Skip to main content
. 2018 Jul 9;9:1574. doi: 10.3389/fimmu.2018.01574

Figure 3.

Figure 3

Visual summary of key TRM effector responses and vaccine strategies at epithelial surfaces. (A) Represents the female reproductive tract. Topical application of both specific chemokines and general inflammatory agents such as nonoxynol-9 can be used to “pull” systemically primed TEM into the mucosal tissue. CD103+ TRM reside closer toward the apical surface of the mucosa. Both CD4+ and CD8+ TRM play a role in controlling viral infections. Memory lymphocyte clusters have been shown to be important in controlling infections at this site. CD8+ TRM re-stimulation appears to be dependent on CD301b+ dendritic cells that reside in the lamina propria. (B) Represent the integumentary epithelium. Topical application of both specific chemokines and general inflammatory agents such as 2,4-dinitroflourobenzene can be used to “pull” systemically primed TEM into the epidermal tissue. Skin scarification as a route of vaccination encourages the development of skin TRM. Upon antigen recognition, skin TRM lose their dendricity and become less motile. γδ TRM can mediate early immune responses. CD8+ αα+ TRM have been found in the dermal–epidermal junction where they may be able to survey local neural tissue for reactivation of latent viral infections. (C) Represents the respiratory epithelium. While different chemokines have shown the ability to “pull” TRM into the respiratory epithelium and airways, the presence of antigen appears to be important at this site. TRM-mediated control of Streptococcus pneumoniae is largely dependent on the CD4+ subset. Control of viral and Mycobacterium tuberculosis infection requires both CD4+ and CD8+ TRM. γδ TRM, in conjunction with CD4+ TRM have been shown to mediate immunity against Bordetella pertussis.