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Abstract: Non-coding RNAs (ncRNAs) constitute a heterogeneous group of RNA molecules in terms 
of biogenesis, biological function as well as length and structure. These biological molecules have gained 
attention recently as a potentially crucial layer of tumor cell progression or regulation. ncRNAs are 
expressed in a broad spectrum of tumors, and they play an important role not only in maintaining but also in 
promoting cancer development and progression. Recent discoveries have revealed that ncRNAs may act as 
key signal transduction mediators in tumor signaling pathways by interacting with RNA or proteins. These 
results reinforce the hypothesis, that ncRNAs constitute therapeutic targets, and point out their clinical 
potential as stratification markers. The major purpose of this review is to mention the emergence of the 
importance of ncRNAs, as molecules which are correlated with cancer, and to discuss their clinical implicit as 
prognostic diagnostic indicators, biomarkers, and therapeutic targets.
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Introduction

The discovery of DNA structure, defined the central 
dogma of molecular biology with a widely acceptance in 
the scientific community. As far as central dogma of biology 
is concerned, the genetic information flows from DNA 
to RNA to protein. RNAs are molecules that have some 
similarity to DNA not only as far as structure is concerned 
but also in chemical composition. Transcription is the 
transfer of genetic code from DNA to RNA and takes place 
in the nucleus. RNAs then exit the nucleus into the cell 
body. mRNAs undergo translation in the cell body, which 
is the making of protein based on the code in the mRNAs. 
The last ones have the ability to carry the code for making 
proteins, so they also called “coding RNAs”. For many 
decades it was widely spread the idea that the majority of 
RNAs in our cells are mRNAs. However, recent studies 

have changed this “status”, suggesting instead that most 
RNAs do not code for proteins, and these non-coding 
RNAs (ncRNAs) might even hold the key to playing a 
great role or to furthering our understanding of human 
diseases. Understanding regulatory ncRNA is currently one 
of science’s most important challenges. Small non-coding 
RNAs (sncRNAs) retain a prospective role in addition 
to controlling the expression of most of our gene. Long 
non-coding RNA (lncRNA) represent the majority of 
transcription products, yet we know next to nothing of their 
significance. During the last decade, a tremendous number 
of ncRNAs, has been raised from anonymity in order to 
define as a category of genetic elements, leaving its sign on 
the field of tumor biology. Only a small rate of the human 
genome corresponds to protein-coding genes. The recent 
discovery, that most of our transcriptome is non-coding, 
is very promising. The comprehension of the biological 
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role of this unknown RNA world undoubtedly represents 
the next great frontier in biology. Over the last 20 years, 
the intensified study of the human genome became the 
catalyst for a significant shift in our understanding about 
the way DNA operates. Complete sequencing of the human 
genome, within the framework of Human Genome Project 
(HGP), contributed to the identification and mapping of 
human genes. Moreover, the aforementioned international 
scientific consortium revealed that only a small portion, 
almost 2% of total DNA, is translated into proteins. As 
result, for a long time scientific community was holding fast 
to a “gene-centric” belief characterizing the majority (98%) 
of human DNA as “junk”. Reconsideration of the term 
“junk”, which was describing the non-coding part of the 
human genome, accomplished mainly through the results of 
Encyclopedia of DNA Elements project (ENCODE). This 
project provided with evidence supporting that most of 
the considered as “junk” DNA was pervasively transcribed 
and it could participate in the regulation of protein-coding 
genes by forming complex regulatory networks. Thus, the 
point of interest was relocated from genes to transcripts as 
the fundamental units of the genome (1).

ncRNAs are mainly divided into two categories based 
on their length, using as cutoff the 200 nucleotides (nt) 
length. ncRNAs <200 nt-long are referred as sncRNAs 
and include miRNA, siRNA, piRNA, snoRNA, snRNA 
and tRFs (2). ncRNAs longer than 200 nucleotides 
constitute an individual class of ncRNAs known as 
lncRNAs (Figure 1) (3). In general, ncRNAs consist the 
typical RNA form in mammalian cells, encompassing 

