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SUMMARY

Simon’s two-stage designs are very popular for phase II clinical trials. A literature review revealed 

that the inference procedures used with Simon’s designs almost always ignore the actual sampling 

plan used. Reported P values, point estimates and confidence intervals for the response rate are not 

usually adjusted for the design’s adaptiveness. In addition, we found that the actual sample size for 

the second stage is often different from that planned. We present here a method for inferences 

using both the planned and the actual sample sizes. The conventional and the preferred inference 

procedures usually yield similar P values and confidence intervals for the response rate. The 

conventional inference, however, may contradict the result of the corresponding hypothesis testing.

1. INTRODUCTION

Two-stage designs are commonly used in phase II clinical trials and especially in cancer 

clinical trials. Simon [1] has proposed two criteria, minimax and optimal, for selecting 

sample sizes and critical values for these two-stage designs. The maximum sample size and 

the expected sample size under H0 are minimized in the minimax and optimal designs, 

respectively. Simon’s two-stage designs have been gaining influence; his 1989 paper [1] has 

been cited more than 700 times. Since it was cited twice in 1991, the number of citations per 

year has increased steadily, to 50 times in 2001 and over 100 times in each of 2005 and 

2006.

There have been a number of extensions proposed for Simon’s designs. These include 

consideration of toxicity [2, 3, 4, 5], inclusion of more than one treatment [6, 7, 8, 9], 

addition of the third stage [10], consideration of partial and complete responses [11, 12], and 

consideration of multiple strata [13]. Banerjee and Tsiatis [14] proposed to extend a Simon’s 

design by allowing different stage 2 sample sizes for different values of X1. Their more 

flexible designs have advantages over the original Simon’s designs with respect to the 

expected sample sizes under the null and alternative hypotheses. Others have considered 

optimality in 2 stage designs and proposed to improve on Simon’s designs [15, 16, 17].

Due to the adaptive nature of the design, the inference procedures for Simon’s designs are 

not straightforward. A maximum likelihood estimator of the response rate, number of 

positive responses / total number of patients, is biased [18, 19]. Confidence interval and P 
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value should not be computed as if the data were obtained in a single stage. There are 

relatively few papers that discuss the inference procedures used with two-stage designs in 

phase II clinical trials. Whitehead [18] has studied the bias of the maximum likelihood 

estimator and has proposed a bias-reduced estimator that was further studied by Chang et al 

[19]. Jung and Kim [20] have provided a comprehensive study of estimators from a multi-

stage design. For general group sequential designs, the inference procedures have been 

considered by Fairbanks and Madsen [21], Tsiatis, Rosner and Mehta [22], Lin, Wei and 

DeMets [23], Yi and Yu [24], Fan and DeMets [25], among others.

It could be argued that these two-stage designs are primarily for decision making and that 

estimation is a secondary objective of a phase II clinical trial. It is preferable, however, to 

compute a P value, a confidence interval and an estimate of the response rate at the 

termination of the trial. The latter two are especially useful when the design of a new phase 

III clinical trial is based on the findings of a phase II trial. As a matter of fact, our literature 

review revealed that the majority of studies using Simon’s two-stage designs report an 

estimate of the response rate with a confidence interval.

Our literature review also revealed that the actual sample size of stage 2 is often different 

from the planned stage 2 sample size. It is not straightforward to conduct a hypothesis 

testing when the stage 2 sample size is changed in a Simon’s design. We will further extend 

the inference procedures to handle the cases in which the actual sample size is different from 

the one planned.

In Section 2, a brief introduction of Simon’s designs will be given. We will apply the 

inference procedures developed for multi-stage group sequential designs to Simon’s designs 

in Section 3. Then in Section 4, we will present general inference procedures for Simon’s 

designs when stage 2 sample size is different from the one planned.

We have developed and made widely available a software program that makes inference 

from a Simon’s design based on the method discussed in this paper.

2. SIMON’S DESIGNS

In a study with a Simon’s design, the null hypothesis is concerned with a response rate, π. 

Without loss of generality we assume that a higher value of π is more favorable and write 

H0 : π ≤ π0. The power of the study is set at some π1 that is greater than π0.

