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Background: Cardiovascular magnetic resonance (CMR) 
imaging is an important modality that allows the assess-
ment of regional myocardial function by measuring 
myocardial deformation parameters, such as strain and 
strain rate throughout the cardiac cycle. Feature tracking 
is a promising quantitative post-processing technique 
that is increasingly used. It is commonly applied to 
cine  images, in particular steady-state free precession, 
acquired during routine CMR examinations.
Objective: To review the studies that have used feature 
tracking techniques in healthy subjects or patients with 
cardiovascular diseases. The article emphasizes the 
advantages and limitations of feature tracking when 
applied to regional deformation parameters. The chal-
lenges of applying the techniques in clinics and potential 
solutions are also reviewed.
Results: Research studies in healthy volunteers and/or 
patients either applied CMR-feature tracking alone to 
assess myocardial motion or compared it with either 

established CMR-tagging techniques or to speckle 
tracking echocardiography. These studies assessed 
the feasibility and reliability of calculating or deter-
mining global and regional myocardial deformation 
strain parameters. Regional deformation parameters are 
reviewed and compared. Better reproducibility for global 
deformation was observed compared with segmental 
parameters. Overall, studies demonstrated that circum-
ferential was the most reproducible deformation param-
eter, usually followed by longitudinal strain; in contrast, 
radial strain showed high variability.
Conclusion: Although feature tracking is a promising 
tool, there are still discrepancies in the results obtained 
using different software packages. This highlights a clear 
need for standardization of MRI acquisition parame-
ters and feature tracking analysis methodologies. Vali-
dation, including physical and numerical phantoms, is 
still required to facilitate the use of feature tracking in 
routine clinical practice.
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Background
There is a growing recognition that early detection of cardiac 
abnormalities could improve patient quality of life and reduce 
both morbidity and mortality. Extensive improvements and 
developments in cardiovascular magnetic resonance (CMR) 
sequences and post-processing techniques have been intro-
duced to facilitate their use in clinical settings in order to improve 
the diagnostic accuracy of cardiovascular diseases (CVD) in its  
onset stage.

Recent extensive research has proven that global measures, 
such as ejection fraction, are only an indicator of global heart 
function and cannot be used to infer regional function, nor 
to detect any ventricle dysfunction at the very early stages of 

established diseases.1 Contrary to visual myocardial wall-de-
formation analysis, indices including strain, strain rate and 
torsion can be sensitive indicators of underlying myocar-
dial contractile dysfunctions. Those indices can be derived 
from CMR-tagging images.2Figure 1 illustrates the different 
components of wall-deformation indices relative to cardiac 
anatomy. Tagging sequences use spatially selective saturation 
pulses to create dark lines on the myocardial tissue at the end 
diastole, with those lines persisting throughout part of, or all, 
the cardiac cycle.3 These techniques have since undergone 
extensive development and improvement for both imaging 
sequences4–6 and post-processing methods.7,8 CMR-tagging 
is now considered to be the gold standard for myocardial 
regional function assessment.9–11
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Figure 1. Myocardial deformation contains three strain com-
ponents: circumferential, radial and longitudinal of the left 
ventricle; longitudinal (a), radial and circumferential (b). The 
direction of the deformation in diastole is shown as a dashed 
line and in systole shown as a solid line. The myocardial fibres 
shorten and lengthen in the three spatial directions: longitu-
dinal, radial and circumferential. The strain can be calculated 
as the difference between myocardial fibre length (radial, 
circumferential and longitudinal) at end-diastole and at end- 
systole divided by the length at end-diastole, and expressed 
as a percentage (%).12

Feature tracking has been introduced to track myocardial 
motions, such as displacement and velocity, and derive cardiac 
deformation parameters, such as strain and strain rate in CMR. It 
tracks the tissue motion between the epicardial and endocardial 
borders throughout the cardiac cycle using optical flow methods, 
see the appendices for more information on feature tracking and 
tagging post-processing techniques.13–15 This article reviews the 
expanding field of feature tracking with a particular emphasis on 
clinical and multimodality comparative studies.

Results
Feature tracking (CMR-FT) studies
Cardiovascular magnetic resonance feature tracking (CMR-FT) 
is a quantitative post-processing technique that tracks myocar-
dial tissue motion on steady-state  free recession  (SSFP) cine 
images, the most commonly used sequence in clinical cardiac 

function assessment. The first software package based on FT 
techniques was introduced by TomTec Imaging Systems GMbH 
(Munich, Germany) and has been used in most clinical studies 
published to date (Figure  2).14,16,17 More recent studies used a 
different FT software package: a tissue-tracking module within 
the CVI42 software (Circle Cardiovascular Imaging Inc. Calgary, 
Canada) (Figure 3). 18 A summary of studies using CMR-FT is 
given in Table 1.

Some clinical studies were dedicated to assessing the  
reproducibility of FT by evaluating inter- and intraobserver 
reproducibility, whereas others applied FT to both healthy 
subjects and patients to quantify the difference in cardiac defor-
mation parameters between those groups.17,20 Feature tracking 
can be applied to evaluate the function and the mechanics of all 
heart chambers: right ventricle (RV), left ventricle (LV) and atrial 
deformations.

