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Background

Lung cancer is the leading cause of cancer deaths worldwide 
with approximately 220,000 new cases and 160,000 deaths  
estimated for 2009 in the United States alone.1 Small cell lung 
cancer (SCLC), which comprises 15% of all lung cancers, is 
almost exclusively due to smoking and is highly aggressive due to 
early widespread metastasis. While combination chemotherapy 
has lead to modest improvements in outcome, the 5 y overall 
survival for SCLC remains at 5%. As in most cancers, early stage 
lung cancer can often be controlled with locally directed therapy 
including radiation and surgery; it is the almost inevitable devel-
opment of metastatic disease that leads to a high mortality rate 
in SCLC.

Many genetic abnormalities involved in the pathogenesis 
of SCLC are distinct from those in non small cell lung cancer 
(NSCLC). While the tumor suppressor gene, p53, is mutated in 
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more than 90% of SCLC patients, it is mutated in about 50% 
of patients with NSCLC. The oncogene K-RAS is mutated in 
30% of NSCLC patients; however, no K-RAS mutations have 
been detected in SCLC. EGFR mutations are often identified in 
NSCLC but rarely occur in SCLC.2 The identification of several 
tyrosine kinase receptors important in the pathogenesis of lung 
cancer, including epidermal growth factor receptor (EGFR), has 
lead to the development of targeted therapies, including erlotinib 
and cetuximab. However, while these EGFR targeted agents have 
improved survival in patients with NSCLC, therapy for advanced 
stage SCLC relies largely on response to cytotoxic chemotherapy. 
Therefore identifying distinct biochemical pathways of metas-
tasis and chemotherapy resistance in SCLC may lead to novel 
therapeutic approaches and improve survival in SCLC patients.

Chemokines and Chemokine Receptors

Chemokines, or chemotactic cytokines, are a group of related 
small soluble peptides that were originally noted to direct leu-
kocyte movement to inflammatory tissues.3,4 They are classified 
into four subfamilies according to the number and spacing of 
their N-terminal cysteine residues: C, CC, CXC and CX

3
C.5 

Chemokines designated CXC, for example, have an amino acid 
between these cysteine residues whereas CC chemokines do not. 
The CXC family has been further subdivided in two classes 
based on whether or not there is an ‘ELR’ motif (glutamic acid- 
leucine-arginine) preceding the first cysteine residue.6 Chemokines 
effect signal transduction through cells by binding with 7-trans-
membrane domain G-protein coupled receptors (7TM-GPCR) 
which are designated according to the names of their correspond-
ing ligands.3,4

In normal physiology, chemokines play a role in pro- 
inflammatory as well as non-inflammatory cell homing.6 
Chemokines mediate the migration of leukocytes to inflamma-
tory sites and also play roles in the regulation of hematopoietic 
stem cells, angiogenesis and the extracellular matrix. The grow-
ing field of chemokine research has lead to a greater under-
standing of their additional roles in diverse fields including 
development, immunology and cancer. About 50 chemokines 
and 20 chemokine receptors have been identified to date. Many 
chemokine receptors interact with more than one chemokine. 
Likewise, several chemokines may activate the same chemokine 
receptor.
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Lung cancer is the leading cause of cancer deaths worldwide. 
Small cell lung cancer (SCLC), which comprises 15% of all 
lung cancers, is almost exclusively due to smoking and is 
highly aggressive due to early widespread metastasis. While 
combination chemotherapy has lead to modest improvements 
in outcome, the five-year overall survival for SCLC remains at 
5%. Identifying distinct biochemical pathways of metastasis 
and chemotherapy resistance in SCLC may lead to novel 
therapeutic approaches and improve survival in SCLC patients. 
The chemokine receptor CXCR4 is emerging as an important 
target in cancer growth, metastasis, relapse and resistance to 
therapy. In this article, we review the structure and function 
of CXCR4 and its ligand, CXCL12, as well as mechanisms of 
CXCR4/CXCL12 signal transduction in lung cancer. We review 
the current preclinical and translational research involving 
this pathway in lung cancer and the clinical development of 
several novel agents targeting the CXCR4/CXCL12 pathway. 
Further understanding of the CXCR4/CXCL12 pathway in SCLC 
and NSCLC may provide a rationale for innovative research on 
the CXCR4 receptor as a potential novel therapeutic target in 
lung cancer.
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motif as well as the second extracellular loop, which contains a 
sequence of negatively charged amino acids.21 Mutant receptors 
with alterations in these regions do not demonstrate an increase 
in intracellular calcium ions in the presence of CXCL12, suggest-
ing the involvement of these regions in ligand activated signal 
 transduction. Interestingly, truncation of the serine and threo-
nine rich region of the distal C terminus does not effect signal 
transduction, though this region contains potential phosphoryla-
tion sites.21 Post-translational modifications in chemokine recep-
tors are known to affect ligand binding properties. In CXCR4, 
post-translational sulfation at tyrosine 21 contributes to CXCR4 
binding to CXCL12.22 CXCR4 exists as a constitutive homodi-
mer. CXCL12 ligand binding induces conformational changes 
within these preformed receptor dimers, without promoting 
the formation or dissociation of dimers.23 CXCR4 dimeriza-
tion is specific, constitutive and likely occurs soon after receptor  
synthesis and folding.24

