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Key points

� Chronic obstructive pulmonary disease (COPD) is largely caused by smoking, and patient limb
muscle exhibits a fast fibre shift and atrophy.

� We show that this fast fibre shift is associated with type grouping, suggesting recurring cycles
of denervation–reinnervation underlie the type shift.

� Compared to patients with normal fat-free mass index (FFMI), patients with low FFMI
exhibited an exacerbated fibre type shift, marked accumulation of very small persistently
denervated muscle fibres, and a blunted denervation-responsive transcript profile, suggesting
failed denervation precipitates muscle atrophy in patients with low FFMI.

� Sixteen weeks of passive tobacco smoke exposure in mice caused neuromuscular junction
degeneration, consistent with a key role for smoke exposure in initiating denervation in COPD.

Abstract A neurological basis for the fast fibre shift and atrophy seen in limb muscle of patients
with chronic obstructive pulmonary disease (COPD) has not been considered previously. The
objective of our study was: (1) to determine if denervation contributes to fast fibre shift and muscle
atrophy in COPD; and (2) to assess using a preclinical smoking mouse model whether chronic
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tobacco smoke (TS) exposure could initiate denervation by causing neuromuscular junction
(NMJ) degeneration. Vastus lateralis muscle biopsies were obtained from severe COPD patients
[n = 10 with low fat-free mass index (FFMI), 65 years; n = 15 normal FFMI, 65 years) and
healthy age- and activity-matched non-smoker control subjects (CON; n = 11, 67 years), to
evaluate morphological and transcriptional markers of denervation. To evaluate the potential for
chronic TS exposure to initiate these changes, we examined NMJ morphology in male adult mice
following 16 weeks of passive TS exposure. We observed a high proportion of grouped fast fibres
and a denervation transcript profile in COPD patients, suggesting that motor unit remodelling
drives the fast fibre type shift in COPD patient limb muscle. A further exacerbation of fast fibre
grouping in patients with low FFMI, coupled with blunted reinnervation signals, accumulation
of very small non-specific esterase hyperactive fibres and neural cell adhesion molecule-positive
type I and type II fibres, suggests denervation-induced exhaustion of reinnervation contributes
to muscle atrophy in COPD. Evidence from a smoking mouse model showed significant NMJ
degeneration, suggesting that recurring denervation in COPD is probably caused by decades of
chronic TS exposure.
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Introduction

Chronic tobacco smoke (TS) exposure is the leading
cause of preventable disease in the USA, including
cancer, cardiovascular disease and chronic obstructive
pulmonary disease (COPD) (Warren et al. 2014). Not
only are smokers at risk, but this also affects non-smokers
exposed to second-hand smoke (Warren et al. 2014).
Indeed, worldwide the economic burden associated with
smoking is nearly 2% of the global gross domestic product
(Goodchild et al. 2017), demonstrating the continuing
widespread impact of the so-called tobacco epidemic. The
aforementioned TS-related diseases are each associated
with skeletal muscle deterioration that worsens clinical
outcomes, including increasing the risk of death (Marquis
et al. 2002; Swallow et al. 2007; Jones et al. 2015).
Furthermore, there is a large body of evidence showing
that TS directly affects skeletal muscle in a dose-dependent
manner (Degens et al. 2015). Finally, many of the muscle
changes seen in different TS-related diseases are similar
(e.g. fast fibre type shift, erosion of oxidative capacity,
muscle atrophy) (Kitzman et al. 2014; Maltais et al. 2014;
Toth et al. 2016) and are also seen in smokers who are
apparently free of disease (Orlander et al. 1979; van den
Borst et al. 2011).

In this respect, several lines of evidence indirectly
support the idea that neuromuscular junction impact with
chronic TS exposure probably underlies the muscle affect.
Firstly, chronic TS exposure is an established risk factor
for exacerbating muscle deterioration in conditions where
neuromuscular junction degeneration is well known,
including normal ageing and amyotrophic lateral sclerosis
(ALS) (van den Borst et al. 2011; de Jong et al. 2012;
Hepple & Rice, 2016). Secondly, the TS-induced fast fibre

shift is irreversible following smoking cessation (Larsson
& Orlander, 1984), as it would be if the fibre type shift
is due to recurring cycles of denervation–reinnervation
(motor unit remodelling) driven by TS-induced neuro-
muscular junction degeneration. Thirdly, patients with
the TS-related disease COPD exhibit an accumulation of
small angular fibres and myosin heavy chain co-expression
in limb muscle (Gosker et al. 2002), features that are
well known in conditions associated with neuromuscular
junction degeneration such as ALS (Baloh et al. 2007) and
normal ageing (Hepple & Rice, 2016). However, there are
as yet no data addressing the impact of chronic TS exposure
on the neuromuscular junction, and no study has assessed
TS-related disease patient muscle for evidence of recurring
cycles of denervation–reinnervation and the potential
contribution of persistent muscle fibre denervation to
muscle atrophy. The current study aims to address these
gaps by first presenting an in-depth histological analysis
of muscle motor unit remodelling and pairing this with
targeted analysis of transcripts related to denervation and
reinnervation in patients with one of the most devastating
smoking-related diseases, COPD; and second, by using
a smoking mouse model to facilitate direct investigation
of the impact of chronic TS exposure on neuromuscular
junction morphology.

We hypothesized that COPD patients would exhibit
motor unit remodelling consistent with recurring
cycles of denervation/reinnervation, an accumulation
of persistently denervated fibres and perturbation of
denervation-responsive transcripts. We further hypo-
thesized that these changes would be exacerbated in
patients with low muscle mass based upon fat-free mass
index (FFMI). Finally, as chronic cigarette TS exposure
is the primary cause of COPD and causes a fast fibre
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shift independent of pulmonary disease (Orlander et al.
1979; Larsson & Orlander, 1984), we hypothesized that TS
would induce neuromuscular junction degeneration. The
significance of validating these hypotheses is that it would
implicate denervation as a probable player involved in
driving the fast fibre shift and muscle atrophy in COPD. It
would also implicate TS-induced neuromuscular junction
degeneration as an important initiating event causing
denervation in COPD muscle.