abundant and functional types such as rRNA and tRNA, 
various small RNA types such as microRNA (miRNA), 
small interfering RNA (siRNA), piwi-interacting RNA 
(piRNA), tRNA-derived fragments (tRF), small nucleolar 
RNA (snoRNA), small nuclear ribonucleic acid (snRNA) 
as well as lncRNA. However, the overrepresentation 
of ncRNAs in total RNA begs the question whether or 
not all these RNA molecules play a biological role or 
they constitute “junk RNA” (4). Simultaneously, the 
databases including annotated ncRNA transcripts [e.g.,  
miRBase (5), lncRNAdb (6), NONCODE (7) etc.] are 
expanding constantly with novel sequences, mainly due to 
the technological advancement through the establishment 
of high-throughput next-generation (NGS) technologies 
(8,9). In particular, NGS has revealed many ncRNAs 
originating from protein-coding genes (10-16). Still, 
the transcription itself of several sequences and/or their 
identification in RNA-seq data does not establish a strong 
argument for them to be considered as biologically active 
ncRNA molecules. As result, the researchers need to 
implement strategies based on robust biochemical and/or 
evolutionary data to evaluate the putative functional role of 
novel ncRNA candidates (4). 

With this review, we wil l  attempt to provide a 
summarizing overview of the most important classes of 
lncRNA and sncRNA, as they emerged from the current 
literature. Moreover, we will discuss in brief about their 
biogenesis, their implication in cellular homeostasis and 
cancer development as well as their potential as cancer 
biomarkers and therapeutic targets.

RNA

Non-coding 
RNA

Small non-
coding RNA

miRNA piRNA Oncogenic
Tumor 

Supressor

Long non-
coding RNA

mRNA

Coding 
RNA

Oncogenic 
& Tumor 

Supressor

H19

MEG3
GAS5

CCND1
LincRNA- p21

HOTAIR
MALATI
ANRIL
SRA

siRNAtRNArRNA

Translation 
related RNAs

Figure 1 A classification of RNA types showing the whole new world of RNAs playing important roles in diverse biological functions by 
modulating gene expression via antisense and miRNA-mediated controls.



Annals of Translational Medicine, Vol 6, No 12 June 2018 Page 3 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2018;6(12):241atm.amegroups.com

miRNAs

miRNAs are short, single-stranded, approximately 22 
nucleotides in length endogenous RNA molecules. Primary 
miRNA (pri-miRNA) transcripts are transcribed by RNA 
pol II and undergo two cleavage events until mature 
miRNAs occur. Firstly, Drosha, an RNAse III enzyme, with 
its cofactor the microprocessor complex subunit DGCR8, 
processes pri-miRNA transcripts to precursor miRNA 
hairpin transcripts (pre-miRNA) in the nucleus. Then, 
pre-miRNA translocated to the cytoplasm via Exportin-5 
(XPO5), where another RNAse III enzyme called Dicer 
cleaves pre-miRNA to form mature miRNA molecules 
that assemble into RNA-induced silencing complex (RISC) 
inside P-bodies (Figure 2) (17).

Up to date, miRNAs are the most extensively studied 
sncRNA molecules because of their involvement in 
transcriptional and post transcriptional regulation of 
protein-coding genes. Specifically, miRNA 5’ seed region 

(between nucleotides 2–7) interact with regions within the 
3'untranslated region (3' UTR) of messenger RNA (mRNA) 
leading to the degradation or repression of the targeted 
mRNA(s), depending whether or not a perfect miRNA/
mRNA complementarity is achieved (18). Moreover, in 
silico predictions suggest that over 60% of protein-coding 
genes could be putative targets of miRNAs. By extension, 
it can be declared that the expression of protein-coding 
genes, at least for the vast majority of them, is somehow 
under the regulation of miRNAs (19). Therefore, essential 
cellular processes as cell proliferation, cell differentiation, 
cell migration, angiogenesis or apoptosis are monitored by 
a wide, complicated miRNA network (20). As a result, any 
malfunction relevant to the biogenesis pathway of miRNAs 
is strongly associated with malignant transformation and 
hence renders them as key players during tumor initiation, 
metastasis promotion and progression of the disease (21,22).

Over the past decade, findings from several studies 
revealed a broad suppression of miRNAs expression in 

Figure 2 Encoded in the genome as part of longer transcripts, pri-miRNA must undergo two processing events in order to generate an 
active “mature” miRNA. DROSHA cleave pri-miRNA in the nucleus to generate precursor miRNA (pre-miRNA). pre-miRNA are then 
exported to the cytoplasm via Exportin-5 where there are processed by DICER to generate miRNA.
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tumors compared to healthy tissues indicating for a defective 
miRNA-biogenesis pathway in human malignancies 
(23,24). A plethora of mechanisms, including genomic 
amplifications, deletions within fragile chromosomal sites, 
mutations, and epigenetic regulation of miRNA expression 
are responsible for the extensive deregulation of miRNA 
expression during carcinogenesis (25). As result, due to the 
fundamental mechanism of action of miRNAs to regulate 
specific mRNAs, they function either as oncogenes or 
tumor-suppressors and depending on the cellular context 
and different mRNA targets (26,27).