CXCR4 in Cancer

Since Paget first proposed the “seed and soil” concept in 1889,25  
several authors have explored this theory of cancer metastasis. 
Clinicians have long recognized that certain cancers metastasize to 
distant sites in a predictable pattern. This clinical concept forms the 
basis of many well-developed hypotheses regarding the nature of  
cancer metastasis. The idea that certain organs provide the opti-
mal “soil” or environment to allow for distant growth of the 
tumor “seed” leads to the question of which factors comprise the 
ideal microenvironment for tumor growth. Mueller was the first 
to describe increased CXCL12 levels in organs of breast cancer 
metastasis, proposing a role for a chemotactic gradient and the 
CXCR4/CXCL12 pathway in tumor cells homing to distant 
sites.26

Based on the well-characterized roles of CXCL12 and 
CXCR4 in chemotaxis and the similarities between chemotac-
tic cell migration and cancer cell movement to distant sites, this  
receptor-ligand pair has been hypothesized to play a role in can-
cer pathogenesis and metastasis. While GPCRs have been well 
described in the past, recently there is growing evidence sup-
porting an important role for GPCRs in cancer biology, with 
implications in several tumor types.27 CXCR4 has previously 
been shown to be involved in abnormal homing in chronic myel-
oid leukemia.28 In breast cancer, CXCR4 has been noted to be 
undetectable in normal mammary epithelium with significant 
upregulation in breast cancer cells. The receptor mediates actin 
polymerization, pseudopod formation and invasive responses. 
In addition, high levels of CXCL12 expression were observed in 
organs to which breast cancer metastasizes. Experimental neu-
tralization of CXCR4 with an anti-human CXCR4 monoclonal 
antibody inhibited lung metastasis in vivo in a mouse model.26 
CXCR4 inhibition blocked CXCL12 induced migration and 
invasion in pancreatic cancer cell lines29 and has been shown to 
synergize with cytotoxic chemotherapy in glioblastoma cells in 
vitro and in vivo.30 Prostate cancer cells show increased migration 
and invasion in response to stimulation by CXCL12, which was 
inhibited by antibody to CXCR4.31 In hepatocellular carcinoma, 