A Simon’s design is usually indexed by four numbers that represent stage 1 sample size (n1), 

stage 1 critical value (r1), final sample size (nt), and final critical value (rt). In stage 1, a 

sample of size n1 is taken. Let X1 be the number of successes in stage 1. If X1 ≤ r1, the trial 

is stopped for futility; otherwise, an additional sample is taken until total of nt observations 

are obtained. Let X2 be the number of successes in stage 2, and let Xt = X1 + X2. If Xt ≤ rt, 

futility is concluded; otherwise efficacy is concluded by rejecting H0.

We depart from convention and use R1 ≡ r1 + 1 and Rt ≡ rt + 1 to denote the critical values 

of a Simon’s design. This new notation is a simpler one in certain extensions that we will 

consider in later sections. It will also be necessary to consider the stage 2 critical value, and 
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we will use the notation, R2(x1), which is a function of X1 and can be written simply as 

R2(x1) ≡ Rt − x1 for R1 ≤ X1 < Rt, and 0 for Rt ≤ X1 in a usual Simon’s design.

To present the power function of a Simon’s design, we first introduce the conditional power 

of stage 2 given the stage 1 result, X1 = x1. It is Pπ[X2 ≥ R2(x1)] for X1 ≥ R1, where X2 ~ 

Binomial(n2, π). Throughout the paper, the notation Pπ[E] represents the probability of the 

event E at a specific π. We use the notation A(x1, π) to denote the conditional power, which 

can be written as:

A(x1, π) = ∑
x2 = R2(x1)

n2 n2
x2

π
x2(1 − π)

(n2 − x2)
. (1)

If the trial is terminated in stage 1 because the results indicated futility (X1 < R1), we let 

A(x1, π) = 0. We note that the conditional power at π = π0 is the conditional type I error 

rate.

The power function of a Simon’s design is

β(π) = Pπ[Reject H0] = ∑
x1 = R1

n1
Pπ[X1 = x1]A(x1, π) . (2)

A design, (n1, R1, nt, Rt), is usually chosen so that β(π0) ≤ α and β(π1) ≥ 1 − β.

3. INFERENCE PROCEDURES

Inference procedures for multi-stage designs have been discussed by many [21, 22, 23, 24, 

25, 26], and we will review them in this section and extend them in the subsequent section.

3.1. P value

Suppose that the number of successes is X1 = x1 ≥ R1 and X2 = x2 for stage 1 and 2, 

respectively. It is a common practice to compute a P value at the end of the stage 2, 

incorrectly assuming that the data are collected in a single stage. Let us call this a 

conventional P value and denote it by pc. We can write

pc = ∑
x1 = 0

n1
Pπ0

[X1 = x1]Pπ0
[X2 ≥ xt − x1] . (3)

The summand of the right hand side of the above equation include impossible sample paths 

in which X1 < R1 and X2 = Xt − X1. A preferred P value may be
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pp = ∑
x1 = R1

n1
Pπ0

[X1 = x1]Pπ0
[X2 ≥ xt − x1], (4)

which does not include these impossible sample paths. Clearly, pc ≥ pp.

The P value is the probability of obtaining the result that is at least as extreme as the 

observed one under the null hypothesis. In (3) and (4), we are implicitly assuming that the 

larger value of Xt, regardless of X1 and X2, is more extreme. When X1 < R1 and futility is 

concluded in stage 1, the P value is Pπ0 [X1 ≥ x1]. Because we use the total number of 

successes to order the possible outcomes in (4), it is applicable only if n2 is a constant for all 

X1. In certain extensions of Simon’s design in which stage 2 sample size is not a constant in 

X1 (e.g., Banerjee and Tsiatis [14]), the P value in (4) is not applicable. We will also show in 

Section 4 that, when the realized stage 2 sample size is different from the one planned in a 

simple design with a constant n2, (4) may not be applicable.

3.2. Confidence Interval

A 95% two-sided confidence interval is reported in many of the papers that we have studied. 

It is not wrong to report a 95% two-sided confidence interval. If, however, it is desirable that 

a confidence interval and hypothesis testing be consistent, because Simon’s design is used in 

one-sided hypothesis testing, then a 95% one-sided confidence interval of the form, (πL, 1] 

for α = .05 is required. The method described below can be used to form a more common 

two-sided confidence interval of the form, (πL, πU). We will use a 90% two-sided 

confidence interval to allow consistency with the one-sided hypothesis testing at α = .05. In 

other words, we can interpret this confidence interval in a usual way: the two statements, 

“π0 is not contained in a confidence interval” and “H0 is rejected” are equivalent.

