontal static orientation was performed with a

hyperspectral imaging (HSI-SWIR) system. A conveyor

belt setup equipped with an InGaAs camera was used to

capture hyperspectral images of the onions from 1016 to

1742 nm with 216 hyperspectral bands. Two halogen

lamps were used as light sources, and they caused specular

reflections on certain parts of the onion surface, causing

saturation of the sensor and making the capture of certain

areas of the surface unusable. Onions were placed on the

conveyor belt in a similar way to capture the surface

around point 1 at the equatorial region, as performed in an

MSI system. Reflection from onions in this setup could

only be captured one side at a time. The spatial resolution

in this setup was 0.3125 mm/pixel.

Optics in both setups consisted of VIS–NIR or SWIR

TechSpec fore-lenses (Edmund Optics, USA) along with

the VIS–NIR V10E or SWIR V17E ImSpector spectro-

graphs (Specim, Finland), and a white Teflon tile was used

as a white reference. A dark reference was obtained by

blocking the sensor input. The photograph and schematic

diagram of the HSI-(VIS–NIR), and HSI-(SWIR)

instruments are shown in Online Resource 1c, and Online

Resource 1d respectively.

Visual quality assessment

The internal quality of the onions was evaluated visually.

Onions were cut from the neck to the base, and diseases

were registered by visual assessment of the symptoms as

shown by Snowden (2010) and Schwartz and Mohan

(2007). Before cutting, the weight and diameter of each

onion was recorded.

Total soluble solids (TSS)

One to two drops of onion juice was taken from the two

outer fleshy scales of the onion, and soluble solids (% TSS)

were measured on a refractometer.

Hypercube processing

In HSI, only a single line was scanned in each frame, and

the frame also contained a spectrum for each point on the

line. Merging several line scans or frames of a subject

yielded a hyperspectral data cube with two spatial axes and

one spectral axis. Thus, HSI data obtained from the ith

measurement can be represented by a hypercube Sijkn

� �
,

where the j index corresponds to the line scan spatial

direction, the k index corresponds to the spatial dimension

obtained by the movement of the sample, and the n index

represents the spectral dimension. Each of the measured

hyperspectral cubes was first converted to reflection coef-

ficients Ri
jkn

� �
with the white reference Wjkn

� �
and the

black reference Bjkn

� �
as given by Eq. (1).

Ri
jkn ¼

Sijkn � Bjkn

Wjkn � Bjkn

ð1Þ

A region of interest (ROI) mask Mi
jk

� �
corresponding to

the location of the onion was obtained by thresholding the

spatial dimension as described by Eq. (2):

Mi
jk ¼

0 if Ri
jkp � 0:2

1 if Ri
jkp [ 0:2

�
ð2Þ

where p corresponds to a wavelength of 864 and 1604 nm

for VIS–NIR and SWIR, respectively, and an empirically

determined threshold of 0.2 was used.

To correct for uneven illumination, the spectral dimen-

sion of the reflection coefficients was normalized with its

sum, as described by Eq. (3):

Ni
jkn ¼

Ri
jknP

n R
i
jkn

ð3Þ
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Finally, the average normalized spectrum Xi
n

� �
was

calculated for each sample from the region of interest and

the normalized reflection coefficients as described by

Eq. (4):

Xi
n ¼

P
j

P
k N

i
jkn �Mi

jkP
j

P
k M

i
jk

ð4Þ

Hypercubes were processed using routines built in-house in

R (R Core Development Team 2016, version 3.3.1).

Spectral pre-processing

Savitzky–Golay (SAV-GOL) is a signal smoothing and

derivative calculation method. It has three arguments: a

width of the filter, a polynomial order, and the derivative

order. The Standard Normal Variate (SNV) normalization

method is a weighted type of normalization, which calcu-

lates the standard deviation of all the pooled variables for

the given sample. Multiplicative signal correction (MSC)

corrects the additive and multiplicative effects caused by

non-uniform scattering across the spectra.

Before pre-processing, FT-NIR spectra at the range

\ 748 and[ 1165 nm were removed due to having a weak

signal and high noise at both ends of the detector’s range

(Travers et al. 2014). Figure 1 presents raw spectra and

pre-processed spectra from four different methods. Sav-

itzky–Golay spectral smoothing (3-point, 1st order poly-

nomial, no derivative) and SNV was applied to the data set

in a similar way as that described by Travers et al. (2014).