Chemokine ligand 12 (CXCL12), also known as stromal 
cell-derived factor 1α (SDF-1α), is the only known ligand 
for chemokine receptor 4 (CXCR4), a well-characterized 
 7TM-GPCR. Although the CXCR4/CXCL12 receptor/ligand 
pair is unique in that the interaction has long been viewed as 
exclusive, more recent evidence suggests CXCL12 signaling 
through CXCR7 as well,7 which has also been hypothesized 
to play a role in cancer pathogenesis.8-10 Unlike the majority 
of human chemokines, the genes of which cluster together on  
chromosomes 4 and 17, the gene for CXCL12 is located on  
chromosome 10q11.21, suggesting a more highly conserved 
specialized function.11 The CXCR4/CXCL12 receptor/ligand 
pair controls the chemotaxis of human and mouse hematopoi-
etic progenitor cells, regulating hematopoietic stem cell homing 
to the bone marrow.12 CXCL12 knockout mice die perinatally 
(embryonic day 18.5) with significantly reduced progenitor 
B-cells as well as cardiovascular defects, indicating a critical role 
in lymphopoiesis, myelopoiesis and development.13 Mice lacking 
CXCR4 exhibit identical defects, as well as abnormal neuronal 
cell migration during development.14 In humans, CXCL12 acts 
as a chemoattractant for CD34+ progenitor cells in peripheral 
blood.12

CXCL12 was first cloned by Tashiro et al. in 1993.15 A few 
years later, CXCR4, a previously unknown cofactor required 
for HIV-1 virion entry into CD4+ cells, was cloned.16 Sequence 
analysis revealed that the cofactor belonged to the seven trans-
membrane G-protein coupled receptor family. Since CXCR4 had 
not yet been identified as the receptor for CXCL12, it was func-
tionally identified only as a co-receptor, along with the CD4 cell 
surface receptor, for HIV-1 env mediated cell fusion and entry. 
The ligand for CXCR4 was later identified as CXCL12.17

The gene that encodes CXCR4 is located on chromosome 
2 band q22.1, clustered with genes for other CXC chemokine 
receptors. Alternative splicing results in two isoforms which 
differ slightly in the N-terminus region: one isoform consists 
of 356 amino acids beginning with the residues MSIPLPLLQ 
while the predominantly expressed isoform contains 352 amino 
acids, beginning with the amino acid residues MEGIS (Fig. 1). 
At least four single nucleotide polymorphisms (SNP) have been 
identified in the exonic portions of the CXCR4 gene, including 
non-synonymous SNPs.18 The synonymous variation rs2228014 
has been studied in a cohort of CLL patients; while no clini-
cal association was identified, three mutations were identified 
in that study.19 A well established mutation in CXCR4 causes 
the WHIM syndrome (warts-hypogammaglobulinemia- 
infections-myelokathexis), a primary immunodeficiency disorder 
that can be caused by either a nonsense or a frameshift trunca-
tion mutation affecting the receptor’s serine and threonine rich 
C-terminal cytoplasmic tail domain.20

The protein structure of CXCR4 is characterized by the classi-
cal 7-transmembrane domains with an extracellular N-terminus 
and three extracellular loops between the transmembrane 
domains. The C-terminal cytoplasmic tail is serine and threo-
nine rich. Ligand binding requires the proximal amino terminus 
near the transmembrane region. Signal transduction requires spe-
cific residues in the second intracellular loop, a conserved ‘DRY’ 
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17 of 61 samples from patients with stage I NSCLC was associ-
ated with a significantly better outcome in compared to patients 
with no CXCR4 nuclear staining (p = 0.039).40 In a similar 
study of 154 primary NSCLC samples, nuclear CXCR4 staining 
was associated with improved disease-free survival and a lower  
T stage in patients with adenocarcinoma, whereas cytomem-
branous staining was associated with distant metastasis and  
decreased disease-free survival.41 In a multivariate analysis, 
cytomembranous CXCR4 staining was associated with a signifi-
cantly worse disease free survival (p = 0.004).41 The same study 
found that intense CXCL12 staining was associated with nodal 
metastasis but not with survival.41 In another study of 16 NSCLC 
patients, high levels of CXCR4 expression on pan-cytokeratin posi-
tive circulating peripheral blood mononuclear cells was associated 
with a significant decrease in overall survival compared with low 
CXCR4 expression (p = 0.03). Combined pan-cytokeratin and 
CXCR4 expression was higher in the 16 patients with NSCLC 
compared with ten normal healthy donors; however, the difference 
was not statistically significant (p = 0.11).42 Aberrant CXCL12 
methylation in NSCLC cell lines corresponds to decreased 

increased immunohistochemical expression of CXCR4 was 
significantly associated with local tumor progression as well as 
lymph node and distant metastases.31 In addition, the CXCR4 
pathway may play a role in several other malignancies including 
pancreatic adenocarcinoma,32 colon cancer,33 esophageal cancer,34 
sarcomas35-37 and other tumors.