Cancer is a multistep process characterized by the 
ability of tumor cells to sustain chronic proliferation and 
continuously expand, evading growth suppressors and 
apoptotic signals (28-30). Numerous miRNAs have been 
found deregulated during oncogenesis and have been 
implicated in proliferation of tumor cells (31). For example, 
miR-17/92 cluster, which was initially proposed as an 
oncomiR in diffuse large B cell lymphomas (32), has been 
presented to be frequently overexpressed and maintain 
oncogenic activity in a wide spectrum of carcinomas (33). 
Specifically, in lymphomas, a highly notable oncogenic 
collaboration has been illustrated between MYC and miR-
17/92. In particular, MYC is a transcriptional regulator 
that activates miR-17/92 cluster expression. As a result 
of miR-17/92 overexpression, expression of chromatin 
regulatory genes (SIN3B, HBP1, and BTG1) and the 
proapoptotic BCL2L11 gene is suppressed, contributing 
to survival maintenance and self-renewal of tumor  
cells (34). Furthermore, E2F transcription factor 1 (E2F1) 
is negatively regulated by miR-17/92, provoking attenuated 
E2F-induced apoptosis and simultaneously contributing to 
proliferative signal by promoting E2F transcription factor 3 
(E2F3) expression (35). Members of the miR-17/92 cluster 
and its paralogue miR-106a/363, such as miR-92a-3p and 
miR-20b-5p, along with miR-155-5p have pivotal roles in 
other B-cell malignancies, including chronic lymphocytic 
leukemia (36-38). In particular, miR-155-5p regulates 
important transcription factors, such as E2F2 and hypoxia-
inducible factor 1 (HIF1) in leukemic cells (39,40).

Hallmarks of carcinogenesis include invasion and 
metastasis of malignant cells as well as intense tumor 
angiogenesis as responding to the enormous needs for 
oxygen and nutrients (41). The miR-200 family members 
have been proposed as crucial regulators of multiple genes 
that are responsible for maintaining the epithelial polarity, 
like Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and 
Zinc Finger E-Box Binding Homeobox 2 (ZEB2), which are 

controlling cadherin 1 (CDH1; also known as E-cadherin, 
ECAD) expression, and they actively participate in epithelial 
to mesenchymal transition (EMT) (42,43). Concerning 
the facilitation of angiogenesis by miRNAs, we could 
note the case of miR-126 which directly targets regulators 
of RAS/RAF1/MAPK pathway, crucial in angiogenic 
signaling [e.g., sprouty-related EVH1 domain-containing 1  
(SPRED1)] (44).

Nowadays, the study of miRNA expression is mainly 
performed via the “gold standard” quantitative polymerase 
chain reaction (qPCR) followed by hybridization 
methodologies such as  microarrays,  while recent 
advancements in the era of NGS enabled high-throughput 
RNA-seq as an alternative for the in-depth analysis of 
miRNAs (45). As the knowledge regarding miRNAs is 
expanding more evidence depict the great diagnostic, 
prognostic and predictive potential of this novel class of 
biomarkers advocating for their active involvement in more 
and more daily clinical applications. Altered expression 
levels of miRNAs between malignant tumors and healthy 
tissues facilitate cancer diagnosis, ameliorate tumor staging 
and inform clinicians about relapse risk and/or disease 
progression as well as therapeutic efficacy, reducing the 
unwanted under- or overtreatment. The prognostic and 
predictive value improves by the synergy of more than two 
miRNAs, encouraging the development of multipurpose 
miRNA signatures as diagnostic or prognostic tools  
(46-48). For instance, combination of miR-15a-5p, miR-16,  
miR-24-3p, miR-28-5p, miR-34a, miR-96, miR-182, 
and miR-224, which have been proposed as molecular 
biomarkers with significant prognostic value in colorectal 
cancer (CRC); has already been proposed as a prognostic 
signature in this malignancy (49-57); another very 
important miRNA that could be added in this molecular 
signature is miR-21, a predictor of metastatic tumor 
potential in this cancer (58). Similar signatures consisting 
of miRNAs have been proposed in prostate cancer (59,60), 
laryngeal squamous cell carcinoma (61), and other human 
malignancies (62). Multiparametric panels of biomarkers 
could also integrate protein-coding transcripts produced 
by cancer-related genes such as the apoptosis-related 
genes BCL2L12 (63-67), BCL2 (68,69) and BAX (70,71), 
DDC (72-75), transcription factors such as HIF1 (39), 
and/or other mRNAs with significant prognostic value in 
human malignancies (76-83). Besides that, miRNAs can 
stably circulate in human body fluids (e.g., plasma, urine 
etc.), permitting their easy quantification paving the way 
for the development of non-invasive assays in the era of 
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personalized medicine (84,85). Moreover, proteins that are 
targeted by important miRNAs could also participate in 
such multiparametric panels of biomarkers (86-89), along 
with clinical markers (90-92).