MSI, HSI-(VIS–NIR) and HSI-(SWIR) were pre-processed

using MSC as suggested by Wang et al. (2013), that is, by

regressing a measured spectrum against the mean spectrum

and then correcting the measured spectrum using the slope

of this fit. All pre-processed spectra were mean-centered by

subtracting the mean from the data values separately for

every variable.

Model building

Principal component analysis (PCA) was carried out to

express the major information contained in the original

variables with a lower number of variables, called principal

components (PCs), which describe the main sources of

variation in the data (Vetrekar et al. 2015). Partial least

squares discriminant analysis (PLS-DA) models were built

to differentiate between healthy and diseased onions

(Roggo et al. 2007). Seventy percent of the samples were

used to calibrate the model, and 30% were used for pre-

diction. The models were cross-validated using leave-one-

out cross-validation (Borras et al. 2014), and the optimal

number of latent variables was chosen on the basis of the

minimum value of the cross-validated classification error

average.

A series of parameters can be used to evaluate the

performance of classification models, such as sensitivity,

specificity, and classification error. Sensitivity is the ability

of the model to correctly classify healthy onions using the

values of true positive (TP) and false negative (FN) and

was calculated using Eq. (5). Specificity is the capacity of

the model to correctly identify diseased onions relative to

the values of true negative (TN) and false positive (FP) and

was calculated using Eq. (6).

Sensitivity ¼ TP

TPþ FN
� 100 ð5Þ

Specificity ¼ TN

TN þ FP
� 100 ð6Þ

To identify important wavelengths for the models,

Variable Important in Projection (VIP) scores (Zhang et al.

2017) and a Selectivity Ratio (SR) (Zhang et al. 2017) were

calculated. Spectral pre-processing and multivariate data

analysis and model building (PCA, PLS-DA) were carried

out using PLS Toolbox (PLS_Toolbox V802, Eigenvector

Research Inc., USA) in a MATLAB environment (version

9.3.0, MathWorks, Natick, MA, USA).

Results and discussion

Onion quality

The weight of healthy onions varied from 97 to 190 g,

while the weight of diseased onion varied from 101 to

191 g (Online Resource 2). Diameters of onions were

between 40 and 80 mm, as onions were selected only in

that size range. The TSS of healthy onions varied from 7 to

7.5%, while it varied from 3.4 to 6% for diseased onions.

The DM content of onion bulbs is an important parameter

that partly defines storage life, pungency, and firmness

(Sinclair et al. 1995). DM and TSS were found to be sig-

nificantly correlated with the percentage of diseased bulbs

(Ko et al. 2002). A wide variation in TSS in diseased

onions in this study indicates a variation in stages of dis-

ease development.

Figure 2 presents the images of diseased onions from

the visual quality assessment. From the visual quality

assessment, 13 out of 30 onions were identified as diseased;

thus, 17 non-diseased onions were added to the group of

healthy onions in further analysis. Diseased onions are

numbered from 1 to 13 (Fig. 2). It can be observed from

Fig. 2 that the level of infection varies from the early stage

to the late stage. Different types of diseases were identified.

Gray mold rot is a fungal disease caused by Botrytis spp.,

sour skin rot is a bacterial disease caused by Pseudomonas
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cepacia, neck rot is a fungal disease caused by Botrytis

spp., and basal rot, which is also a fungal disease, is caused

by Fusarium spp. Diseased onions 3, 5 and 10 were shown

to be at an early stage of infection; among those, 3 and 5

were infected with gray mold. Onions 1, 2, 4, 9, 11 and 13

were shown to be at an intermediate stage of infection.

Among those onions, onions 1, 2 and 4 were also infected

with gray mold. Onions 6, 8 and 13 were infected with

bacteria (sour skin), while onion 7 was infected with both

bacteria and fungi (sour skin and basal rot). Onions 6, 7, 8

and 12 showed the late stage of infection. Both 11 and 12

were infected with neck rot disease.

Diseased bulbs were externally sound, except the one

with basal rot. In the case of gray mold rot, when the bulbs

were cut from neck to base, one to three outer fleshy scales

were found to be soft, water-soaked (mushy) and brownish

in color. Onion bulbs infected with sour scale had a char-

acteristic sour smell and water-soaked scales. These char-

acteristics are in accordance with Snowden (2010). Onions

9 and 10 were infected with unknown diseases and they
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showed scales with mushy consistency but without any

smell. In the group of healthy onions, all onions were

externally and internally sound and had no visual symp-

toms of diseases.