Methods

Ethical approval

For all human procedures, this study was approved by
the Institutional Review Board for human studies of the
Montreal Chest Institute (Montréal, QC, Canada) and
all participants provided written informed consent, in
accordance with the ethical standards laid down in the
1964 Declaration of Helsinki and its later amendments,
except for registration in a database. All procedures
involving mice were approved by the McGill University
Animal Care Committee (protocol no. 5933 to C. Baglole)
and adhered to regulations of the Canadian Council on
Animal Care.

Study participants

Twenty-five ambulatory male patients with severe to
very-severe COPD were recruited from the outpatient
clinic of the Montreal Chest Hospital of the McGill
University Health Centre. COPD disease severity was
based on the Global Initiative for Chronic Obstructive
Lung Disease classification, i.e. GOLD 3 and 4. Study
participants were excluded if they: (1) reported an
exacerbation requiring the use of corticosteroids or
antibiotics within the preceding month; (2) were on
long-term oxygen therapy; (3) used oral corticosteroids;
(4) participated in a pulmonary rehabilitation programme
within the preceding year; or (5) had a known comorbidity
that could interfere with outcome measures, including
severe cardiac, diabetes, neurological, neuromuscular,
cancer and/or orthopaedic disease/condition. COPD
patients were subsequently subdivided into those patients
with normal muscle mass and those with low muscle
mass, as detailed below. All patients who responded to
the question during screening (three patients abstained),
were smokers or former smokers. Age-matched (n = 11)
non-smoking control subjects were recruited from the
Montreal community. All participants underwent, on
two separate days, a clinical and physiological evaluation
followed by a muscle needle biopsy.

Study procedures

Clinical and physiological evaluation. Anthropometric
measurements were obtained followed by pulmonary
function testing to assess the degree of airflow limitations
and obstruction (Medisoft) according to The American
Thoracic Society (ATS) guidelines (Wanger et al.
2005). Dual-energy X-ray absorptiometry (DEXA) was
performed to measure body composition and lean and fat
mass using the GE Lunar iDXA scanner (General Electric
Healthcare, Piscataway, NJ, USA). Low muscle mass was
defined as an FFMI (= fat-free mass in kg/height in m2)
less than the 25th percentile of the general population as
per Schutz et al. (2002). The partial pressures of oxygen
and carbon dioxide (Pao2 and Paco2 ) at rest were obtained
from an arterialized blood sample from a pre-warmed
earlobe as per Mollard et al. (2010). Thereafter, a
symptom-limited incremental cardiopulmonary cycle
exercise test following ATS/American College of Chest
Physicians (ACCP) guidelines (http://American Thoracic
Society; http://American College of Chest Physicians,
2003) was conducted to measure peak work capacity.
After a 1-h rest period, peak isokinetic torque of the
right quadriceps muscle was measured using a quantitative
dynamometer (Biodex System 4 Pro, Biodex Medical
Systems, New York, NY, USA), with subjects performing
five sequential volitional maximal contractions over a
range of motion from 15° to 100° at a velocity of 60° s−1,
with the highest value used in analysis.

Muscle biopsy. The mid-portion of the vastus lateralis
muscle was sampled using the modified Bergstrom needle
method with suction (Shanely et al. 2014). Approximately
40 mg portions were mounted in transverse orientation
using triganth gum and frozen in liquid nitrogen-cooled
isopentane for in situ labelling, and 30 mg portions were
fast frozen in liquid nitrogen for mRNA analysis, with both
samples stored at −80°C until the time of analysis.

Quantification of gene transcript levels. Total RNA was
extracted from human muscle samples according to
manufacturer’s instructions using the RNeasy Lipid Tissue
Mini Kit (Qiagen Cat. No.74804, , Valencia, CA, USA).
RNA concentration and purity (A260/A280 ratios >1.8)
were assessed using a NanoDrop-2000 spectrophotometer
(Thermo Scientific, Waltham, MA, USA). RNA (1 μg)
was reverse transcribed to cDNA using a qScript cDNA
Synthesis Kit (Quanta biosciences Cat. No. 95047-025,
Beverly, CA, USA), according to the manufacturer’s
instructions. Real-time PCR was performed using a
StepOnePlus Real-Time PCR system (Life Technologies,
Carlsbad, CA, USA). To gain insights into denervation-
and reinnervation-related transcriptional responses, we
examined mRNA levels of Agrin, Musk, Lrp4, rapsyn,
FGFBP1 and the AChR subunits α, β, δ,γ and ε (Table 1).
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Table 1. mRNA primers used in the study

Gene name Sequence NCBI reference no.

MuSK F 5-GCCTTCAGCGGAACTGAGAAA-3
R 5- GGCTGGGGGTAGGATTCCA -3

PMID: 17192614

Agrin F 5-AACCTGTGCCGAGAAGA-3
R 5-GGAGAAGCCGTTGAAGTCAG-3

PMID: 22379342

Lrp4 F 5-TAGTGACGGAAGCTGCATTG-3
R 5-TCGCAGTGGTAGATGTCGAG-3

NM 002334.3

Rapsyn F 5-TCTATGCCCAGGTCAAGGAC-3
R 5-GCGCGATCTTCATAGACTCC-3

NM 005055.4

FGFBP1 F 5-CCTCAGCATAGTGCAGGACA-3
R 5-GCAGGAAACAGCCTCTGAAC-3

NM 005130.4

AChRα F 5-TGACTATGGCGGTGTGAAAA-3
R 5-TCAAAGGGAAAGTGGGTGAC-3

NM 000079.3

AChRβ F 5-CCTGACGTGGTGCTACTGAA-3
R 5-TAGTGCAATTCTGCCAGTCG-3

NM 000747.2

AChRδ F 5-CCAACCTCATCTCCCTGAAA-3
R 5-AGCCGTCATTGTTGTTCTCC-3

NM 000751.2

AChRγ F 5-CCACCAGAAGGTGGTGTTCT-3
R 5-GATGGCGACGGTACACTTCT-3

NM 005199.4

AChRε F 5-ATACTGAGAACGGCGAGTGG-3
R 5-GATGGAGACCGTGCATTTCT-3

NM 000080.3

TBP F 5-TATAATCCCAAGCGGTTTGC-3
R 5-GCTGGAAAACCCAACTTCTG-3

NM 001172085.1

PMID: primer sequence retrieved from corresponding publication.