tRFs

tRFs constitute novel sncRNA molecules generated by 
specific cleavage of tRNA transcripts. There are two classes 
of tRF based on their length and their position of origin 
in primary or mature tRNA. The first includes stress 
induced tRFs, known as tRNA halves (tiRNAs or tiRs), 
generated by a specific cleavage by angiogenin within the 
anticodon loop of mature tRNAs to produce fragments 
ranging from 31 to 40 nucleotides. There are two subclasses 
of tiRNAs depending whether they include the 5’ or 3’ 
part of anticodon loop after cleavage (93). Interestingly, 
these angiogenin-produced fragments differ from other 
sncRNAs, including miRNAs and other tRF classes, by 
carrying a 5’hydroxyl group. tiRNA production by stressed 
cells repress translation and modulate intrinsic stress-
response program of the cells. Moreover, they interact 
with Argonaute (AGO) protein members (e.g., AGO2) to 
form complexes participating in RNA interference (RNAi) 
silencing pathway (94). Recently, overexpression of tiRNAs 
in a sex hormone-dependent manner has been identified in 
breast cancer and prostate cancer cells positive for estrogen 
and androgen receptors (ARs) respectively. These sex-
hormone dependent tiRNAs enhance cell proliferation, 
however, the mechanism of their action needs to be further 
investigated (95).

The second tRF class includes smaller tRNA fragments 
14–30 nucleotides long, from the ends of mature or 
primary tRNAs which are under the spotlight of scientific 
community due to their size and similarity to miRNAs. 
Based on their mapping to 5’ or 3’ ends of tRNAs or 3’ ends 
of primary tRNAs are divided in three subtypes tRF-5, tRF-
3 and tRF-1 respectively (96). The molecular mechanism 
and the enzymes that participate to the cleavage of tRNAs 
producing tRF-5 and tRF-3 are still unknown. At the 
same time, a Drosha or Dicer dependent tRNA-process 
mechanism has been excluded due to the maintenance of 
tRF abundance in experiments using Dicer and Drosha 
knock-out cells. Regarding their cellular distribution 
tRF-5 can be found in the nucleus whereas tRF-3 are 
predominantly gathered in the cytoplasm (97). These 
data are further supported by studies indicating a strong 
association of tRF-5 with Piwi proteins in monocytes 

to repress CD1A expression epigenetically through the 
methylation of its promoter (98). Moreover, it has been 
proved that tRF-3s interact with AGO proteins and act in 
a miRNA-like way to regulate crucial oncogenes or tumor 
suppressors (99).

On the contrary, tRF-1 consists a more variable tRF 
subclass generated by a 3’ cut of tRNA precursors from 
RNase Z (100). Also, tRF-1 interact with members of Piwi 
and AGO protein families and potentially regulate gene 
expression in a piRNA- or miRNA-like manner (100,101). 
Representatives of tRF-1 class have been found to accelerate 
proliferation in prostate cancer cell lines (96), or more 
recently to associate with the development of an aggressive 
CLL phenotype by regulating T cell leukemia/lymphoma 
1A (TCL1A) gene (102).

Recently, tRF-2 (103) and internal tRFs (i-tRFs) (104) have 
been proposed as novel classes to describe other abundant 
tRFs. tRF-2 derived from anticodon stem loop of tRNAs and 
bind to Y-box binding protein 1 (YBX1) in breast cancer cells. 
YBX1 is a critical RNA-binding protein for the stabilization 
of multiple oncogenic transcripts (103). Additionally, in silico 
analysis of available (TCGA) datasets revealed a distinct 
category of tRFs, referred as i-tRFs, that spans entirely 
internal to mature tRNA sequences, exhibiting a cell type 
dependent expression and discriminating breast cancer 
histological subtypes (104).

piRNAs

P-element-induced wimpy testis (Piwi)-interacting RNA 
(piRNA) are 21–36 nucleotides single stranded RNA 
molecules and represent the largest group of sncRNAs. 
They are abundant in spermatogenic cells and they 
have been found to be critically involved in germline 
development and functions (105). In contrast to miRNA 
or siRNA mode of action, targeting transcripts directly, 
piRNAs interact with Piwi proteins, a subfamily of AGO 
proteins, to mediate epigenetic silencing (106). However, 
recent studies using Drosophila and mice as model 
organisms propose a potential miRNA-like function for 
piRNAs in the cytoplasm (107,108). piRNAs are mainly 
responsible for preserving genome integrity through the 
silencing of transposable elements (TE) (109).