Implications for Lung Cancer

CXCR4 and CXCL12 expression in lung cancer. Several  studies 
have demonstrated a correlation between CXCR4 expression and 
clinical outcomes in lung cancer, with increased expression in 
tumor tissue over normal lung tissue, and increased expression in 
tumors of patients with metastatic disease versus those without 
clinical metastasis.38 However, analysis of the subcellular local-
ization of CXCR4 yields conflicting results. While one study 
of 46 NSCLC samples noted a significant association in five 
NSCLC samples with nuclear CXCR4 immunohistochemical 
expression and increasing lymph node metastasis (p = 0.008),39 
another study demonstrated strong CXCR4 nuclear staining in 

Table 1. Clinical trials involving CXCR4 inhibition currently active in the United States

Drug name Patient population Primary endpoint Dosing Trial stage/center

Plerixafor
MM, NHL, HD patients with <20 
CD34+ cells/ul after 5 d of mobi-

lization with G-CSF alone

Percent who achieve greater than 
or equal to 2 x 106 CD34+ cells/kg 

within 3 d of apheresis

240 ug/kg subcutaneous following  
5 d of G-CSF mobilization

Phase II 
Duke

Plerixafor De novo AML
DLTs of Plerixafor in  

combination with cytarabine and 
 daunorubicin

Escalating subcutaneous dose levels to 
determine the MTD

Phase I 
Multiple Centers

Plerixafor Relapsed/refractory MM
Safety, MTD and response rate of 

plerixafor and bortezomib
Escalating subcutaneous dose levels 

days 1–6 of each 21 d cycle

Phase I and II 
Dana-Farber 

Cancer Institute

Plerixafor
Allogeneic stem cell transplan-

tation for myeloid leukemias

PFS, biological effects and safetly 
in combination with busulfan, 

fludarabine and allogeneic 
hematopoietic transplantation

Escalating subcutaneous dose levels up 
to 240 µg/kg daily for 4 d with G-CSF, 

busulfan and fludarabine

Phase I and II 
MD Anderson 
Cancer Center

Plerixafor
Front line mobilization, 

 transplantation in NHL, HD, MM 
Safety in stem cell mobilization 

240 µg/kg subcutaneous daily up to  
5 consecutive d

Phase III 
Multiple sites

Plerixafor WHIMS Safety
Escalating subcutaneous dose levels 

over 5 d
Phase I 

NIH

Plerixafor CLL/SLL
MTD and response when used 

with rituximab
Escalating subcutaneous dose  levels to 

320 µg/kg, x3 per w for 3 w 
Phase I and II 
Multiple sites

Plerixafor HNL, HD
Determine the minimum 

effective dose of intravenous 
AMD3100 with G-CSF

Escalating intravenious dose levels 
from 160–400 µg/kg on day 0 and 

daily until apheresis is complete after 
 subcutaneous test dose or 240 µg/kg

Phase I and II 
Washington 
University

Plerixafor Relapsed or refractory AML
Determine the optimal dose and 

schedule

Escalating subcutaneous dose levels to 
240 µg/kg, days 0–5 with mitoxantrone, 

etoposide and cytarabine

Phase I and II 
Washington 
University

Plerixafor
Donors, hematologic 

 neoplasms

Number of donors needing a 
 second collection to obtain 

the minimum CD34+ cells 
 necessary for allogeneic stem cell 

 transplant

320 µg/kg intravenous for 1–2 d
Phase II 

Washington 
University

BKT140 
(Biokine)

