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This research paper is aimed at evaluating the predictive role of a default panel of oxidative stress (OS) biomarkers for the early
identification of infants at high risk of HIE and their validation through the correlation with MRI findings. A multicenter
prospective observational study was performed between March 2012 and April 2015 in two European tertiary NICUs. Eighty-
four term infants at risk for HIE (pH<7, BE<-13mmol/L, and 5' Apgar<5) were enrolled. Three were excluded for
chromosomal abnormalities and one due to lack of blood samples. The final population was divided according to the severity of
perinatal hypoxia into 2 groups: mild/moderate HIE and severe HIE. Advanced oxidation protein products (AOPP), non-
protein-bound iron (NPBI), and F2-isoprostanes (F2-IsoPs) were measured in blood samples at P1 (4-6 hours), P2 (24-72
hours), and P3 (5 days), in both groups. MRIs were scored for the severity of brain injury, using a modified Barkovich score.
The mean GA was 39.8 weeks (SD 1.4) and the mean birth weight 3538 grams (SD 660); 37 were females and 43 males.
Significantly lower 5 Apgar score, pH, and BE and higher Thompson score were found in group II compared to group I at
birth. Group II showed significantly higher AOPP and NPBI levels than group I (mean (SD) AOPP: 15.7 (15.5) versus 34.1
(39.2), p=10.033; NPBI 1.1 (2.5) versus 3.9 (4.4), p =0.013) soon after birth (P1). No differences were observed in OS biomarker
levels between the two groups at P2 and P3. A regression model, including adjustment for hypothermia treatment, gender, and
time after birth, showed that AOPP levels and male gender were both risk factors for higher brain damage scores (AOPP: OR
3.6, 95% CI (1.1-12.2) and gender: OR 5.6, 95% CI (1.2-25.7), resp.). Newborns with severe asphyxia showed higher OS than
those with mild asphyxia at birth. AOPP are significantly associated with the severity of brain injury assessed by MRI, especially
in males.

1. Introduction

Birth asphyxia is largely recognized as the most frequent
cause of acute interruption of oxygen to the fetus and the
most common cause of brain damage [1]. Currently, despite
the advances offered by therapeutic hypothermia in terms of
neuroprotection, the improvements on long-term neurologi-
cal outcome remain modest [2-4]. Twenty to fifty percent of
asphyxiated infants who develop HIE die in the neonatal

period, and about twenty-five percent of survivors will
develop neurological disabilities, such as cerebral palsy, cog-
nitive deficits, learning disorders, sensory disruption, and
neuropsychiatric problems [5]. Therefore, one of the most
important goals in the approach to patients with HIE
remains actually to determine the exact period in which the
effects of potential damaging factors occur [1, 2, 5, 6]. Several
methods are now available for detecting the type and timing
of brain damage: conventional prenatal tests, such as fetal


http://orcid.org/0000-0001-5491-9168
http://orcid.org/0000-0002-9284-1637
http://orcid.org/0000-0003-2924-9793
http://orcid.org/0000-0001-6672-6451
http://orcid.org/0000-0002-7921-7485
http://orcid.org/0000-0001-5478-5657
https://doi.org/10.1155/2018/7608108