We can compute a P value for testing H0:π ≤ π0′  using (4) for any π0′ . A 90% two-sided 

confidence interval that we use is a collection of π0′  such that the corresponding P value is 

within [.05, .95]. This is a simple application of the method based on “stage-wise ordering” 

of group sequential methodology, and is a methodology that produces an interval [26, 27].

3.3. Point Estimate of the Response Rate

The maximum likelihood estimator of the response rate, π̂ = xt/nt if x1 ≥ R1 or π̂ = x1/n1 if 

x1 < R1, underestimates the true response rate in Simon’s designs that we are considering. 

When x1/n1 is larger than π, the trial tends to proceed to stage 2, and the upward bias tends 

to be corrected. On contrary, when x1/n1 is smaller than π, the trial tends to be terminated 

without a chance for the downward bias to be corrected.

A bias reduced estimator due to Whitehead [18], denoted here by π̂w, is the solution to 

Eπ̂w[π̂] = π̂ [19]. The characteristics of this and other estimators have been studied 

previously [20, 28]. Generally, it is more favorable than the maximum likelihood estimator 

in terms of the mean square errors.
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3.4. Example

We will consider as an example a design (n1 = 10, R1 = 2, nt = 29, Rt = 6) that is the 

minimax design for π0 = .1, π1 = .3 with α = .05, β = .2. Suppose that we observe X1 = 2 

and Xt = 6. This sample path leads to rejection of H0 in stage 2. We can compute for this 

example, pc = .064 and pp = .047 using (3) and (4). A 90% confidence interval is (.094, .368) 

with (3) and (.102, .401) with (4). The conventional P value (3) yields a P value that is 

greater than α and a confidence interval that contains π0 although H0 is rejected. And π̂ = .

207, π̂w = .243.

4. EXTENDING OR SHORTENING THE STUDY

Our literature review reveals that the actual sample size is often different from the planned 

sample size in many studies that use a Simon’s design. Depending on the predicted and 

actual accrual rates and drop-out rates, the actual sample size may be larger or smaller.

Extending or shortening a study is simple in a single-stage design since it is easy to 

recalculate a new critical value or the correct P value and make the correct decision 

regarding H0. With a Simon’s two-stage design, however, extending or shortening a study is 

not as straightforward. A common practice to conduct a hypothesis testing is to compute the 

conventional P value that is based on incorrect distributional assumption, and use it to make 

a decision. Equivalently, the critical value is re-computed as if the new sample size were 

originally planned in a single stage design. Unlike the simple two-stage designs with no 

sample size change, where the preferred P value in (4) is always smaller than or equal to the 

conventional one in (3), it is now possible to make an incorrect decision and inflate the type 

I error rate. We will discuss in this section how to calculate the new critical value and how to 

make a new inference based on the actual sample size.

A subtle but critical issue is that the decision to use a different sample size must be made 

blinded to any part of the data including the stage 1 result. A legitimate situation in which a 

sample size is different from that planned can occur when the sample size is planned with 

anticipation of a certain number of uninformative drop-outs, but a different number of 

patients actually finish the study. On the other hand, it is not permissible to decide at the end 

of stage 1 (or during the stage 2) to extend the study because there are fewer positive 

responses than expected, or to shorten the study because there are more positive responses 

than expected. There may be designs that allow such adaptive changes and still protect type I 

error rates. In order to make a proper inference, an additional assumption is also required 

about the sample size that would have been used if a different number of successes were 

observed in stage 1 [29, 30]. We will only consider noninformative sample size change in 

this paper.

As a notational convention, we use a prime to indicate that the sample size has changed. For 

example, n2′  is the new sample size for stage 2 and x2′  is the number of successes among n2′  in 

stage 2.
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4.1. Hypothesis Testing

We have introduced the term, conditional power, in Section 3.1 and have denoted it by A(x1, 

π), which is the probability of rejecting H0 in stage 2 given the result of stage 1. Rejecting 

H0 if X2 ≥ R2(x1) and rejecting H0 if cp(x1, x2, n2, π0) ≡ Pπ0 [X2 ≥ x2 | X1 = x1] ≤ A(x1, π0) 

are equivalent. We call cp(x1, x2, n2, π0) the conditional P value, which is the P value of 

stage 2 given the result of stage 1. The conditional P value is compared to the conditional 

type I error rate in decision making at termination of stage 2.