MM White blood cell count
Escalating subcutaneous dose levels. 
One dose of 0.03, 0.1, 0.3 or 0.9 mg/kg

Phase I and II  
Israel
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on the CXCR4/CXCL12 axis. CXCL12 is 
highly expressed by human bone marrow 
osteoblasts and endothelial cells44 mak-
ing this chemokine and its receptor valu-
able candidates for investigation in SCLC, 
which has a high rate of early metastasis to 
the hematopoietic compartment of bone. 
Ubiquitous expression of CXCR4 has previ-
ously been demonstrated in ten SCLC cell 
lines. Specifically, all ten SCLC cell lines 
tested expressed CXCR4 and responded to 
its ligand CXCL12 with an increase in cell 
proliferation, adhesion and motility that 
can be attributed, in part, to increased PI3K 
signaling.45 In vivo studies demonstrate that 
SCLC tissues are surrounded by an exten-
sive stroma of Extracellular Matrix (ECM) 
at both primary and metastatic sites.46 In 
vitro analysis showed that SCLC cells have 
an increased expression of β1 integrin as 
well as α3, α6 and αv integrins that medi-
ate binding to fibronectin, laminin, collagen 
IV and tenascin expressed by the ECM. 
This increased binding leads to an increased 
tyrosine-kinase activity that blocks caspase 
activation thereby resulting in decreased 
chemotherapy-induced cytotoxicity.46 In 
a subsequent study, SCLC samples from 
patients were found to express high levels of 
CXCR4. In SCLC cells, CXCL12 induced 
signaling through CXCR4, actin polym-

erization and activation of MAPK signaling.47 CXCL12 also 
induced SCLC migration into the ECM of the stromal cells in 
the bone marrow, which could be inhibited by either a CXCR4 
antagonist or an antibody directed against vascular cell adhesion 
molecule-1 (VCAM-1) implicating CXCR4 activation and α4β1 
integrin induced binding in the interaction between SCLC cells 
and the tumor microenvironment.47 These findings were also 
confirmed by Hartmann and colleagues, who showed that α2, 
α4, α5 and β1 integrins, as well as CXCR4 activation, play a 
role in SCLC metastasis.48 Blocking CXCR4 also decreased the 
etoposide resistance of SCLC cells in vitro. In addition, this study 
noted increased phosphorylation of paxillin, a component of the 
focal adhesion complex, in SCLC cells in response to CXCL12, 
as well as constitutive activation of FAK and CRK-L, both of 
which are downstream effectors of paxillin signaling.48 Since 
CXCR4 has previously been shown to activate the JAK2/STAT3 
pathway,49 the effect of CXCR4 activation on this pathway was 
investigated in SCLCs.50 This study found that STAT3 is consti-
tutively phosphorylated in SCLC cells, with increased phospho-
rylation in response to CXCL12 activation, as well as increased 
adhesion to VCAM-1. Inhibitors of either CXCR4 or JAK2 
decreased cell growth in soft agar, indicating the role of both 
CXCR4 and JAK2/STAT3 signaling in anchorage independent 
cell growth. Increased STAT3 phosphorylation was also seen in 
primary SCLC tumor samples.50

CXCL12 mRNA expression, which is restored after treatment 
with a demethylating agent.43 Aberrant CXCL12 methylation was 
present in 85 of 236 patients with stage I NSCLC, compared with 
only 11 out of 163 samples of corresponding non-malignant lung 
tissue. CXCL12 methylation was independently associated with 
a poor prognosis in all patients (p = 0.15) and in stage I patients  
(p = 0.17) compared with non-methylation. However, there 
was no relationship between CXCL12 methylation and protein  
expression of CXCL12 and CXCR4, which may be due to the fact 
that immunohistochemistry cannot distinguish between endog-
enous and exogenous CXCL12 present in tumor samples. In this 
study, CXCL12 expression was present in significantly more cases 
with nodal metastasis and with advanced stages and also correlated 
with a poor prognosis in adenocarcinomas. CXCR4 expression 
was also present in significantly more cases with advanced stages 
(II, III or IV) compared to stage I (p = 0.0121). High CXCR4 
expression was associated with a poor progression in NSCLC  
(p = 0.023) and high CXCL12 expression was associated with a 
poor prognosis in adenocarcinoma (p = 0.015).43