cardiotocography; ultrasound; Doppler and amniotic fluid
examination neuroimaging; aEEG; NIRS; and determination
of numerous currently available biomarkers. Each provides
information about different expressions of brain injury and
has some limitations [1, 7]. MRI is the gold standard for
the early evaluation of brain injury after HIE, including not
only traditional neuroimaging methods but also advanced
imaging techniques (DWI, "H-MRS, and ASL) [8-11]. In this
context, the use of specific biomarkers that will increase
within the first hours of life in hypoxic-ischemic neonates
may help in the early diagnosis of HIE and promptly identify
neonates who may qualify for neuroprotection. Oxidative
stress is involved in the mechanisms of hypoxic-ischemic
and inflammatory brain injury, although the relationship
between brain damage and OS is very complex and not
entirely clear [12-15]. The pathophysiological process that
leads to the development of brain lesions is in fact character-
ized by the combination of several mechanisms, either
exogenous or endogenous (hypoxia, ischemia, ischemia-
reperfusion, hyperoxia, inflammation, and mitochondrial
damage), whose effect on cell biology and on oxidative
metabolism varies according to the severity and duration of
the insult [16]. Furthermore, certain brain areas are particu-
larly rich in iron, released by cells damaged during hypoxia,
which may catalyze, through the Fenton reaction, the forma-
tion of hydroxyl radicals and nitroperoxide and so make the
central nervous system more susceptible to the attack of the
reactive species [17]. In addition, the brain of a full-term
baby, being rich in polyunsaturated fatty acids and low in
antioxidants, is particularly vulnerable to the free radical
attack [18]. Increased oxidative stress in hypoxic fetuses
and neonates has been detected by assaying several bio-
markers: products of lipid peroxidation in expired air, serum
malondialdehyde reaction, serum isoprostanes, serum total
hydroperoxides, advanced oxidative protein products, and
increased NPBI in serum [18-20]. Despite extensive research
in the field over the last few years, no such biomarker has
been validated in clinical practice so far. So the aim of our
study was to evaluate the predictive role of a default panel
of OS biomarkers for the early identification of infants at
high risk of hypoxic-ischemic brain injury and their valida-
tion through the correlation with MRIL

2. Methods

2.1. Subjects. Eighty-four term subjects, born between March
2012 and April 2015, with clinical and biochemical signs of
HIE, admitted to two European tertiary NICUs as part of a
multicenter prospective observational study, were consecu-
tively enrolled. The inclusion criteria were the presence of
perinatal asphyxia defined as at least three of the following
criteria: (1) late decelerations on fetal monitoring or meco-
nium staining; (2) delayed onset of respiration, resuscitation,
or ventilation of at least 10 min; (3) Apgar scores<5 at 5
minutes; (4) arterial cord blood pH<7.1 with a base
deficit > 16 mmol/L or serum lactate > 10 mmol/L; (5) multi-
organ failure, followed by symptoms of encephalopathy, such
as altered alertness, abnormal tone, feeding difficulties, or
seizures demonstrated by a Thompson score>7 and/or
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TaBLE 1: Scoring system for brain injury seen on MRI scans.

Score Description

Basal ganglia and thalamus

0 Normal

1 Abnormal signal in the thalamus

Abnormal signal in the thalamus and

2 .
lentiform nucleus
3 Abnormal signal in the thalamus,
lentiform nucleus, and perirolandic cortex
4 More extensive involvement

Watershed areas

0 Normal

1 Single focal infarction

) Abnormal signal in the anterior or
posterior watershed white matter

3 Abnormal signal in the anterior or

posterior watershed cortex and white matter
4 Abnormal signal in both anterior and
posterior watershed zones
5 More extensive cortical involvement

Posterior limb of the internal capsule

0 Myelination present
1 Myelination present but impaired
2 Myelination absent

abnormal brain activity by aEEG; and (6) hypothermia treat-
ment started within 6 h after birth [4, 7, 21]. HIE was classi-
fied as mild (grade I), moderate (grade II), or severe (grade
III) according to the criteria described by H.B. Sarnat and
M.S. Sarnat [22]. The clinical evaluation of encephalopathy
took place 24 and 48 hours after birth. Babies with major
congenital abnormalities, brain malformations, central ner-
vous system infections, and inborn errors of metabolism
were excluded. As soon as possible after admission to the
Neonatal Intensive Care, all enrolled children were subjected
to the routine checks, including a blood gas analysis, and
were started on aEEG and NIRS monitoring. Hypothermia
was initiated within 6 h after birth, lasted for 72h, and was
aimed for a rectally measured body temperature of 33.5°C.
Seventy-two hours after starting hypothermia, subsequent
rewarming at 0.5°C per hour was performed. Body tempera-
ture (°C), heart rate, arterial blood pressure, and arterial oxy-
gen saturation (SaO,) were monitored simultaneously with
NIRS and aEEG parameters, and their recorded values were
all stored on a personal computer for off-line analysis (soft-
ware: Poly 5, Inspektor Research Systems, Amsterdam, the
Netherlands). All clinical and demographic data were col-
lected from the hospital records. The study was approved
by the medical ethical review board of the two respective uni-
versity hospitals, with written informed parental consent,
obtained according to the Declaration of Helsinki.