Primers were designed (Table 1) with a freely available
software program (Primer 3 plus, Thermo Scientific), and
Power SYBR Green PCR Master Mix (Life Technologies)
was used to quantify the mRNA. TATA box binding protein
(TBP) was used as an internal control. The cDNA was
amplified at 95°C for 10 min followed by 40 cycles of 95°C
for 15 s and 55°C for 60 s. All real time PCR experiments
were performed in triplicate and melt curve analysis for
each PCR experiment was performed to assess primer
dimer formation or contamination. The comparative
threshold cycle (CT) method was used to calculate fold
changes in expression, where �CT = CT of gene of inter-
est − CT of TBP. Relative differences in gene expression
were determined as 2−��CT normalized to age-matched
control subjects. Due to limited tissue availability, only a
subset of samples was used for mRNA analysis.

In situ tissue labelling and image analysis. Muscle
samples were cryosectioned at −18°C to 8 μm section
thickness. Muscle cross-sections used in fibre typing
experiments were hydrated using PBS and blocked against
non-specific labelling using 10% normal goat serum
(NGS). A cocktail of primary antibodies, myosin heavy
chain (MHC) Type I (BA-F8, DSHB, University of Iowa),
IIa (Sc71, DSHB), IIx (6H1 DSHB) and laminin (L9393,
Sigma, St Louis, MO, USA), was applied for 1 h at
room temperature, followed by a series of PBS washes
and incubation with fluorescence-conjugated secondary

antibodies for 1 h at room temperature. Sections were
mounted with Prolong Gold and imaged the following
day.

To identify denervated fibres we employed a
clinical histological stain used in diagnosing neuro-
genic atrophies based upon non-specific esterase activity,
where denervated fibres appear as darkly staining cells
(Goebel et al. 2013). Muscle cross-sections were incubated
in non-specific esterase solution (4% sodium nitrite,
0.1 M sodium phosphate buffer, 1% alpha-napthyl acetate
dissolved in acetone) for 30 min at room temperature
and then rinsed with tap water for 10 min. Sections
were dehydrated in an ethanol series and cleared in
xylene (Malicdan et al. 2009). We also assessed neural cell
adhesion molecule (NCAM; aka CD56) labelling in tissue
cross-sections, noting that NCAM is a cytokine produced
by denervated muscle fibres and motor neurons which
comes in three distinct isoforms (180, 140 and 120 kDa)
and which is essential for reinnervation and formation of
stable motor neuron–muscle contacts (Hata et al. 2018).
Briefly, sections were post-fixed in 4% paraformaldehyde
(ChemCruz, Santa Cruz Biotechnology, Santa Cruz, CA,
USA) for 20 min at room temperature, washed with 1×
TBS, permeabilized with 0.1% Triton-X for 15 min and
washed with 1× TBS-0.05% Tween 20 (TBST). Sections
were blocked with 10% NGS and 1% bovine serum
albumin (BSA) for 40 min at room temperature and
incubated with mouse anti-CD56 (aka: NCAM) (IgG1,
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diluted 1:40; Invitrogen MA5-11563), with serial sections
incubated with monoclonal mouse anti-MHC I IgG2b
(BA-F8, DSHB) and rabbit anti-laminin (L9393, Sigma
Aldrich) overnight at 4°C. Alexa Fluor 647 (1:100) and
Alexa Fluor 488 (1:500) conjugated goat anti-mouse
secondary antibodies were used for visualization.

Image analyses for MHC fibre typing were performed
using the open source image analysis software program Fiji
on images obtained using a Zeiss Axio Imager M2 upright
microscope. Atrophied fibres were classified as having an
area � 2 standard deviations below the mean fibre area
of age-matched controls. Fibre shape was classified using
a shape factor (4π × area × perimeter−2), where values
<0.6 were defined as angular. Muscle fibres surrounded
entirely by fibres of their same type were classified as
grouped (Lexell & Downham, 1991). Imaging for NCAM
immunofluorescence was done with a Leica SP8 confocal
microscope with a 20× objective and a pinhole size of 0.81
airy units, and HyVolution deconvolution.

Smoking mouse and neuromuscular junction
morphological analyses. To facilitate understanding
the direct impact of chronic TS on the neuromuscular
junction, we used a smoking mouse model where we could
perform detailed neuromuscular junction morphological
analyses in the endplate zone of muscle. Male C57BL/6
mice aged 8 months were obtained from our in-house
colony and exposed to either room air or TS for 16 weeks,
with TS exposures as described previously (de Souza
et al. 2014). Briefly, TS exposures used research cigarettes
(3R4F; University of Kentucky, Lexington, KY, USA)
and were smoked according to the protocol approved by
the Federal Trade Commission (1 puff per minute per
cigarette, where each puff was 2 s in duration and 35 ml
in volume) in a SCIREQ InExpose Exposure System
(SCIREQ, Montreal, QC, Canada). Mice in the TS group
were exposed for 1 h, twice per day, 5 days per week for
16 weeks, such that animals were 12 months of age when
they were killed.