Biogenesis of piRNAs has not been fully understood yet, 
thus several mechanisms have been proposed. The primary 
maturation mechanism involves the cleavage by Piwi 
proteins of a long primary RNA, transcribed from genomic 
regions identified as piRNA clusters (109). Ping-pong 
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amplification cycle is another well-studied mechanism, 
characteristic of piRNAs, which bridges the gap between 
piRNA biogenesis and target silencing. In Drosophila germ 
cells a primary piRNA is associated with aubergine protein 
(AUB) to detect and slice active TEs. The aforementioned 
cleavage produces the 5' ends of new piRNA in sense with 
the cleaved TEs. Next, they are loaded into AGO3 and 
further maturate by trimming of their 3' ends. As result, 
new antisense piRNAs, similar to the original, are produced 
and target TEs (110).

piRNAs are functional RNA molecules implicated in 
gene silencing, thus raising the interest of scientist to define 
their potential role in human malignancies. Expression 
of oncogenes or tumor-suppressors carrying transposon-
derived sequences in their 3’UTR could be modulated 
by piRNA (107). Deregulated piRNA fail to control and 
suppress the activity of TEs increasing genomic instability 
and promoting mutagenesis, leading to the development of 
aggressive cancer phenotypes (111). Moreover, Martinez  
et al. (112) recently revealed tissue specific piRNA 
expression patterns and specific piRNA-signatures between 
cancerous and healthy samples using The Cancer Genome 
Atlas (TCGA) datasets.

In breast cancer (BC) piR-36011, piR-31106 and piR-
36717 have been found to differentially expressed in 
hormone-responsive BC, but also between cancer and 
normal breast tissue specimens (113). Additionally, four 
piRNA (piR-4987, piR-20365, piR-20485 and piR-20582) 
were confirmed to be upregulated in breast cancer using 
deep sequencing data and qPCR. Notably, piR-4987 was 
associated with positive lymph node status, indicating the 
great potential of piRNA as biomarkers in BC (114). A 
very recent study illustrated piR-1245 as a frequently over-
expressed piRNA in CRC. Furthermore, patients with 
elevated piR-1245 levels were susceptible to metastasis and 
demonstrated lower overall survival (OS) (115). piR-651 has 
been proposed as a putative oncogenic piRNA as it has been 
found highly upregulated in gastric cancer (GC) tissues 
with this upregulation to be also validated in different 
human cancer cell lines including hepatic, cervical, breast, 
mesothelioma and lung (116). Similarly, piR-823 found to 
be upregulated in multiple myeloma (MM) patients and 
cell lines. Moreover, it correlated positively with the stage 
of the disease and characterized as a crucial molecule in the 
process of DNA methylation and an important regulator 
of myelomagenesis by stimulating bone marrow neo-
angiogenesis (117). Interestingly, piR-651 and piR-823 have 
been used as peripheral blood biomarkers for the detection 

of circulating cancer cells of GC patients, able to discern 
patients with GC from the healthy individuals (118). 

snoRNAs

snoRNAs are a distinct regulatory class of sncRNA 
(60–250 nucleotides) operating as guide molecules during 
post-transcriptional chemical modifications, such as 
2’-O-methylation and pseudouridylation, of rRNA or other 
RNA molecules. Distinct sequence motifs and secondary 
structure classify snoRNA as C/D box, H/ACA box or 
small Cajal body-specific RNAs (scaRNA) (119). Box C/
D snoRNAs (60–200 nucleotides) are distinguished by the 
presence of two highly conserved canonical motifs referred 
as C box (RUGAUGA motif, where R is a purine) and D 
box (CUGA motif). These snoRNAs catalyzing the site-
specific 2’-O-ribose methylation of rRNA residues. Box 
H/ACA snoRNAs are longer than box C/D snoRNAs, 
ranging from 120 to 250 and guiding pseudouridylation of 
rRNA residues. A two-hairpin structure connected by an 
H box region (ANANNA, N corresponds to nucleotide) is 
characteristic for box H/ACA snoRNAs. Moreover, ACA 
trinucleotide is located three nucleotides upstream of the 
3’-end of the snoRNA (120). ScaRNA are larger than the 
other snoRNA classes, accumulated in Cajal bodies and they 
characterized by the presence of both C/D and H/ACA 
boxes along with a CAB box (UGAG motif) that functions 
as a Cajal-body specific localization signal (121).