2.2. Oxidative Stress Methodology. Advanced oxidation pro-
tein products (AOPP), F2-isoprostanes (F2-IsoPs), and
non-protein-bound iron (NPBI) were all measured in blood
samples, taken during routine tests and only after obtaining
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TaBLE 2: Clinical and biochemical signs of hypoxic-ischemic encephalopathy reported by groups.

Mild-to-moderate HIE group (n =21)

Severe HIE group (n=59) p

Median Apgar 1 min (IR)

Median Apgar 5min (IR)

Median Apgar 10 min (IR)

Mean umbilical pH (SD)

Mean umbilical BE (mmol/L) (SD)

Mean pH at admission (15 min-6h of life) (SD)

Mean BE at admission (15 min-6 h of life, mmol/L) (SD)
Mean lactate at admission (15 min-6 h of life, mmol/L) (SD)
Mean PNA at MRI (days) (SD)

Median Thompson score (1 h of life) (IR)

Seizures n (%)

2 (1-4) 1(0-2) NS
4 (4-5) 3 (1-5) 0.002
7 (5-7) 6 (3-7) 0.011
7.0 (0.1) 7.0 (0.2) NS
-13.7 (6.2) ~13.8 (8.3) NS
7.1 (0.1) 6.9 (0.2) 0.043
~11.1 (6.7) -16.3 (7.7) 0.013
13.6 (5.2) 15.4 (7.8) NS
3(2) 6 (4) NS
4 (2-5) 9 (7-13) 0.000
2(9) 27 (54) 0.001

IR: interquartile range; SD: standard deviation. NS: not statistically significant.

the parents’ written consent, at P1 (4-6 h after birth), P2 (24—
72 h after birth), and P3 (5 days after birth). For each blood
sample, 2.5 ml of blood was collected: 1.3 ml in EDTA (ethyl-
enediaminetetraacetic acid) tubes and 1.2 ml in two test tubes
(0.6 ml each) containing heparin. Each of these samples was
immediately centrifuged (Prog 1, RTM 1500, T 4°C,
10min) to remove cells and obtain the supernatant, which
was then separated into five different microtest tubes, one
of which contains BHT (butylated hydroxytoluene), and
stored at —80°C. The obtained samples were subsequently
analyzed to measure OS biomarkers. AOPP and F2-IsoPs
were detected as markers of protein and lipid OS-induced
injury, respectively, by the method of Witko-Sarsat et al,,
using spectrophotometry on a microplate reader, and iso-
prostanes were detected according to the LC-MS/MS meth-
odology described by Casetta et al. [23, 24]. The AOPP
were calibrated with chloramine-T solutions that absorb at
340nm in the presence of potassium iodide. In test wells,
200 uL of plasma diluted at 1:5 in phosphate-buffered saline
solution (PBS) was distributed on a 96-well microtiter plate,
and 20 uL of acetic acid was added. In standard wells, 10
microliters of 1.16 M potassium iodide was added to 200 uL
of chloramine-T solutions followed by 20 uL of acetic acid.
The absorbance of the reaction mixture was immediately
read at 340 nm on the microplate reader against a blank con-
taining 200 uL of PBS, 10 uL of potassium iodide, and 20 yL
of acetic acid. Because the absorbance of chloramine-T at
340 nm is linear up to 100 ygmol/L, AOPP were expressed as
umol/L of chloramine-T equivalents. NPBI was detected as
a marker of OS potential risk, by HPLC using the method
described by Paffetti et al. [25].