Exploratory data analysis

As a starting point for the analysis of the spectra, principal

component analysis (PCA) was performed with the data

sets. Based on FT-NIR data, a PCA was conducted with

two PCs. The first principal component (PC1) accounted

for 62% of the total variance, while the second principal

component (PC2) accounted for 17% of the total variance.

No pattern could be observed from the score plot (Fig. 3a)

using two PCs. Moreover, an additional PC3 could not

separate the two clusters (Online Resource 3).

A PCA was performed with three PCs for MSI data. The

score plot shows the formation of clusters of diseased

onions along PC1 and PC2 (Fig. 3b). PC1, PC2, and PC3

explained 84, 12 and 3% of the original variance, respec-

tively. It can be seen from the score plot that diseased

onions 6, 8 and 13 are similar; all of those were infected

with sour skin. Additionally, diseased onions 2 and 9 lie

very close to each other in the score plot; those were

infected with gray mold. In addition, diseased onions 2 and

9 were shown to be at an intermediate stage of the disease.

Similarly, diseased onions 11 and 12 lie close to each other,

and those bulbs were infected with neck rot (Fig. 2).

Wavelengths of 405, 435, 470 and 780–970 nm contributed

to the samples that were positioned at the left side of PC1,

where most of the diseased onions were situated. Con-

versely, wavelengths of 570–700 nm contributed to the

samples that are positioned on the right side of PC1

(Fig. 3f).

A PCA with HSI-(VIS–NIR) data was conducted with

three PCs. PC1, PC2 and PC3 describe 73, 15 and 7% of

the total variance, respectively (Fig. 3c). Diseased onions 2

and 9 are positioned together in the score plot, and 3, 5 and

10 are positioned in the same plane. This is in accordance

with previous observations during the visual quality

assessment (Fig. 2). Diseased onions 7 and 8 show similar

behavior in the score plot (Fig. 3c), and those were at the

late stage of infection. The score plot also reveals that

diseased onions 6 and 13 are similar, and those were

infected with sour skin. Wavelengths of 771–965 nm are

responsible for the samples where most of the diseased

onions are positioned, while wavelengths of 552–726 nm

are responsible for the samples where most of the healthy

onions are positioned (Fig. 3g).

A PCA with three PCs was conducted on the HSI-

(SWIR) data. Clusters of healthy and diseased onions can

be seen along PC1 and PC3 (Fig. 3d). Wavelengths from

Fig. 2 Visual quality assessment of onion diseases (numbers represent individual onion for measurement)
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1067 to 1202 nm and 1472 to 1678 nm contribute to PC1,

which explains 70% of the total variance. Wavelengths

1016–1047 and 1502–1739 nm contribute in PC2, which

explains 20% of the total variance. Wavelengths

1016–1040, 1384–1546 and 1104–1168 nm contribute to

PC3, which explains 7% of the total variance (Fig. 3h). The

score plot shows that diseased onions 2, 9, 11 and 13 are

similar (Fig. 3d), which is in accordance with previous

observations. All three of these onions were shown to be at

an intermediate stage of infection during the visual quality

assessment. Diseased onions 3 and 5 are positioned toge-

ther, and those were identified with gray mold. In addition,

diseased onions 7 and 8 are positioned together in the score

plot (Fig. 3d). Both of those were infected with sour skin.

Moreover, diseased onions 6, 7, 8 and 12 were shown to be

at the late stage of infection (Fig. 2).

Though certain clusters of diseased onions were inter-

pretable in terms of specific diseases and degrees of

infections in score plots with spectral imaging, healthy and

diseased onions were still mixed. However, the principal

component analysis suggests that it could be possible to

classify onions accurately using a supervised classification

model with spectral imaging.

Classification models

Partial least squares discriminant analysis (PLS-DA)

models were built to compare the efficiency of different

methods in classifying healthy and diseased onions. The

optimal model for FT-NIR data was built with two latent

variables, explaining a total of 72% of the variation in the

spectra (X) and 25% of the variation of the vector of classes

(y). The PLS-DA model with MSI data was built with two

latent variables, explaining a total of 97% of the variation

in the spectra (X) and 33% of the variation in the vector of

classes (y). For HSI-(VIS–NIR) and HSI-(SWIR) data, the

optimal PLS-DA model was also calibrated with two latent

variables. PLS-DA models for the HSI-(VIS–NIR) and the

HSI-(SWIR) data explained a total of 83 and 84% of the

variation in the spectra (X), respectively and 58 and 38% of

the variation of the vector of classes (y), respectively.