Pathways of CXCR4 Signal Transduction in Lung 
Cancer

In small cell lung cancer (SCLC), a malignancy with highly 
aggressive metastatic behavior, there has been limited research 

Figure 1. The gene that encodes CXCR4 is located on chromosome 2 band q22.1. Alternative 
splicing results in two isoforms, which differ slightly in the distal N-terminus region.  
(A) Variant 1 consists of 356 amino acids beginning with the residues MSIPLPLLQ. (B) Variant 2, 
the predominantly expressed sequence, contains 352 amino acids, beginning with the amino 
acid residues MEGIS.
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when used in combination with chemotherapeutic regimens. 
Several inhibitors of the CXCR4/CXCL12 pathway have been 
shown to be effective in pre-clinical studies involving animal 
tumor models, the most notable of which is the CXCR4 antago-
nist, plerixafor. Previously known as AMD3100, the drug was 
initially identified as a highly potent and selective inhibitor of 
HIV entry.57 AMD3100 is a symmetrical bicyclam composed of 
two macrocyclic 1,4,8,11-tetraazacyclotetradecane moieties con-
nected by phenylenebismethylene linker.58 The bicyclam binds 
to aspartate residue 171 in the fourth transmembrane domain of 
CXCR4 and aspartate residue 262 in the sixth transmembrane 
domain with each of its cyclam moieties. Each cyclam ring has an 
overall positive charge at physiological pH and can form a com-
plex with carboxylic acid groups, which are found at the aspar-
tate residues. Binding may be associated with a conformational 
change in the receptor as a result of the phenylene-bismethylene 
linker connecting the two cyclam components that bind two  
distinct regions of the receptor.58

AMD 3100 was shown to be well tolerated in a Phase I single 
dose trial of 12 healthy volunteers.59 Of note, volunteers were  
noted to have a transient, dose dependent leukocytosis after 
administration of AMD3100. Further analysis revealed the 
mobilized white blood cells were haematopoietic (CD34+) cells. 
Based on this pharmacodynamic observation, AMD3100 was 
clinically developed for use in hematopoeitic stem cell mobi-
lization. Its safety, tolerability and efficacy have subsequently 
been demonstrated in clinical trials60-66 leading to its approval 
by the Food and Drug Administration in December 2008 for 
use in combination with Granulocyte Colony-Stimulating Factor 
(GCSF) to mobilize stem cells for collection prior to autologous 
transplantation in patients with non-Hodgkin lymphoma and 
multiple myeloma. In addition, treatment of stem cell donors 
with AMD3100 has been shown to allow for rapid mobilization 
and collection of hematopoietic cells just 4 h after a single treat-
ment dose, followed by successful engraftment in all 20 recipient 
patients studied.61 This rapid and effective stem cell mobilization 
to peripheral blood through direct inhibition of CXCR4/CXCL12 
underscores the importance of this pathway in cell homing to 
the bone marrow. By blocking the interaction, cells are quickly 
released from the marrow into circulation. In vitro and in vivo 
studies demonstrate reduced CXCR4 signaling in the presence 
of AMD3100, as evidenced by decreased Akt phosphorylation. 
AMD3100 also inhibits the protective effects of the bone marrow 
microenvironment in myeloma cells, disrupting the interaction 
between bone marrow stromal cells and myeloma cells thereby 
releasing myeloma cells into circulation and enhancing their sen-
sitivity to chemotherapy.67 In a mouse model of epithelial ovar-
ian cancer, intraperitoneal treatment with AMD3100 reduced 
dissemination, possibly by inhibiting CXCL12 induced attach-
ment between tumor cells and peritoneal cells.68 AMD3100, as 
well as PI3K and MAPK inhibitors, decreased this attachment in 
vitro further implicating the interaction of those two signaling  
cascades with CXCR4/CXCL12 axis.68