2.3. MRI Scoring. Depending on their clinical condition,
infants underwent MRI at a postnatal age of 5 + 3 days. Intra-
venous sedation was continued during the MR examination
for infants who had an intravenous line placed; others
received an oral sedation with chloral hydrate (50-60 mg/
kg). Infants were wrapped into a vacuum cushion to mini-
mize motion, and earmuffs (EM’s 4 Kids, Everton Park, Aus-
tralia) were used for hearing protection. Respiratory rate
(Philips Medical Systems, Best, the Netherlands), heart rate,

and transcutaneous oxygen saturation (Nonin Pulse Oxyme-
try, Nonin Medical, Plymouth, MN) were monitored during
MR imaging, and a neonatologist was present throughout the
examination. The severity of brain injury was assessed by
using conventional axial T1- and T2-weighted spin-echo
sequences, DWI, and ADC maps. MRIs were reviewed retro-
spectively by two expert investigators (LV and FG) who were
blinded to the infant’s outcome. Injury was scored for the
basal ganglia and thalami in combination with cortical
involvement, the watershed areas, and the posterior limb of
the internal capsule, by using the modified Barkovich score
(Table 1), ranging from 0 (no damage) to 11 (massive brain
damage), described previously as being predictive for neuro-
developmental outcomes after HIE [21, 22].

2.4. Statistical Analysis. Descriptive and inferential analyses
were performed using the SPSS v23 for Windows statisti-
cal package (SPSS Inc., Chicago, IL, USA). Data are pre-
sented as mean and SD or median and interquartile
range (IR) for descriptive analysis of continuous variables,
whereas for categorical variables, the absolute frequencies
are reported. A logarithmic transformation was performed
for the variables that were not parametrically distributed.
The independent t-test and the Mann-Whitney U test
were used, where appropriate, to make comparisons
regarding all patient characteristics, OS biomarker mea-
surements at each time point, and gender differences.
Pearson correlation and scatter dot plot were used, respec-
tively, to examine and visualize the relationship between
OS biomarkers and MRI score for each period of interest.
A longitudinal model was built to analyze the association
between OS biomarkers and the brain damage measured
through the Barkovich score. Gender, treatment with
hypothermia, and time of life (corresponding to the
selected periods of blood sample collection) were intro-
duced into the model as confounding factors. ROC curve
was performed to find an MRI score cut-off able to dis-
criminate between newborns with a major risk to die
and newborns with a good outcome. A multivariable logis-
tic regression model was then built to verify if the
increased level of OS biomarkers may be a risk factor for
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FIGURE I: Relationship between OS biomarkers and the grade of perinatal hypoxia reported over time. Comparison of AOPP levels (#mol/L)
(a), NPBI levels (umol/L) (b), and IsoP levels (pg/mL) (c), between each group in the first 5 days of life. AOPP: advanced oxidation protein

products; NPBI: non-protein-bound iron; o: outliers. *p < 0.05.

neurological damage, measured using MRI. The MRI score
was introduced into the model as a dichotomic dependent
variable, using the ROC curve cut-off; gender, treatment
with hypothermia, and time of life were also considered
in the model as covariates together with each biomarker.
A p value < 0.05 was considered statistically significant.

3. Results

Out of eighty-four enrolled patients, three were excluded for
chromosomal abnormalities and one due to lack of blood
samples. So the final population consisted of eighty infants
with a mean gestational age of 39.8 weeks (SD 1.4) and a

mean birth weight of 3538 grams (SD 660); 37 were females
and 43 males. Twenty newborns at risk for HIE were
classified with mild (Sarnat I), 1 was classified with moderate
(Sarnat II), and 59 were classified with severe signs of HIE
(Sarnat III). The mild group was not considered for hypo-
thermia, while the severe group was considered eligible for
hypothermia. The moderate one was eligible for hypothermia
treatment; however, he was born in a peripheral hospital and
arrived too late (thus later than 6 hours after birth) to
perform it. Newborns were then divided according to the
severity of HIE into two groups: mild/moderate HIE (not eli-
gible/late for the treatment with hypothermia, n =21) and
severe HIE (eligible for hypothermia treatment, n =59).
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FIGURE 2: Relationship between AOPP levels (ymol/L) and the
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Clinical and biochemical signs of HIE for each group are
reported in Table 2. None of the infants of the mild group
showed signs of progression to moderate or severe HIE.