Besides their role in modification and maturation of 
rRNA, strong evidence has emerged concerning their 
potential role in human malignancies. The significance 
of these data is enhanced by several studies indicating a 
potential miRNA-like function for some small RNAs, 
derived from snoRNAs, after Dicer processing and 
interacting with AGO proteins (122,123). snoRNA U50 
has been identified as a candidate tumor suppressor, 
downregulated in prostate and breast cancer (124,125).

Liao et al. (126) presented six deregulated snoRNAs 
(SNORA42,  SNORD33,  SNORD66,  SNORD76, 
SNORD78, and SNORD73B) in plasma of non-small-
cell lung cancer (NSCLC) patients. Of them SNORA42 
was proposed to be implicated in tumorigenesis through 
two different pathways, a p53-dependent and a p53-
independent. Notably, NSCLC patients with elevated 
SNORA42 expression succumbed earlier from the  
disease (127). In the same context, twenty-two snoRNAs 
were identified to demonstrate alterations specific to 
cancer stem cells of NSCLC patients (128). Human cell 
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line screening of the most representative leukemic groups, 
including acute myeloid leukemia (AML), pre-B-acute 
lymphoblastic leukemia (ALL) and T-acute lymphoblastic 
leukemia (ALL) revealed distinct snoRNA expression 
patterns between various leukemic groups, however the 
discriminatory potential of these snoRNA, as well as their 
involvement in pathobiology of human leukemias, need to 
be further elucidated (129).

lncRNAs

Approximately 16,000 genes of the entire gene code 
databases belong to an important class of ncRNAs greater 
than 200 nucleotides in length and this number is increasing 
with a great rate. Very few of these RNA molecules have 
been characterized at all apart from their detection in 
different sample types. What we do know, is that expression 
of many of these lncRNAs is highly tissue specific and many 
are detected only under certain stress conditions. These 
fascinating molecules called lncRNAs. The last ones can be 
exonic, intergenic, in enhancer regions, or in regions distal 
to protein-coding genes. Similar to mRNAs, lncRNAs 
are transcribed by RNA polymerase II (RNApol II), carry 
single nucleotide polymorphisms (SNPs), can undergo 
alternative splicing, may have 5’ caps, and are usually 
polyadenylated. It is mentionable that under estimations 
the majority of lncRNAs has more than two exons, and can 
have secondary and tertiary structures (130). lncRNAs can 
function in multiple ways. They can act as scaffolds (for 
example NEAT1 and HOTAIR have the ability to act in 
trans) or guides (for example Xist, Kcnq1ot1, Airn have the 
ability to act in cis whereas HOTAIR acts in trans). But in 
addition to these two simple ostensible mechanisms, there is 
a plenty number of others by which lncRNAs can function 
and influence on cell operation. Finally, they present the 
ability to act as enhancers (e.g., eRNAs, in cis), reservoirs 
(e.g., H19) but also as decoys (e.g., Tsix, MALAT1). A 
tremendous increasing number of experimental studies, are 
providing evidence that lncRNAs mediate human disease 
pathogenesis, thereby challenging the concept, that protein-
coding genes, are the sole contributors to the development 
of human disease pathogenesis. As the scientists investigate, 
the encoding RNA is carrying out varied cell operations 
in both cytoplasm and the nucleus very often involved in 
regulation of gene expression. 

A plenty number of lncRNAs are located exclusively in 
the cytoplasm and others in nuclear. The last ones appeared 
to be heavily involved in genetic regulation of gene 

transcription. They recruit and guide proteins involved in 
modifying chromatin structure. Many lncRNAs are nuclear 
retained or have long residence time in the nucleus and 
as a consequence are often inefficient targets of RNAi. In 
addition, scientific studies have been descripted that a plenty 
number of lncRNAs are often expressed from complex 
loci with not only overlapping sense but also and antisense 
transcription (131).

lncRNAs & human malignancies 

It is being recognized that certain single-nucleotide 
polymorphisms (SNPs) are associated with tumor risk. 
Large-scale data analysis from cancer genome-wide 
association studies indicates that the majority of SNPs 
associate with non-coding genes (132,133). The majority 
of recurrent mutations in somatic cells, copy number 
alterations, and tumor-related SNPs are related to ncRNAs 
(134-136), and the presence of risk SNPs may modulate the 
expression of corresponding ncRNAs. Among this number 
of non-coding genes, lncRNAs are emerging as a new team 
of indispensable members involved in the development and 
progression of tumor (137-140).