Table 1 summarizes the PLS-DA model statistics obtained

with the FT-NIR, MSI, and HSI data. High sensitivity and

specificity levels in prediction were obtained using both

types of HSI data to compare to MSI and FT-NIR data.

False positive results in classification will reduce the

profit for the industry/farmer, while false negative results

may lead to consumer dissatisfaction and rejection. The

performance of PLS-DA models built with MSI, HSI-

(VIS–NIR) and HSI-(SWIR) was better than FT-NIR. The

model with FT-NIR achieved 80% correct classification for

healthy onions, while 39% correct classification was

achieved for diseased onions in cross-validation, with 28,

40 and 77% as classification error in calibration, cross-

validation, and prediction, respectively. The PLS-DA cal-

ibration model with MSI data showed 70% correct classi-

fication for healthy onions, while it showed 82% correct

classification for diseased onions. The PLS-DA cross-val-

idation model obtained 70 and 73% correct classification

for healthy and diseased onions, respectively. In prediction,

22% were correctly classified as diseased onions, while FT-

NIR achieved 11% correct classification. The model with

HSI-(VIS–NIR) obtained 80% correct classification of

healthy onions in calibration, 70% in cross-validation and

66% in prediction; an improvement in the results was

achieved with HSI-(SWIR) data in calibrated (90%), cross-

validated (80%) and in the predicted model (100%). On the

other hand, 91, 87 and 33% correct classification for dis-

eased onions were achieved with VIS–NIR data in cali-

bration, cross-validation, and prediction, respectively,

while 78% correct classification was achieved with SWIR

data in both calibration and cross-validation, respectively.

Sixty-six percent correct classification was achieved with

SWIR data in prediction. The results are slightly better than

the findings reported by Wang et al. (2012). The authors

introduced onions vertically (facing with the neck towards

the camera), and HSI at 950–1650 nm with linear dis-

criminant analysis (LDA) was able to correctly predict

63% of onion bulbs infected with sour skin. In the present

study, VIS–NIR showed a classification error of 14, 21, and

50%, while 15, 20 and 16% with SWIR data respectively in

calibration, cross-validation, and prediction.

Compared to other techniques, models with HSI-

(SWIR) were shown to have a better performance in

classifying healthy and diseased onions. The only draw-

back of applying HSI to the processing line is the large

amount of data from the hyperspectral images, which

increases the complexity of data analysis and slows the

speed of processing (Ferrari et al. 2015). However, due to

the large data size of each hyperspectral image, data

dimensionality reduction is necessary in order to develop

MSI for real-time monitoring of large sets of samples in the

processing line (Calvini et al. 2016).

An efficient way to reduce data dimensionality is to

identify major regions on the spectrum responsible for the

classification of healthy and diseased onions using VIP and

SR. In the PLS-DA model, the variables that show a VIP

value[ 1 are the most important variables (Gerretzen et al.

2016). Similarly, a high selectivity ratio indicates the major

region that has the ability to discriminate between two

groups of onions. For the PLS-DA models with HSI-(VIS–

bFig. 3 Principal component analysis-score plots. a FT-NIR, b MSI,

c HSI-(VIS–NIR), d HSI-(SWIR); principal component analysis-

loading plots. e FT-NIR, f MSI, g HSI-(VIS–NIR), h HSI-(SWIR)
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NIR) data and HSI-(SWIR) data, a threshold of VIP[ 1.5

and VIP[ 1.4 was used, respectively. A threshold of SR

[ 1.09 and SR[ 0.8 was used for models with HSI-(VIS–

NIR) and HSI-(SWIR) data, respectively. The PLS-DA

VIP, SR, and selected variables are shown in Fig. 4.

New PLS-DA models for HSI were built with the

selected variables to compare the model performances with

that of the one built with whole spectra (Table 1). The

optimal model for HSI-(VIS–NIR) data was built with two

latent variables, explaining a total of 87% of the variation

in the spectra (X) and 49% of the variation of the vector of

classes (y). A PLS-DA model with HSI-(SWIR) data was

also built with two latent variables, explaining a total of

85% of the variation in the spectra (X) and 39% of the

variation of the vector of classes (y). The performance of

calibration models built with the selected variables was

slightly lower than the model with whole spectra. How-

ever, in cross-validation and in prediction, the performance

of the model with selected variables was either similar to or

better than that of the models with whole spectra. For

instance, sensitivity in prediction in the model with selec-

ted variables was almost the same as that of the previous

models, while higher specificity was achieved in the model

with selected variables. Several wavelengths 516–526,

690–776, 821–844, 857–897 and 943–968 nm were iden-

tified as important variables responsible for the classifica-

tion with HSI-(VIS–NIR) data (Fig. 4a). In the literature,

the difference in spectral features between healthy, neck

rot, and sour skin was found at 670–740, 780–870, and

950–1170 nm (Chugunov and Li 2015).