3.1. Relationship between OS Biomarkers and the Grade of
HIE—Comparison between the Two Groups over Time. The
mild/moderate HIE group showed significantly lower AOPP
and NPBI levels than the severe HIE group at time P1 (AOPP
median (IR): 9.4 (13.6) versus 18.6 (19.5) ymol/L, p =0.033
and NPBI median (IR): 0.0 (3.8) versus 2.4 (3.3) ymol/L,
p=0.013, resp.) (Figures 1(a) and 1(b)). No differences
were observed in AOPP and NPBI levels in P2 and P3
(Figures 1(a) and 1(b)). No other differences were observed
in F2-IsoP levels between the two groups (Figure 1(c)).

The severe HIE group showed also significantly lower
AOPP levels in males than in females at time P1 (AOPP
median (IR): 14.8 (10) versus 27.6 (50.7) pmol/L, p =0.013;
Figure 2). No differences in AOPP levels were observed
between males and females in P2 and P3. No differences in
NPBI and IsoP levels were found between males and females
at any time.

3.2. MRI Score and Survival. Out of eighty enrolled patients,
fifty-six (70%) underwent MRI at a postnatal age of 5+3
days: respectively, 5 of 21 (23%) of the mild/moderate
asphyxia group and 51 of 59 (86%) of the severe asphyxia
group, according to their clinical condition. Each MRI score
and the corresponding outcome are reported in Table 3.
The ROC curve discriminating newborns with a major
risk to die versus newborns surviving without impairments
was set at an MRI score value of 4.5 (100% sensitivity,
97.7% specificity, p = 0.0001; Figure 3). The MRI score rang-
ing from 0 to 4.5 showed 100% sensitivity and 100% of true

negative fraction for a good neurological outcome. Con-
versely, 100% of poor neurodevelopmental outcome was
observed for MRI score values > 8.5. The MRI score plotted
curve indicated 4.5 as the best predictive threshold with a
sensitivity of 100% (95% CI 63.06-100) and a specificity of
97.7% (95% CI 88.2-99.9).

3.3. Relationship between OS Biomarkers and the Severity of
Brain Injury Assessed with MRI. The longitudinal multivari-
able model, adjusted for confounding factors, showed a
significant independent association between AOPP levels
(In transformation) and MRI scores (p =0.006, B=1.301,
CI 95% 0.38-2.22; Figure 4(a)), indicating that the increase
of protein peroxidation levels during the first five days of life
is associated with severe brain damage. In particular, males
showed an increased risk of oxidative neurological damage,
as comes to light from the significant correlation between
AOPP and brain damage in males (p=0.005, r=0.465;
Figure 4(b)). Using the ROC curve cut-off, a multivariable
logistic regression model was performed, taking the MRI
score as a dichotomic dependent variable. The last model
confirmed that AOPP levels and male gender were both risk
factors for more severe brain damage (AOPP: OR =3.6, 95%
CI 1.1-12.2 and gender: OR=5.6, 95% CI 1.2-25.7, resp.). In
detail, the increase of an AOPP logarithmic scale of 1
increases 3.6 times the risk of brain damage. As for the other
two biomarkers, both regression models showed a negative
association between the levels of NPBI (In) and MRI score
(linear model: B=-0.94, 95% CI -1.69 to —0.18; logistic
model: OR=0.20, 95% CI 0.06-0.71). No statistically signifi-
cant association was found between the plasma levels of IsoPs
and MRI score.