Moreover, the dysregulation of a number of lncRNA 
targets, has correlated with the prognosis and diagnosis 
of a plenty number of cancer types including prostate 
cancer (141,142), lung cancer (143), and breast cancer  
(144-146), among other tumor types (147,148), as well 
as being linked to detention against chemotherapy and 
targeted therapy (149-152). Correlation with a great 
number of analyses, indicates that these molecules are 
upregulated in cancer cells that are resistant to DNA 
damage inducers (153-156), targeted therapies or anti-
hormone therapies (141,157-159). Loss-of-function studies 
using small hairpin RNA-based knockdown and clustered 
regularly interspaced short palindromic repeats (CRISPR)/
cas9-mediated genetic depletion indicate that lncRNAs 
facilitate cancer cell growth, cell mobility and apoptosis 
detention, (150,160,161). The expression of HOTAIR 
activates estrogen receptor (ER) target transcription 
program and contributes to resistance to tamoxifen (161). 
Gain-of-function studies suggest that increased expression 
of lncRNAs enhances cell viability during drug treatment 
(153,158,162). lncRNA derives from several sources 
including the antisense strand of the protein coding 
sequence, intronic transcription, intergenic regions, or 
alternative splicing (163,164). A considerable percentage of 
known lncRNAs either reside within the cytosol or shuttle 
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between the nucleus and the cytoplasm (165).
Recent studies present that these types of cytoplasmic 

lncRNAs play a great functional role in modulating mRNA 
translation and decay in a base-pairing dependent manner 
(166-168) or by competing with miRNA-mediated or a 
protein- mRNA decoy (169). In addition, cytoplasmic 
lncRNAs have been shown to regulate cytoplasmic 
protein trafficking from the cytosol to the nuclear areas 
for transcriptional activation (170). Current studies have 
also indicated that lncRNAs may associate with proteins, 
metabolic intermediates and cellular lipids. Although still 
largely unexplored, it has been suggested from scientists 
that lncRNAs are part of an essential intracellular signaling 
pathway. Novel type optical aspects into the regulatory roles 
of lncRNAs in tumor for governing new type mechanisms 
and pathways by which tumor cells acquire their metastatic 
and invasiveness properties serve as the basis of a new 
insight in the battle against tumorigenesis. This empathy 
of lncRNAs in tumor signaling should stimulate new 
directions for future research therapeutic options that focus 
on lncRNAs as novel tumor diagnostic, prognostic markers 
and therapeutic targets.

lncRNAs in prognosis & cancer therapy

A mentionable number of lncRNAs is deregulated 
in cancer and contribute to oncogenesis. In a plenty 
number of tumors, several lncRNAs as well as ncRNAs 
being transcribed from protein-coding genes (nonsense-
mediated mRNA decay candidates) have been reported to 
be overexpressed and proposed as biomarkers (171-173). 
For example, several lncRNAs (GAS5 or H19) have been 
reported to be frequently or consistently overexpressed in 
urothelial carcinoma and have been proposed as individual 
diagnostic or prognostic biomarkers; some were moreover 
demonstrated to influence survival, proliferation, migration 
and other cancer-relevant properties of UC cell lines (174).

From a clinical aspect, lncRNAs serve as novel promising 
therapeutic targets. A plenty number of therapeutic 
strategies have been developed to target and to manipulate 
lncRNAs. Antisense oligonucleotide (ASO)-based strategies 
that downregulate the transcripts of lncRNAs via RNaseH-
dependent degradation are under active investigation (175). 
Alternatively, nanoparticle-delivered siRNAs have been 
developed to knockdown lncRNAs in vivo via Argonaute- 
and Dicer-dependent RNA silencing (176-178), which 
have been evaluated in many types of models and have 
been found to inhibit tumor genesis and distant metastasis 

(178,179). Small-molecule inhibitors to block lncRNA-
protein interactions or interfere with lncRNA-protein 
complex formation, are also on the rise. Interestingly, many 
types of tumors frequently become resistant to administered 
chemotherapeutic agents. In these chemotherapy-resistant 
cancers, dysregulated lncRNAs have the ability to contribute 
significantly to the development of this resistance (175). 
During clinical trials, combinations of pathway-specific 
inhibitors integrated with an lncRNA-directed strategy 
could provide maximum efficacy in treating human tumors, 
which is under active investigation.