On the day of terminal experiments mice were killed
by CO2 asphyxiation followed by cervical dislocation.
The right tibialis anterior muscle from five animals per
group (air, TS) was gently removed, and then the deep
oxidative region containing a mixture of slow and fast
oxidative fibre types was dissected out and subsequently
prepared for neuromuscular junction labelling, as done
previously (Spendiff et al. 2016). Briefly, dissected muscle
portions were washed (3 × 5 min) in PBS and then
fixed overnight at 4°C in 2% formaldehyde. The fixed
muscle portions were separated into small bundles by
gentle dissection using forceps and blocked overnight at
4°C in 5% NGS, 5% BSA, 2% Triton X100 in PBS, and then
incubated with mouse anti-synaptophysin (1:25 dilution;
ab8049, Abcam, Cambridge, MA, USA) overnight at 4°C

to label the pre-synpatic motor neuron terminals. Muscle
bundles were washed in PBS and incubated overnight at
4°C with AF594-conjugated goat anti-mouse secondary
antibody and Alexa488-conjugated α-bungarotoxin [to
identify post-junctional acetylcholine receptor (AChR)
clusters; dilution 1:500, B-13422, Life Technologies].
Muscle bundles were subsequently mounted on slides
with Prolong Gold. Neuromuscular junction image stacks
were obtained with a Zeiss LSM880 confocal microscope
with a 63× objective, and analysed using Fiji. Neuro-
muscular junction morphology was characterized for en
face endplates based upon the following categories: (1)
fraction of fragmented junctions (AChR clusters with > 4
segments); (2) endplate area; (3) fraction of endplate area
occupied by AChRs; (4) fraction of endplate area occupied
by synaptophysin; and (5) fraction of abandoned end-
plates (no detectable synaptophysin signal at endplate),
as previously described (Spendiff et al. 2016). An average
of 46 neuromuscular junctions per animal were analysed
(range: 30–59). All analyses were done by a single observer
blinded to the identity of the samples.

Data analysis. Results are expressed as means ± SEM. All
statistical analysis was performed using GraphPad Prism
Software, with significance set at P < 0.05. Comparisons
for human data amongst the three groups involving a
single parameter, such as proportion of grouped fibres of
a given type, average fibre size, proportion of atrophied
fibres, proportions of angular fibres and all mRNA data,
were made using one-Way ANOVA. A Tukey post-hoc test
was used for normally distributed data and Kruskal–Wallis
with Dunn’s multiple comparison test was used for
non-normally distributed data. Comparisons involving
fibre type and a single parameter were made using a
two-Way ANOVA with Sidak correction for multiple
comparisons. Comparisons between COPD patients with
normal versus low FFMI were done using Student’s t-test.
Comparisons of neuromuscular junction morphology in
air versus TS-exposed mice were done using Student’s
t-test.

Results

Subject characteristics

Descriptive data for our subjects are shown in Table 2.
All COPD patients who responded to the question about
smoking history were former or current smokers, with
no difference in number of pack-years between subjects
with normal versus low FFMI (noting that three COPD
patients abstained from answering about their smoking
history). BMI, FFMI and mid-thigh circumference were
similar between COPD patients with normal FFMI and
controls; however, these were all significantly lower in

C© 2018 The Authors. The Journal of Physiology C© 2018 The Physiological Society
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Table 2. Subject characteristics

Variable Control (n = 11) COPD normal FFM (n = 15) COPD low FFM (n = 10)

Age, years 67 ± 2 65 ± 1 65 ± 2
BMI, kg m2 26 ± 1 28 ± 1 20 ± 1∗ ,∗∗

FFMI, kg m2 18.5 ± 0.4 18.5 ± 0.4 15.7 ± 0.3∗ ,∗∗

Mid-thigh circumference, cm 52 ± 1 50 ± 2 43 ± 1∗ ,∗∗

Smoking pack years NS 46.2 ± 5.4 55.6 ± 14.1
FEV1 (litres) 3.0 ± 0.1 1.2 ± 0.1∗ 0.7 ± 0.1∗

FEV1 (% pred) 101 ± 5 42 ± 3∗ 29 ± 4∗

FEV1/FVC (%) 76 ± 2 39 ± 2∗ 30 ± 3∗ ,∗∗

DLCO (% pred) 116 ± 7 58 ± 5∗ 41 ± 4∗ ,∗∗

RV (% pred) 120 ± 9 171 ± 11 207 ± 11∗ ,∗∗

Pao2 , mmHg 85 ± 5 72 ± 3 68 ± 3∗

Paco2 , mmHg 34 ± 1 41 ± 1∗ 42 ± 1∗

Peak work, W 136 ± 12 62 ± 7∗ 38 ± 9∗ ,∗∗

Peak work, % pred 79 ± 2 36 ± 4∗ 22 ± 5∗

Peak isokinetic torque, Nm 130 ± 10 120 ± 12 84 ± 9P = 0.05 vs. other

BMI = body mass index; FFMI = fat-free mass index, FEV1 = forced expiratory volume in 1 s; FVC = forced vital capacity; DLCO = diffusing
capacity for carbon monoxide; RV = residual volume; Pao2 = arterial partial pressure of oxygen at rest; Paco2 = arterial partial pressure
of carbon dioxide at rest; NS = non-smoker; NM = not measured. Values are means ± SEM. ∗P < 0.05 versus Control, ∗∗P < 0.05 versus
COPD with normal FFMI.

COPD patients with low FFMI. Although all COPD
patients had severe airflow obstruction, those patients with
low FFMI had even greater obstruction, lower diffusion
capacity and greater residual volume. COPD patients had
lower Pao2 and higher Paco2 at rest than control subjects
but this did not differ between COPD patients based
on FFMI. COPD patients had lower peak work capacity
than control subjects, and COPD patients with low FFMI
had lower peak work capacity than COPD patients with
normal FFMI (P = 0.06). COPD patients with low FFMI
also tended to have lower isokinetic strength than COPD
patients with normal FFMI (P = 0.05). Within the COPD
group, only 1 patient within the low FFMI group was on
statins, whereas there were 4 patients within the normal
FFMI group on both statins and corticosteroids and 3
patients on statins alone.

Muscle fibre type and type-grouped fibres

Representative images of MHC-labelled muscle
cross-sections are shown in Fig. 1A. In calculating
fibre type proportions and fibre size and shape, an
average of 411 ± 34 fibres were analysed per biopsy
(range: 83–955 fibres). Type I fibre proportion was
lower in COPD muscle and was accompanied by a
proportional increase in fibres co-expressing two MHC
isoforms, particularly those expressing IIa/x (Fig. 1B).
Interestingly, there was a marked increase in fibres
completely enclosed by fibres of the same type (so-called
type-grouped fibres that are indicative of recurring
cycles of denervation–reinnervation) in COPD that
was restricted to the fast/type II fibres, and this was

further exacerbated in the COPD patients with low FFMI
(Fig. 1C).