The conditional P value can be computed regardless of the sample size of the actual stage 2, 

and the decision to reject H0 can be made by comparing the conditional P value and 

conditional type I error rate evaluated at the observed x1. The same conclusion may be based 

on the new critical value, R2′ (x1), which is defined as the largest R, such that

Pπ0
[X2′ ≥ R | X1 = x1] ≤ Pπ0

[X2 ≥ R2(x1) | X1 = x1], (5)

where X2′ Binomial(n2′ , π0). With the new critical value, R2′ (x1), we define 

A′(x1, π) = Pπ[X2′ ≥ R2′ (x1) | X1 = x1]. Because we set the new critical value so that the new 

conditional type I error rate is always equal to or smaller than the original conditional type I 

error rate, the overall unconditional type I error rate is controlled.

An alternative method of hypothesis testing may be to re-compute the critical value as if the 

new sample size, n2′ , were planned originally. This involves a simple numerical search of the 

critical value that produces the type I error rate less than α given n1, R1 and nt′. This method 

only attempts to control the unconditional type I error rate even though the stage 1 has 

already been terminated. If we apply the same reasoning and only attempt to control the 

unconditional type I error rate, we could have as much conditional type I error rate at the 

observed X1 = x1 as α/Pπ0 [X1 = x1], and 0 elsewhere. Then the result of computation of (2) 

at π = π0 with A(x1, π0) replaced by A′(x1, π0) would be at most α. The type I error rate, 

however, is not actually controlled because we would have used different critical values if 

X1 were different. In other words, this method fails to protect the conditional type I error 

rate, which is relevant and needs to be protected after stage 1. Thus we prefer the first 

method of re-computing the critical value (5) because it guarantees that the conditional type 

I error is protected given the stage 1 result.

When the new critical value, R2′ (x1), is obtained from (5), the total number of positive 

responses, x1 + R2′ (x1), necessary to reject H0 may be different for different values of X1 as 

the following example demonstrates.

We will consider a new design, (n1 = 19, R1 = 7, nt = 39, Rt = 17), as an example. This is the 

minimax design for π0 = .3, π1 = .5 with α = .05 and β = .2. Suppose that we observe X1 = 

7 in stage 1. Then H0 would be rejected if the stage 2 P value is smaller than the conditional 

type I error rate, A(7, .3) = Pπ0 [X2 ≥ 10] = .0480. Further suppose that the stage 2 sample 

size is increased from the planned 20 to 23. If we observe 11 successes in these 23 stage 2 
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observations, the conditional P value is Pπ0
[X2′ ≥ 11] = .0546, and the null hypothesis should 

not be rejected. The critical value at X1 = 7 with n2 = 23 is R2′ (7) = 12 from (5).

In a different scenario, suppose that we observe X1 = 10 in stage 1; the conditional type I 

error rate is A(10, .3) = .3920. With the new sample size, n2′ = 23, the critical value is 

R2′ (10) = 8 from (5). Thus in the first scenario, H0 is rejected with 19 or more positive 

responses, but in the second scenario, the number of necessary positive responses is 18.

In the second scenario above, the conditional type I error rate is .3920 at X1 = 10, and H0 

would be rejected with a stage 2 P value that is less than or equal to .3920. When compared 

to the usual unconditional type I error rate, α, the conditional type I error rate sometimes 

seems very high. It may be unintuitive that H0 is rejected with a such a high (conditional) 

type I error rate. The unconditional type I error rate can be viewed in (2) as a weighted 

average of the conditional type I error rate. Thus, when Pπ0 [X1 = x1] is very small for a 

particular x1, the conditional type I error rate at this x1 may be very high, and the 

unconditional type I error rate is still protected.

4.2. Inference When Sample Size is Changed

As shown in 4.1, even when the stage 2 sample size is changed, hypothesis testing can be 

conducted with the conditional P value and conditional type I error rate. These conditional 

quantities may not be intuitive because they can not be compared directly to the usual 

unconditional type I error rate, α. Together with the original motivation for computing 

unconditional P value, confidence interval and an estimate of π, this compels us to make 

unconditional inference when the stage 2 sample size is changed.