Targeting lncRNAs using a variety of technologies, 
including ASO-based strategies, siRNAs and small 
molecular inhibitors should be evaluated for their effects 
on tumor initiation, progression or metastasis and response 
to therapy ASOs, including duplex RNA (180), ASO 
gapmers (179), and locked nucleic acids (LNAs) (181) 
present the ability of bind base pairing with lncRNA 
transcripts. The RNA-DNA duplex triggers RNase-H-
dependent cleavage (182). The modern modified generation 
of ASOs incorporates chemical/biological modification 
of the backbone, constructed by sugar to improve in vivo 
stability and in binding affinity (183). S-constrained ethyl 
(cEt) modifications (184) and LNAs (181,185,186) have 
been advanced to pre-clinical experiments (187-189). 
The major characteristic of LNAs which are constructed 
nucleotides is the fact that contain an extra covalent 
bond between the 4’-C and 2’-O of the ribofuranose ring 
(190,191). The LNA-DNA-LNA gapmers have the ability 
to pair with RNA targets, which can be used to silence 
RNA targets not only in animal models but also in cell-
line-based experiments. A similar purpose as LNAs can 
serve by the incorporation of bridged nucleic acid (BNA) 
monomers (192). In order to study the effects on cancer 
growth and metastasis the immediate application of ASOs 
to knockdown lncRNAs in vivo has been tested in a plenty 
of tumor models (193). LNAs present the great ability 
to target plasmacytoma variant translocation 1 (PVT1) 
and this fact has as a result the sensitization of cervical 
cancer cells to cisplatin, substantiating the effectiveness of 
combinatorial treatment (194). Clinical trials or scientific 
experiments using LNAs targeting AR (195) or oncoprotein 
Bcl-2 (196), have presented a promising result and this has 
as a result to be under consideration. Beyond its multiple 
uses in tumor, LNAs have also been proposed to improve 
the status of patients with cardiovascular disorders (197), 
neuronal diseases (198), kidney disorders (199), and other 
human diseases. Studies have indicated that, dioleoyl 
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phosphatidylcholine (DOPC)-based nanoliposomes have 
been developed and constructed in order to deliver the 
nucleotide based-therapeutics (miRNA, siRNA, ASOs, and 
lncRNA) for clinical trial (196,200-207). Experiments have 
presented that a single injection of DOPC-nanoliposomal 
siRNAs can promote or influence the expression of target 
proteins for four days in mice tumors (200,201). This 
unique administration promotes a significant repression in 
the levels of expression of the gene targets (for example, 
BCL2, KRAS, eEF2K, miR34a, miRs155, and JAK2) and in 
size as far as is concerned the tumors in rodent models and 
preclinical models of human tumors, including many kinds 
of tumor models (e.g., xenografts or orthotopic models) 
(196,200,201,203-205,208,209).

Last but not least, RNA molecules consist targets for 
small-molecule inhibitors. Via high-throughput screening, 
scientists can identify small-molecule compounds that 
may potentially inhibit RNAs (210-212). There are a great 
number of serious efforts in order to establish platforms 
and methods to aid the design and identification of small 
molecule inhibitors for oncogenic ncRNAs but with non-
mentionable results (213), fact that will facilitate the huge 
development of clinical or pharmaceutical agents that target 
lncRNAs molecules.

Conclusions

Future studies on the regulatory and biological roles of 
sncRNAs and lncRNAs in cancer signaling will define 
the future of the field. Although a huge list of ncRNAs 
has been identified thus far, it has been a strenuous task 
to demonstrate the functional relevance of ncRNAs in 
cancer. To answer this problem, thorough examinations of 
ncRNAs candidates involved in cancer signaling pathway 
need to be conducted to reveal the physiological relevance 
of ncRNAs in cell apoptosis, survival, metastasis, and 
metabolism. Cellular and xenograft models have been the 
common means of studying the roles that ncRNAs play in 
cancer and are useful tools in cursory evaluations of their 
functions. However, conclusions that are more definitive 
will require representative in vivo models of cancer, such 
as genetic models that better recapitulate the tumor 
microenvironment. It will be crucial to determine if tissue-
specific expression of ncRNAs can induce tumor formation, 
which can then be blocked by targeting the ncRNAs. 
Identification of the specific ncRNAs that function in 
various human cancer types has enabled the development 
of ncRNA-based clinical applications such as biomarkers 

for diagnosis, prognostic indicators, drug sensitizers, and 
therapeutic targets. The ncRNAs profile of each human 
cancer type should be systematically investigated to improve 
clinical outcomes for cancer patients by engendering a 
personalized approach to medicine.
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