Muscle fibre size and shape

Whereas type I fibre size was not different across groups,
type IIa and IIa/x fibre size was lower in COPD patients
with low FFMI (Fig. 2A). In interpreting this result it
is important to understand that many of the type II
fibres in COPD subjects were formerly type I fibres (as
reflected by the large shift away from type I fibres seen in
Fig. 1A and B), and thus the lack of change in size of pure
type I fibres is misleading with respect to type I atrophy
susceptibility, as discussed elsewhere (Purves-Smith et al.
2012). The fibre size distribution for all fibres revealed a
general flattening of the curve in COPD patients (Fig. 2B),
with a striking increase in the number of very small
fibres (1495 μm2; a size �2 standard deviations below
the mean of the age-matched controls: denoted by the
vertical dashed line in Fig. 2B) in COPD patients with low
FFMI (Fig. 2C). Similarly, there was a large increase in
fibres with angular shape [�0.6; a shape associated with
persistent denervation (Baloh et al. 2007; Rowan et al.
2012)] in COPD patients that was exacerbated in those
with low FFMI (Control: 1.3±0.4%; COPD normal FFMI:
6.4 ± 1.3%; COPD low FFMI: 18.3 ± 3.4% of fibres).

Morphological and transcriptional markers of
denervation

Non-specific esterase labelling is a clinical histological
stain used to identify neurogenic atrophies associated

C© 2018 The Authors. The Journal of Physiology C© 2018 The Physiological Society
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with accumulation of denervated muscle fibres (Goebel
et al. 2013). As shown in Fig. 3A, COPD muscle was
characterized by an accumulation of small angular
fibres harbouring intense non-specific esterase staining
indicative of persistently denervated muscle fibres, and
this was further exacerbated in patients with low FFMI.
Further to this, we also examined immunolabelling for
NCAM, which is a cytokine produced in neurons and

muscle fibres that is key not only to producing stable
neuromuscular junctions during development, but is also
essential for restoring innervation by promoting axonal
sprouting to reinnervate denervated muscle fibres (Walsh
et al. 2000; Chipman et al. 2010). As shown in Fig. 3B,
NCAM labelling was greater in COPD patients with low
FFMI and affected both type I and type II (unlabelled)
fibres, and as such, corroborates the non-specific esterase

A

C

B

P
ro

p
o
rt

io
n
 o

f 
F

ib
e
rs

 (
%

) Control (Age-matched)

COPD (Normal FFMI)

COPD (Low FFMI)

Control (Age-matched)

COPD (Normal FFM)

COPD (Low FFMI)

Ty
pe

 I

Ty
pe

 II
a

Ty
pe

 II
x

Ty
pe

 I/
IIa

Ty
pe

 II
a/

x

*

*

*

*
* *
* *

* *,* *
6

4

2

0

Ty
pe

 I

Ty
pe

 II
a

Ty
pe

 II
a/

x

E
n
c
lo

s
e
d
 fi

b
e
rs

,%

50

40

30

20

10

0

Figure 1. Muscle fibre type in COPD versus Control
A, representative immunoflorescence images labelled for type I (blue), type IIa (red), type IIx (green) and laminin
(green), where grouped fast fibres are indicated (∗). Fibres co-expressing type IIa and IIx were seen in all groups
and these appear reddish/green/brown in the images (bar = 100 μm). B, fibre type proportions. C, frequency of
fibres completely surrounded by fibres of the same type (Grouped Fibres). ∗P < 0.05 versus Control; ∗∗P < 0.05
versus COPD patients with normal FFMI. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 2. Muscle morphology in COPD versus Control
A, mean fibre cross-sectional area by fibre type. B, fibre size
distribution, with dashed vertical line representing fibres that were
atrophied, defined as a size �2 standard deviations less than the
mean for Controls. C, fraction of atrophied fibres in each group.
∗P < 0.05 versus Control; ∗∗P < 0.05 versus COPD patients with
normal FFMI.

assay, indicating that there is an exacerbated accumulation
of severely atrophied persistently denervated muscle fibres
in COPD patients with low FFMI.

Analysis of denervation-responsive transcripts (Fig. 4)
revealed a marked up-regulation of Agrin (>50-fold)
and MuSK (8-fold) in COPD patients with normal
FFMI but not low FFMI relative to controls, whereas
Lrp4 was modestly upregulated in COPD patients
as a whole versus age-matched controls and rapsyn
was unchanged. Furthermore, transcript levels of the
reinnervation-promoting FGFBP1 were elevated >70-fold
in COPD patients with normal FFMI versus controls
but unchanged in patients with low FFMI. Similarly,
whereas AChRα was elevated in COPD patients as a whole,
AChRγ was lower in COPD patients as a whole, and
the reinnervation-responsive AChRε was elevated only in
patients with normal FFMI but not low FFMI relative
to controls, despite histological evidence for exacerbated
persistent denervation in the patients with low FFMI.

Smoking mouse neuromuscular junction morphology

Representative images of the neuromuscular junctions
in air- versus TS-exposed mice is shown in Fig. 5.
Whereas the fraction of fragmented endplates did not
differ between groups (Air: 26 ± 6%; TS: 25 ± 5%), there
was an increase in fraction of endplates having an area
<500 μm2, a reduced endplate area occupied by AChRs
(Air: 39.6 ± 1.1%; TS: 35.9 ± 0.6%), a reduced endplate
area occupied by synaptophysin (Air: 26.3 ± 1.0%; TS:
20.5 ± 2.1%) and a large increase in fraction of abandoned
endplates (Air: 0.4 ± 0.4%; TS: 6.4 ± 1.5%) in TS-exposed
mice (Fig. 5B).