The formula for P value in (4) needs to be extended because this formula is only valid when 

the stage 2 sample size is not changed. The unconditional P value may be written as follows:

pp = ∑
x1 = R1

n1
Pπ0

[X1 = x1] cp(x1, x2, n2, π0), (6)

where cp(x1, x2, n2, π0) is the conditional P value for testing H0 : π ≤ π0. It is only observed 

at one (x1, x2), but it needs to be extended to the entire range of X1 ∈ [R1, n1] to evaluate 

(6). When stage 2 sample size is constant and not changed (Section 3.1), this extension is 

based on Xt. When, however, stage 2 sample size is changed, we cannot extend the 

conditional P value based on Xt. It is demonstrated in Section 4.1 that the same value of Xt 

may or may not lead to rejection of H0 depending on the sample paths. Moreover, as per the 

work of Banerjee and Tsiatis [14], if the planned stage 2 sample size is not constant for 

different values of X1 extending the conditional P value based on Xt would not make sense.

We propose the following approach for extending cp(x1, x2, n2, π) to the potential values of 

X1. We find a conditional power function, A(x1, π*), for some π* that goes through the 

observed conditional P value. It requires solving numerically for π* such that A(x1, π*) = 
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cp(x1, x2, n2, π0). This A(x1, π*) function can be extended to the potential values of x1 

using (1) with the original n2 and the original R2. We propose that the sample paths that lead 

to the same π* have the same magnitude of evidence against H0. In other words, it is 

possible to order different sample paths with different x1 and the realized sample size for 

stage 2 by comparing π*. The smaller π*, the more extreme the evidence against H0. This 

ordering is coherent with the hypothesis testing procedure described in 4.1; the P value 

based on this ordering is smaller than the type I error rate if and only if the null hypothesis is 

rejected. To compute the P value, we replace cp(x1, x2, n2, π0) in (6) by A(x1, π*) so that

pp = ∑
x1 = R1

n1
Pπ0

[X1 = x1]A(x1, π∗) . (7)

Suppose that we observe in the same example that X1 = 7 and X2′ = 10(n2′ = 23). Then the 

conditional P value is .1201, and H0 is not rejected because the conditional type I error rate 

at X1 = 7 is .0480. We compute to find that π* = .3491. We can then extend the conditional 

power to the different potential values of X1. This is represented by the bold line, A(x1, .

3491), in Figure 1 which also shows the conditional type I error rate, A(x1, .3), and the 

conditional power at the original alternative, A(x1, .5). Finally, we find the P value using (7) 

to be pp = .0828.

A confidence interval and a reasonable point estimate of π can be obtained by “inverting the 

hypothesis testing.” A 90% confidence interval is a collection of π0′  such that H0:π = π0′

would be rejected by the sample path. We can use (7) with π0 = π0′  to compute a P value for 

testing H0:π = π0′ . We note that different π* are used for different values of π0′ . And the 

value of π0′  that makes the P value = .5 can be used as a heuristically reasonable estimate of 

π. The properties of this estimator in contrast with a simple estimator, (x1 + x2′ )/(n1 + n2′ ), 

would need further exploration.

For the current example, X1 = 7 (n1 = 19) and X2′ = 10(n2′ = 23), a 90% confidence interval 

for π is (.282, .546). And the value of π0′  which gives the P value = .5 in this example is .

405.

5. DISCUSSION

The simplicity of Simon’s designs may account for their popularity. Our literature review 

revealed that, frequently, the inference procedures used with Simon’s designs are often not 

corrected for these designs’ adaptive nature.

Also, when the sample size is changed, the inference procedures become more complicated. 

In this paper, we have shown how to make a preferred inference taking into account the 

planned and actual sample sizes when a Simon’s design is used. When the actual sample 

size is the same as the planned sample size, the inference procedure is rather simple. When, 
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however, the actual sample size is different from that planned, we need to take into 

consideration both the realized and the planned sample sizes when computing the P value 

and confidence interval of the response rate.

The concept of “conditional power” is well studied in the context of adaptive phase III 

clinical trials, and it is directly applicable in phase II methodologies that we have considered 

in this paper. When the sample size is changed, the critical value needs to be updated so that 

the conditional type I error rate is not inflated. As shown in this paper, more obvious 

methods of updating the design may not control type I error rate.

Finally, we have developed and made widely available a web-based program to compute a P 
value and a point estimate and a confidence interval for the response rate from data obtained 

from a Simon’s design.
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Figure 1. 
Extension of the observed conditional P value to other x1 values based on π*. The solid line 

is the conditional type I error rate, and the dotted line is the conditional power under the 

alternative. The conditional P value is indicated by a solid circle. The bold line is the 

conditional power function that goes through this point.
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