The major constituents of an onion are water, protein,

and carbohydrates (Brewster 2008). It has been reported

that pectic enzymes are involved in the degradation of

pectic constituents of cell walls, which is caused by

pathogenic microorganisms that are related to several

onion diseases, including bacterial soft rot (Obi and

Umezurike 1981). Additionally, Botrytis cinerea, one of

the pathogenic microorganisms responsible for onion dis-

eases, has been reported to produce pectic degrading

enzymes (Aboaba 2009). A pectinase enzyme hydrolyzes

the pectin and provides a mushy consistency/water-soaked

appearance (Jay et al. 2008). Results from the analysis of

the loading plots, PLS-DA-VIP plots, and SR plots indicate

that the spectral difference between healthy and diseased

onions could be associated with the different compositions

and proportions of water, sugar, and cellulose in healthy

and diseased onions and their degradation products in

diseased onions (Chugunov and Li 2015; Williams and

Norris 1987; Workman 2000).

Reducing data dimensionality by identifying the optimal

regions in the spectra in this study will be helpful in the

industrial adaptation of this method. However, although

VIP and SR are not truly variable selection methods, they

are used as tools for assessing the relevance of the spectral

variables. The new PLS-DA model built with the reduced

variables selected using VIP and SR resulted in small or no

decreases in model performance.

Furthermore, it seems that the choices of the orientation

of the onion during MSI, HSI-(VIS–NIR) and HSI-(SWIR)

were satisfactory. There is a possibility of overlooking

valuable information about the bulb if the bulb is placed

with the neck facing to the camera. Thus, it is better to

place the onion with the equatorial region facing towards

the camera. In such a setup, the basal plates do not overlap

with the system optical axis. Kuroki et al. (2017) suggested

a similar orientation for the best model to predict the

Table 1 Partial least squares

discriminant analysis

classification model statistics

Whole spectra Reduced spectra

FT-NIR MSI HSI-(VIS–NIR) HSI-(SWIR) HSI-(VIS–NIR) HSI-(SWIR)

Calibration

Sensitivity (%) 90 70 80 90 80 80

Specificity (%) 52 82 91 78 87 82

Class error (%) 28 23 14 15 16 18

Cross validation

Sensitivity (%) 80 70 70 80 80 80

Specificity (%) 39 73 87 78 87 78

Class error (%) 40 28 21 20 16 20

Prediction

Sensitivity (%) 33 33 66 100 66 100

Specificity (%) 11 22 33 66 44 77

Class error (%) 77 72 50 16 44 11

FT-NIR Fourier transform near-infrared, MSI multispectral imaging, HSI-(VIS–NIR) hyperspectral imaging

(visible near-infrared), HSI-(SWIR), hyperspectral imaging (short wave infrared)
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percentage of rot in onions using the transmittance mode of

hyperspectral imaging. The acquisition system in MSI and

HSI-(SWIR) were in accordance with that study. In addi-

tion, the use of rotating rollers in our study is promising as

it provided scans of the whole onion surface.

Conclusion

This work compared spectroscopic techniques, both point-

based and image-based, for the classification of healthy and

diseased onions. The results from this particular study

indicate that hyperspectral imaging at the SWIR range

together with multivariate analysis and a chemometric

model could become a promising non-destructive method

for classifying healthy and diseased onions. The results
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also suggest that the direct measurement of onions using a

hyperspectral imaging system with several selective

wavelengths, either scanning the whole surface using

rotating rollers or taking several scans of the onions, facing

the equatorial region towards the sensor by placing it on a

sample holder and shifting sides could be adapted as an

automated method for quality sorting in the onion industry.
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Axel Månsson A/S.

References

Aboaba S (2009) The role of pectinase enzyme in the development of

soft rot caused by Pseudomonas fluorescens in the purple variety

of onions (Allium cepa). Afr J Microbiol Res 3(4):163–167

Borras E, Amigo JM, van den Berg F, Boque R, Busto O (2014) Fast

and robust discrimination of almonds (Prunus amygdalus) with

respect to their bitterness by using near infrared and partial least

squares-discriminant analysis. Food Chem 153:15–19

Brewster JL (2008) Onions and Other Vegetable Alliums. CABI,

Wallingford
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