These recurrent pathobiological themes of disrupting the 
tumor microenvironment to overcome resistance to treatment 
have implications for the treatment of lung cancer, in which relapse 

In NSCLC cells, in vitro studies have demonstrated that 
CXCL12 increases CXCR4 mediated motility and cell surface 
expression of integrins, mediated by phosphorylation of extracel-
lular signal regulated kinase (ERK) and downstream activation of 
the IKKαβ/NFκβ/RELA signaling.51 Related to integrin signal-
ing, it has also been shown that the breast cancer metastasis sup-
pressor 1 (BRMS1) gene, a histone deacetylase, decreases CXCR4 
expression thus inhibiting CXCL12 induced chemotaxis, whereas 
BRMS1 silencing increases CXCL12 induced chemotaxis.52  
In this setting, BRMS1 may act as a transcriptional regulator of 
CXCR4 expression by modulating NFκB, which has been shown 
to bind the CXCR4 promoter. In a cohort of 132 NSCLC patient 
samples, CXCR4 mRNA expression was inversely correlated 
with BRMS1 mRNA expression. Furthermore, samples with dis-
tant metastases had a markedly lower level of BRMS1 mRNA 
and higher levels of CXCR4 mRNA than the non-distant metas-
tasis group.52 Another downstream target of MAPK and NFκB 
upregulation in NSCLC is matrix metalloproteinase-9 (MMP-9). 
Increased expression of MMP-9 due to NFκB binding to its pro-
moter in response to CXCL12 has been shown to induce MAPK 
activation.53

Other tumor environmental factors can also influence CXCR4 
expression in lung cancer. Hypoxia has been shown to promote 
CXCR4 expression in NSCLC cells by activating hypoxia induc-
ible factor 1α (HIF-1α) and HIF-1β expression, which then 
mediate CXCR4 transcription by promoter binding.54 Epidermal 
growth factor receptor (EGFR) activation by EGF has also been 
shown to increase CXCR4 expression in NSCLC cells, an effect 
that is markedly enhanced under hypoxic conditions.55 This 
increase in CXCR4 expression is regulated by the PI3K/PTEN/
AKT/mTOR signaling pathway that upregulates HIF-1 genes 
and ultimately increases CXCR4 transcription.55 Finally, CXCR4 
has been described as a marker of highly tumorigenic, stem-like 
lung cancer cells.56 In vitro treatment of NSCLC cells with cis-
platin results in the enrichment of a population of cells positive 
for CD133, a marker of cancer initiating cells in several tumor 
types. Furthermore, a population CD133+/CXCR4+ cells were 
spared by in vivo cisplatin treatment of lung cancer xenografts 
established from primary tumors, suggesting a role for CXCR4 
in the mechanisms of resistance to chemotherapy and relapse in 
lung cancer.56

Clearly, there is evidence that the CXCR4/CXCL12 pathway 
plays an important role in attracting cancer cells to sites of distant 
metastasis as well as in promoting cell growth and proliferation 
in a protective environment. Combining CXCR4 antagonists 
with cytotoxic chemotherapy might provide a means of overcom-
ing chemoresistance and relapse in lung cancer, particularly in 
SCLC, by mobilizing tumor cells from the protective marrow 
environments, in addition to inhibiting tumor cell proliferation 
and metastasis along chemotactic gradients.

Inhibition and Clinical Trials

As demonstrated by the in vitro and in vivo preclinical studies 
described above, targeting CXCR4 may be active as a monother-
apy. In addition, CXCR4 inhibition may enhance cytotoxicity 
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mouse models of breast cancer72 and decreased tumor size in a 
mouse model of prostate cancer.73 A Phase I study of CTCE-
9908 in healthy adults did not reveal any significant toxicity.  
The primary objective of this Phase I/II clinical trial was to 
determine the tolerability and safety profile of repeated adminis-
tration of  CTCE-9908. The secondary objective was to evaluate 
early signs of efficacy such as tumor stabilization and reduction 
of tumor burden. A total of 25 patients with advanced metastatic 
disease that had stopped responding to standard treatments or 
for whom no curative therapy exists were enrolled into the study 
and received at least one dose of CTCE-9908. Eight patients 
were treated in the dose escalation portion of the study, while 
the remaining 17 were treated at the highest dose of 5 mg/kg/
day. All patients in the study had at least one previous surgery 
and had received an average of three previous chemotherapy regi-
mens. CTCE-9908 was well tolerated in patients with only mild 
irritation at the injection site.74