4. Discussion

Early objective diagnosis of brain injury is important for
prognostication and decision-making in term newborns with
HIE. Our study illustrates that infants who have suffered
from severe birth asphyxia show increased OS levels com-
pared with those who have had mild or moderate asphyxia.
In particular, the increase of OS levels in the perinatal period
was highlighted by a higher accumulation of plasmatic levels
of AOPP and the index of membrane protein oxidative dam-
age. The high levels of AOPP were significantly associated
with an increase in brain damage, quantified with MRI. In
our study, males, despite lower levels of OS at birth, were at
the greatest risk of developing brain injury, showing an
increased susceptibility to oxidative stress damage. The new-
born brain is particularly susceptible to oxidative damage,
both for the reduced antioxidant capacity and for the high
consumption of oxygen and the high concentration of lipids
and chemically reactive species, such as free iron [26, 27].
Free radicals, which are continuously produced in the course
of the common cellular metabolic processes, greatly increase,
especially at the cerebral level, after a hypoxic-ischemic event.
Asphyxia and acidosis result in fact in the release of free iron
in plasma, and free iron itself is responsible for further free
radical formation, such as isoprostanes and AOPP. The neo-
natal brain, being particularly rich in polyunsaturated fatty
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TaBLE 3: MRI scores and outcome reported by groups. TasLE 3: Continued.
Group MRI score Outcome Group MRI score Outcome
Mild/Moderate HIE 42 0 Survived
1 7 Survived 43 0 Survived
2 1 Survived 44 0 Survived
3 1 Survived 45 0 Survived
4 0 Survived 46 0 Survived
5 0 Survived 47 0 Survived
Severe HIE 48 0 Survived
1 11 Died 49 0 Survived
2 11 Died 50 0 Survived
3 10 Died 51 0 Survived
4 7 Survived
5 6 Died
6 > Died acids, is particularly vulnerable to lipid peroxidation during
7 5 Died asphyxia, making the immature myelin particularly suscepti-
8 5 Died ble to free radical attack [28]. The OS derived from the over-
9 5 Died production of free radicals dominates the lack of antioxidant
10 5 Died mechanisms, including reduced activity of superoxide dis-
1 4 Survived mutase, catalase, and glutathione peroxidase (GPX), and it
12 4 Survived was thus involved in the pathogenesis of hypoxic-ischemic
i injury [29-31]. The increased production of GPX detected
13 3 Survived in the cerebrospinal fluid of neonates with HIE by Vasiljevi¢
14 3 Survived et al. suggests that this is an active mechanism of response to
15 1 Survived oxidative stress induced by hypoxia-ischemia. Moreover, the
16 1 Survived same authors found that increased GPX activity correlates
17 1 Survived with the severity of the insult and hypoxic brain damage
18 1 Survived [31]. After HIE, the increase in OS occurs especially during
19 ] Survived the reperfusion and reoxygenation phase. In this phase, the
_ free iron release and the activation of some prooxidant
20 1 Survived - .
enzymes (such as the nitric oxide synthese, cyclooxygenase,
21 1 Survived lipooxygenase, and xanthine oxidase) determine a chain
22 1 Survived reaction, culminating in the production of free radicals, such
23 1 Survived as the highly toxic peroxynitrite, which cause cell damage
24 1 Survived through the peroxidation of membrane lipids and damage
25 1 Survived to DNA and proteins [32, 33]. The cascade activation of all
2% 0 Survived these mechanisms leads to endothelial damage, with
, increased capillary permeability and therefore cytotoxic
27 0 Survived .
edema; soon after, the activation of caspases 3 and 9 causes
28 0 Survived the activation of apoptotic mechanisms [28, 29, 32, 34-36].
29 0 Survived The higher the plasma AOPP, end products of protein perox-
30 0 Survived idation, and thus index of free radical damage, the more
31 0 Survived severe was the perinatal hypoxia-ischemia, confirming what
32 0 Survived has so far reported in the literature and emphasizing how
33 0 Survived proteins are the first target of toxic action of free radicals.
34 0 Survived An in.crease of carbonyl groups and expression of protein
oxidation has been widely demonstrated and observed from
3 0 Survived the earliest 3 hours after the advent of hypoxia-ischemia
36 0 Survived [18, 37, 38]. The altered protein molecules act as a trap for
37 0 Survived free radicals, which further start chain reactions, worsening
38 0 Survived the damage. Often, this type of reactions is catalyzed by tran-
39 0 Survived sition metals such as iron and copper, which enter the Fenton
40 0 Survived reaction [39]. Iron, in particular, is released from ferritin,
, although it may also derive from transferrin, hemoglobin,
41 0 Survived