Discussion

Our objectives were to evaluate the contribution of
recurring cycles of denervation–reinnervation (motor
unit remodelling) to the fast fibre shift and muscle
atrophy seen in COPD locomotor muscle, and evaluate
the potential role of chronic TS exposure in causing
denervation. Consistent with our hypothesis, COPD
patients exhibited significant motor unit remodelling
characterized by a reduced proportion of slow twitch
fibres and a large abundance of grouped fast fibres,
suggesting that repeating cycles of denervation of slow
fibres followed by reinnervation by fast twitch motor
units is driving the fast fibre shift in COPD locomotor
muscle. Consistent with this notion, COPD muscle
exhibited a significant accumulation of small angular
fibres wherein the smallest of these were positive for a
marker of persistent denervation (non-specific esterase),
and this was further exacerbated in patients with low
FFMI. Furthermore, NCAM immunolabelling revealed
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denervated type I and type II fibres in COPD patients
and this was exacerbated in patients with low FFMI.
Interestingly, whereas COPD patients with normal FFMI
exhibited strong induction of denervation-responsive
transcripts associated with promoting reinnervation, this
was muted in patients with low FFMI, suggesting a
failure of reinnervation signalling is associated with
the exacerbated accumulation of persistently denervated
fibres in COPD patients who develop muscle atrophy. In
addition to these observations and consistent with our
hypothesis, in adult mice following 16 weeks of passive TS
exposure there was significant neuromuscular junction
degeneration. Thus, our results provide the first evidence
that TS-induced neuromuscular junction degeneration is
likely to be an important initiator of denervation and
subsequent motor unit remodelling in COPD and other
smoking-related diseases. The significance of our results
is therefore that they provide for the first time compelling
evidence that denervation is a major contributor to both
the fast fibre shift and the muscle atrophy seen in COPD
locomotor muscle, and that chronic TS exposure probably
plays a key role in initiating this effect by causing chronic
destabilization of the neuromuscular junction.

Muscle fibre innervation, fibre type and fibre size

Although many factors are posited to contribute to
the fibre type shift and atrophy seen in COPD
locomotor muscle, including systemic hypoxia (Turan
et al. 2011), physical inactivity (Wagner, 2006) and
systemic inflammation (Gayan-Ramirez & Decramer,
2013), amongst many others, the relative contribution
of any of the previously considered factors remains
unclear. The complexity of this issue has been nicely
reviewed by The American Thoracic Society and European
Respiratory Society Ad Hoc Committee on Limb Muscle
Dysfunction in COPD (Maltais et al. 2014). Notably, no
previous study has considered the potential involvement
of denervation in these changes in COPD muscle. In view
of the well-known occurrence of neuromuscular junction
degeneration with normal ageing (Hepple & Rice, 2016),
the potential exacerbation of this impact in COPD is
worthy of consideration.

There is a rich history of using muscle morphology
to infer the causes of muscle atrophy in neuromuscular
disease (Carpenter & Karpati, 2001; O’Ferrall & Sinnreich,
2009), wherein morphological features are used to
distinguish between neurogenic atrophies (those involving
the neuromuscular junction and/or motor neuron) and
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Figure 3. Evidence for denervation in
COPD locomotor muscle
A, non-specific esterase histochemically
stained sections showing the presence of
darkly staining small angular fibres in COPD
and this was exacerbated in patients with low
FFMI (bar = 100 μm). B, NCAM
immunofluorescence (dark green in ii, iv, vi
and viii) evident in COPD muscle in both type I
(green labelled fibres in panels i, iii, v and vii
denoted by ‘1’) and type II (unlabelled fibres
in panels i, iii, v and vii denoted by ‘2’) fibres,
and this was exacerbated in COPD patients
with low FFMI (laminin is in red in panels i, iii,
v and vii). Arrows denote very small fibres
with positive NCAM signal. [Colour figure can
be viewed at wileyonlinelibrary.com]
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dystrophic atrophies (Baloh et al. 2007; Saez et al. 2013).
In the context of neurogenic atrophies, the distinguishing
morphological traits are a direct consequence of the
well-established influence of innervation/denervation on
the characteristics of the motor unit. For example,
innervation of a muscle fibre by a motor neuron, and the
associated stimulation pattern, is a primary determinant
of muscle fibre type and muscle contractile characteristics
(Buller et al. 1960; Ausoni et al. 1990), driven by
stimulation frequency-dependent regulation of specific
nuclear factor of activated T-cells (NFAT) isoforms (Ehlers
et al. 2014). Indeed, mouse studies have shown that
during development, prototypical slow and fast muscles
begin with similar levels of troponin I fast expression,
but shortly after birth and initiation of locomotor muscle
activity, the distinct motor neuron activation patterns
in fast versus slow muscles cause a dramatic divergence
such that troponin I fast expression increases in fast
muscle and decreases in slow muscle (Rana et al. 2009).
This divergent adaptation in the fibre type programme
regresses to embryonic patterns with denervation (Rana
et al. 2009) and is characterized by expression of multiple
MHC isoforms within a single muscle fibre (so-called

co-expressing or hybrid muscle fibres) (Patterson et al.
2006). In the context of normal ageing and neuro-
muscular diseases having a neurogenic involvement (e.g.
ALS and spinal muscular atrophy), repeating cycles of
denervation–reinnervation cause an increased frequency
of MHC co-expressing fibres and fibre type grouping,
illustrating how these features can be used in identifying
the occurrence of denervation–reinnervation events in
muscle under various conditions (Baloh et al. 2007;
Hepple & Rice, 2016). Innervation status also plays a
key role in fibre size, with long-term denervation causing
marked fibre atrophy (Dow et al. 2005). Indeed, a sporadic
pattern of muscle fibre atrophy (i.e. severely atrophied and
frequently angular fibres interspersed amongst normal
sized and shaped fibres) is typical of neurogenic atrophies
(Baloh et al. 2007) and advanced ageing (Rowan et al.
2012).