Another CXCR4 antagonist being studied is AMD3465.  
Both in vivo and in vitro studies of AMD3465 have demon-
strated the important role of the CXCR4/CXCL12 pathway in 
interactions between the tumor and the bone marrow microenvi-
ronment.75 In a mouse model, treatment with this CXCR4 inhib-
itor resulted in the mobilization of AML cells into circulation 
and increased the effects of chemotherapy on reducing leukemia 
burden by disrupting the protective microenvironment of the 
bone marrow.75 AMD3465 also significantly blocked growth in 
mouse xenograft models of medulloblastoma and glioblastoma.75 
In addition, several CXCR4 inhibitors have been evaluated in 
pre-clinical in vitro and in vivo studies.

Conclusions

To make an impact on patient survival in lung cancer, novel tar-
geted therapies are needed. Several targeted agents have recently 
been approved for treatment of NSCLC, but in SCLC, a malig-
nancy with highly aggressive and predictable metastatic behav-
ior, only cytotoxic chemotherapy has been effective to date. The 
CXCR4/CXCL12 pathway plays an important role in SCLC pro-
liferation, metastasis, resistance to treatment and relapse. This 
pathway may provide a novel therapeutic approach by target-
ing tumor progression and spread as well as the chemoprotec-
tive tumor microenvironment. Innovative research in pathways 
of metastasis and chemotherapy resistance is essential to under-
standing the pathogenesis of small cell lung cancer and develop-
ing targeted treatment approaches.
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may involve a CXCR4-mediated protective tumor microenviron-
ment in the bone marrow. Plerixafor is currently being tested in a 
Phase I/II trial in combination with mitoxantrone, etoposide and 
cytarabine (MEC) to determine the optimal dose and schedule 
in patients with relapsed or refractory acute myeloid leukemia 
(AML) with the rationale that disrupting the interaction between 
AML blast cells and the bone marrow microenvironment will 
increase the cytotoxic effect of chemotherapy. Another planned 
study aims to further optimize the dosing and pharmacokinetics 
of plerixafor by changing from daily subcutaneous to twice daily 
intravenous dosing in combination with MEC and GCSF, which 
acts synergistically with plerixafor by downregulating CXCL12. 
Early phase trials of plerixafor are also ongoing in combination 
with daunorubicin and cytarabine in AML, with bortezomib in 
relapsed or refractory myeloma, with filgrastim, busulfan and  
fludarabine for allogeneic stem cell transplantation in myeloid 
leukemias and with rituximab in patients with chronic lympho-
cytic leukemia (CLL) or small lymphocytic lymphoma (SLL), 
among other trials in hematologic malignancies (Tab. 1). The 
drug has been well tolerated with the major reactions being injec-
tion site reactions and mild gastrointestinal symptoms.65,66

Recently, a novel CXCR4 antagonist, AMD070 (Genzyme 
Corporation), was shown to be well tolerated in healthy volun-
teers12 and in combination with ritonavir (antiviral and protease 
inhibitor) in patients with HIV.69 A dose-dependent elevation 
in white blood cell count was observed as a pharmacodynamic 
marker of anti-CXCR4 activity in HIV patients. In addition, 
other CXCR4 inhibitors are currently being tested in patients 
with HIV and cancer in Phase I and II clinical trials.70 BKT140 
(Biokine Therapeutics) is a highly selective modified pep-
tide CXCR4 antagonist being tested in a Phase I/IIA trial in 
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