myoglobin, lactoferrin, and cytochromes. During hypoxia
and subsequent reoxygenation, iron is moved from storage
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sites and converted to a form detectable in the plasma and
extracellular space, so called “free iron” or NPBL The
increase in NPBI levels exposes proteins and membrane
lipids to the attack of free radicals and thus to oxidative dam-
age [37, 40]. In the literature, several studies have reported
the role of free iron in the post anoxic oxidative damage. Cic-
coli et al. have shown that erythrocytes of hypoxic infants
released more iron than those of normoxic adults [41]. Buo-
nocore et al. reported that the plasma level of NPBI is highly
predictive of intrauterine suffering and brain damage [42]. In
our study, NPBI levels were significantly higher in infants
with severe perinatal asphyxia in the first six hours of life,
while free iron plasma levels in this group of infants showed
a downward trend, probably linked to the effect of hypother-
mia. Numerous studies in fact have shown that therapeutic

hypothermia is effective not only in reducing brain damage
and improving long-term outcomes but also in reducing
levels of reactive oxygen species responsible for oxidative
damage [38, 43]. As overproduction of free iron is known
to be a consequence of hypoxia-induced acidosis, we hypoth-
esized that the recovery of cellular metabolism during hypo-
thermia will lead to a reduction of triggers of free iron release;
meanwhile, AOPP and isoprostanes and expression of oxida-
tive cellular damage persist to be increased in plasma.
Despite the significant difference highlighted in the levels
of AOPP between boys and girls at birth, our study confirms
what is already well known that there is a higher male suscep-
tibility to brain oxidative damage. A recent European analysis
on 4500 children with cerebral palsy revealed in fact that inci-
dence of cerebral palsy is 30 times higher in males than in



females [44]. These gender differences in the immature brain
seem to be related to intrinsic chromosomal and hormonal
differences. The protective role of estrogen against OS and
thus the fact that most males are susceptible to oxidative
damage have been reported by numerous studies [45-47].
Giordano et al. demonstrated in an animal model that estro-
gens modulate the cerebral expression of some antioxidant
enzymes (paraoxonase 1 and 2 (PONI1 and PON2)), increas-
ing in this way the resistance of female neurons to oxidative
damage [46]. Furthermore, although the neuroprotective
effect of estrogen is well known, the absence of the protective
effect of estradiol in some cells of PON2-knockout mice
(PON27'") suggests that other mechanisms of neuroprotec-
tion related to female hormones may come into action
against free radical damage [45, 48]. The presence of differ-
ences in the OS levels between males and females and their
relationships with the hormonal status have also been
emphasized by another study by Minghetti et al, in which
males have a higher lipid peroxidation and reduced antioxi-
dant capacity than females, contributing to the concept of
male disadvantage in respect of the damage caused by free
radicals [47]. Despite the advent of new studies and research
projects, the exact mechanisms producing these gender dif-
ferences are still largely unknown.

The role of oxidative stress in newborn morbidity with
respect to the increased risk of free radical damage in these
babies is growing. However, challenges remain in the early
identification of infants at risk for neonatal encephalopathy,
determination of timing and extent of hypoxic-ischemic
brain injury, and optimal management and treatment [49].
Despite ongoing limits such as the need of a specific kit and
specific instruments to measure oxidative stress biomarkers
consequently associated with the need of an expert laboratory
team and the high cost, making the process of reaching the
goal slower, researchers are currently working to develop a
biomarker panel, which can become useful to the clinicians
as a point of care.

Literature on brain imaging of asphyxiated newborns
typically uses MRI standard imaging techniques, per-
formed following hypothermia at the end of the first week
of life, to define the presence and extent of brain injury in
these newborns and to provide a prognosis for subsequent
neurological impairment [50]. DWT allows recognition of
structural brain abnormalities during the first week, which
only become clearly visible on conventional imaging by
days 7-10 of life [51, 52].

The presence of an association between biomarkers of
oxidative stress, measured in the first hours of life, and
brain damage successfully evaluated through neuroimaging
emphasizes the possibility of early identification of new-
borns at greater risk of brain damage and also underlines
the validity of the AOPP, as products of OS damage in
the plasma and therefore as biomarkers of neuronal
damage. Knowing also that, after a hypoxic-ischemic
insult, cellular damage on energy substrates continues to
evolve over the first 12-48 hours, we suggest that the
introduction of new neuroprotective strategies and antiox-
idants in such an early stage of life could change the long-
term outcome of these infants.
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