In our current study, we used the aforementioned
information as a means of gauging the involvement of
denervation in the shift in fibre type and atrophy seen
in COPD locomotor muscle. Our analysis showed that
the reduced slow fibre abundance and commensurate
increase in fast fibre abundance (specifically IIa/x hybrid
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fibres) was associated with a large fraction of grouped
fast fibres, and these features were more pronounced
in patients with low FFMI. Whereas the fast fibre type
shift in COPD is well established (Whittom et al. 1998;
Gosker et al. 2002), and a previous study also noted
an abundance of type-grouped fibres in skeletal muscle
in patients with chronic emphysema (Sato et al. 1997),
the collective interpretive value of these changes in the
context of a neurological process in COPD has not
been considered previously. Furthermore, no prior study

has compared these features in patients with normal
versus low muscle mass. In addition to these fibre type
changes, we also observed a striking accumulation of
sporadically distributed small and small angular fibres
that exhibited high levels of non-specific esterase activity,
a widely used clinical marker of denervation (Goebel
et al. 2013). Notably, we also observed in COPD patient
muscle that subsets of both type I and type II fibres
exhibited positive labelling for the denervation-responsive
cytokine, NCAM, that is essential for restoring stable
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neuromuscular junctions following denervation
(Chipman et al. 2010), and this was aggravated in patients
with low FFMI. Finally, we also observed a marked
up-regulation of several denervation-responsive trans-
cripts in COPD muscle (agrin, MuSK, Lrp4, FGFBP1,
AChRα and AChRγ). Viewed as a whole, the presence
of these morphological features, combined with the
high NCAM expression seen in some fibres and marked
denervation-responsive transcriptional profile seen in
COPD muscle, provides strong evidence that a neuro-
genic process is involved. Importantly, this conclusion
does not rule out involvement of other factors, such as
prolonged physical inactivity and systemic inflammation,
that have also been implicated in the fibre type shift
seen in COPD patients. For example, because several
denervation-responsive transcripts remain elevated
during muscle reloading following hindlimb unloading
in aged muscle (e.g. HDAC4, myogenin, AChRγ) (Baehr
et al. 2016), it is possible that prolonged inactivity in older
COPD patients would exacerbate denervation which
is already occurring in the context of normal ageing
(and TS exposure, see below), and thus contribute to
the fibre type shift observed in COPD patient muscle.
Furthermore, because inflammation associated with
sepsis induces neuromuscular junction degeneration (Liu
et al. 2016), perhaps the chronic systemic inflammation
seen with COPD could have a similar impact and thus
also exacerbate denervation already occurring with
ageing (and TS exposure, see below). On the other
hand, although systemic hypoxia has been implicated
in fibre type shift in COPD (Turan et al. 2011) and
our COPD patients exhibited mild systemic hypoxemia
(Pao2 = 68 mmHg in the group with low FFMI), we do
not believe this played a significant role in driving their
fast fibre shift. This is based upon the minimal changes
in fibre type/MHC composition seen with much more
severe systemic hypoxia (Pao2 < 45 mmHg) in both rodent
models (Itoh et al. 1990; Slot et al. 2016) and muscle cell
culture (Slot et al. 2014). Furthermore, a meta-analysis
has shown that there is no relationship between fibre type
shift and systemic hypoxia in COPD patients when Pao2 is
> 55 mmHg (7.3 kPa) (Gosker et al. 2007).

Mechanisms of denervation and reinnervation in
skeletal muscle

The neuromuscular junction is the interface between
the motor neuron and muscle fibre and is a point of
vulnerability in various neuromuscular diseases (Comley
et al. 2016; Boido & Vercelli, 2016) and normal ageing
(Hepple & Rice, 2016). Importantly, previous studies
have established that factors intrinsic to motor neurons,
perisynaptic Schwann cells and muscle fibres may each
contribute to neuromuscular junction degeneration in

different contexts (Lieberman et al. 2014; Sakellariou
et al. 2014; Arbour et al. 2017). For example, in the
context of muscle-specific retrograde signalling to the
neuromuscular junction, recent studies have shown that
muscle-specific disturbances in (1) autophagy (Carnio
et al. 2014), (2) the G93A mutation of superoxide
dismutase 1 (SOD1) seen in a familial form of ALS
(Dobrowolny et al. 2018) and (3) FGFBP1 secretion
(Taetzsch et al. 2017) can each cause neuromuscular
junction degeneration. On the other hand, although
muscle-specific knockout of SOD1 (Zhang et al. 2013) or
SOD2 (Kuwahara et al. 2010) can cause muscle contractile
defects with no muscle atrophy or neuromuscular junction
degeneration, both neuron-specific (Sataranatarajan et al.
2015) and whole body knockout (Jang et al. 2010) of SOD1
cause neuromuscular junction degeneration, but muscle
atrophy is seen only in the whole body SOD1 knockout.
These findings illustrate the complex tissue-specific nature
by which varied mechanisms can impair the neuro-
muscular junction and possibly result in muscle atrophy.

Amongst the pathways identified as important to
regulating the integrity of the neuromuscular junction,
the agrin–MuSK signalling axis is essential not only
to the development of the neuromuscular junction
but also to its maintenance in adulthood. Specifically,
neural agrin (also known as z-agrin) released from the
terminal axons of the motor neuron binds to low-density
lipoprotein receptor-related protein 4 (Lrp4) on the
endplate region of the muscle fibre, which in turn
activates MuSK (Kim et al. 2008) to recruit rapsyn
to the muscle fibre subsynaptic microdomain, where it
facilitates anchoring of the post-synaptic acetylcholine
receptors (AChRs) to the actin cytoskeleton (Choi et al.
2012; Ghazanfari et al. 2014). Experimental denervation
(e.g. sciatic nerve transection) causes marked increases
in signals related to maintaining/restoring the neuro-
muscular junction, including agrin (Eusebio et al. 2003)
and MuSK (Valenzuela et al. 1995; Ip et al. 2000). Thus, the
fact that we observed marked increases in both agrin and
MuSK in muscle from COPD subjects with normal but
not low FFMI suggests an active response to denervation
(in an attempt to promote reinnervation) in the former
but a blunted response in the latter. Further to this point,
FGFBP1 is upregulated in denervated muscle to facilitate
reinnervation (Williams et al. 2009; Valsecchi et al. 2015)
and during reinnervation of muscle the AChRε subunit
is induced in response to neural agrin signalling at the
neuromuscular junction (Rimer et al. 1997). Thus, the
induction of FGFBP1 and AChRε that we observed in
COPD patients with normal FFMI but not low FFMI
further suggests an active reinnervation process that is
impaired in COPD patients who exhibit muscle atrophy.
On the basis of these observations, we surmise that atrophy
at the whole muscle level occurs in COPD when the
capacity for reinnervation fails (e.g. when the surviving
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motor units cannot expand further, such as occurs with
post-Polio syndrome; Tiffreau et al. 2010), leading to an
accelerated accumulation of persistently denervated myo-
fibres that become severely atrophied. Because smoking
is by far the primary cause of COPD, and our cohort
of COPD patients exhibited on average 56 pack years of
smoking history, in seeking to understand what might pre-
cipitate the motor unit remodelling seen in COPD patient
muscle, we examined the impact of chronic TS exposure
on the neuromuscular junction, as discussed below.

To gain insight into whether chronic TS exposure can
induce motor unit remodelling, we examined the impact
of 16 weeks of TS exposure on neuromuscular junction
morphology in adult mice. Although many other studies
have examined the impact of chronic TS exposure on
skeletal muscle in a smoking mouse model (Gosker et al.
2009; Caron et al. 2013; Kruger et al. 2015), to our
knowledge this is the first study to examine the TS impact
on neuromuscular junction morphology. Our analysis
revealed significant neuromuscular junction degeneration
in TS-exposed mice, characterized by a loss of motor
neuron terminals (synaptophysin depletion) from end-
plates. As such, these results suggest that the denervation
induced by chronic TS exposure is probably a key factor
driving the motor unit remodelling (fast fibre shift) and
eventual depletion of reinnervation potential that causes
muscle atrophy in COPD locomotor muscle and perhaps
other TS-related diseases. Note that based upon the life-
span of mouse versus human, we estimate that 16 weeks
of TS exposure in a mouse models 10 years of smoking
in humans. Thus, given that our patients exhibited a
more than 5-fold greater relative duration of TS exposure
than the smoking mice, and that denervation-induced
changes in muscle fibre type are cumulative (Butikofer
et al. 2011), we suggest that the smoking history in
these patients played a significant role in the fast fibre
shift observed. Although we are not aware of any pre-
vious studies evaluating a neuromuscular junction impact
in response to chronic TS smoke exposure, cigarette
smoking is a risk factor for the neurological disease ALS
(de Jong et al. 2012), and is also a triggering factor
in Leber’s hereditary optic neuropathy (Giordano et al.
2015). Furthermore, chronic TS exposure is an established
risk factor for exacerbating the normal loss of muscle
seen with ageing (van den Borst et al. 2011; Curtis et al.
2015), a process characterized by neuromuscular junction
degeneration and motor unit remodelling (Hepple & Rice,
2016). Finally, it is noteworthy that patients with other
smoking-related diseases such as cardiovascular disease
and cancers also exhibit a fast fibre shift (Kitzman et al.
2014; Toth et al. 2016), underlining the potentially broad
clinical significance of our observations showing chronic
TS exposure causes neuromuscular junction degeneration.

There are two key caveats with respect to using the
smoking mouse model to infer the impact of chronic

TS exposure in COPD patients. Firstly, the smoking
mouse model utilizes a standardized cigarette smoking
protocol developed by the Federal Trade Commission
(USA) nearly 30 years ago. Based upon the high degree
of inter-individual variability in smoking behaviour
(puff duration/volume/frequency, smoke-holding in the
mouth, etc.), and the variations in type of cigarettes
smoked (e.g. filtered versus non-filtered), it has been
suggested that there is no representative norm for human
smoking behaviour (Marian et al. 2009). This variability
in smoking behaviour is relevant because the chemical
composition of sidestream versus mainstream smoke is
different, it can be impacted by the presence of a filter
and it can vary by brand of cigarette. Thus, the chemical
composition of inhaled smoke (which is a mixture of
sidestream and mainstream smoke) varies as a function
of differences in smoking behaviour, as well as the
characteristics of the cigarettes smoked (U.S. Department
of Health and Human Service, 2010). As such, it is clear
that individual impact from chronic TS exposure will be
much more variable than represented in the smoking
mouse model. The second caveat concerns the muscle
studied for TS-induced neuromuscular junction impact.
The muscle studied in our COPD patients was the vastus
lateralis muscle, which in healthy young adults typically
exhibits 45% of each of type I (slow oxidative) and IIa
(fast oxidative) fibres, with the balance being type IIx
and hybrid fibres co-expressing multiple MHC isoforms
(Gouspillou et al. 2014), whereas mouse vastus lateralis
comprises �70% fast glycolytic fibre types (Burkholder
et al. 1994). As such, to obtain a more representative match
to human vastus lateralis muscle, we evaluated the impact
of chronic TS exposure on the neuromuscular junction
in the deep region of the mouse tibialis anterior muscle,
which consists of oxidative fibre types, albeit largely fast
(Burkholder et al. 1994).

In conclusion, and putting our results into the
context of the TS-related disease patient who develops
muscle atrophy, our results from the preclinical smoking
mouse experiment suggest that TS-induced neuro-
muscular degeneration could play a key initiating role
in the adverse muscle affect by creating a point of
vulnerability that is preferentially affected by the systemic
components of the disease. For example, in the context
of pre-existing neuromuscular junction degeneration
induced by TS exposure the systemic milieu of TS-related
disease (inflammation, hypoxaemia, hypercapnia, etc.),
combined with the advancing age of the patients, could
accelerate the occurrence of denervation events to pre-
cipitate an exhaustion of reinnervation capacity that
would then result in muscle atrophy. This is consistent
with the greater denervation impact in our patients
with low FFMI where there was greater COPD disease
burden (lower forced expiratory volume in 1 s/forced vital
capacity as a percentage of vital capacity, lower diffusing
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capacity of the lung for carbon monoxide, lower Pao2 ,
etc.).
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