CMR-FT was applied to detect quantitative motion changes at 
rest and stress of LV,14,19 as LV motion abnormalities detected by 
CMR post-processing techniques could be an early and sensitive 
tool for any contractile dysfunction. The quantitative wall param-
eters derived from cine images were assessed at rest and during 
dobutamine stress in healthy volunteers19 and in patients with 
ischaemic cardiomyopathy.14 CMR-FT demonstrated its ability 
to detect wall motion changes between rest and stress, where 
circumferential and radial strains increased significantly with 
dobutamine in both studies. However, there was no response to 
dobutamine in dysfunctional segments with scar in patients with 
ischaemic cardiomyopathy compared with non-dysfunctional 
segments. In stress studies, the more reproducible myocardial 
deformation parameter for inter- and intraobserver was circum-
ferential strain.14,19 CMR-FT can then be used to assess strain 
measures at rest and stress and could provide a potential method 
for assessing wall contraction changes.

Heart failure and cardiomyopathies have also been evaluated 
using CMR-FT in particular hypertrophic cardiomyopathy.20 
The ability of CMR-FT to differentiate between patients and 
healthy controls was evaluated in two studies.16,20 In hypertro-
phic cardiomyopathy and heart-failure patients, both left atrium 
longitudinal strain (22.1 and 16.3%) and strain rate (0.9 and 
0.8 s−1) were lower than in healthy subjects (strain 29.1% and 
strain rate 1.1 s−1).20 Scarred segments showed lower contractile 
function, radial displacement, radial velocity, radial strain and 
longitudinal strain values compared with non-scar segments. 
Radial strain was shown to be the best parameter to discriminate 
between scarred segments and non-scarred ones.16

Diseases of the aorta have also been given a great deal of atten-
tion in clinical research, in particular coarctation of the aorta.17,23 
Repaired COA patients were assessed using CMR-FT compared 
with normal subjects.17 Global radial strain and global longi-
tudinal strain were decreased in patients, while global circum-
ferential strain was preserved compared with normal subjects. 
In the presence of hypertrophy, global longitudinal strain was 
significantly reduced; this could be used as an indicator of early 
LV dysfunction.

http://birpublications.org/bjr
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Figure 2. Example of FT analysis using Tomtec. Endocardial and epicardial contours of the LV are drawn on one frame and prop-
agated throughout the cardiac cycle. (a) A short axis slice with endocardial and epicardial contours (left-hand side), and the 
corresponding radial (upper right-hand side) and circumferential strains (lower right-hand side). (b) A two-chamber view with 
endocardial and epicardial contours (left-hand side), with corresponding radial (upper right-hand side) and longitudinal strains 
(lower right-hand side). (c) A four-chamber view with endocardial and epicardial contours (left-hand side), and the corresponding 
radial (upper right-hand side) and longitudinal strains (lower right-hand side). Other deformation parameters such as velocity, 
displacement and strain rates can becalculated. FT, feature tracking; LV, left ventricle.

A study carried out by Maret et al assessed the ability of the 
CMR-FT technique to detect scar defined with gadolinium- 
enhanced CMR of LV.16 Scarred segments showed lower func-
tional measurements than distant segments. Myocardial function 
can also be measured by FT-motion parameters, such as velocity 
and displacement of a specific myocardial point or segment. 
Myocardial wall contractility will be reduced in the presence of 
scar and as a consequence of reduced myocardial blood flow.

CMR-FT applications were not limited to CVD  patients but 
also  included healthy subjects to assess interstudy reproduc-
ibility at global and segmental levels. Circumferential strain 
was found to be the most reproducible component (coefficient 
of variation (CV) = 20.3%), whereas reproducibility for radial 

strain was poor (CV = 27.2%).22 In another study, both inter- 
and intra-observer variability was best for circumferential strain 
at rest while  observer-variability did not significantly increase 
with stress.19

To evaluate whether inter-study reproducibility is affected by 
physiological variations, 16 healthy volunteers underwent CMR 
examinations three times on the same day: the first scan was 
conducted after fasting, the second scan immediately after the 
first scan, and the last examination was a non-fasting scan in the 
afternoon. No diurnal variation was observed.22 Global measures 
showed no significant difference among the three repeated scans, 
as opposed to segmental measures, which were significant for 
radial strain.

http://birpublications.org/bjr
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Figure 3. Example of CVI42 FT analysis. The software semi-automatically defines the endocardial (red contour) and epicardial 
(green contour) LV contours throughout the cardiac cycle. (a) A short axis slice with delineated endocardial and epicardial con-
tours (left-hand side) and the corresponding radial (middle) and circumferential strains (right-hand side). (b) A two-chamber long 
axis slice with delineated endocardial and epicardial contours (left-hand side) and the corresponding radial (middle) and longitu-
dinal strains (right-hand side). (c) A four-chamber long axis slice with delineated endocardial and epicardial contours (left-hand 
side) and the corresponding radial (middle) and longitudinal strains (right hand side). Additional calculated parameters include 
velocity, displacement and strain rates. FT, feature tracking; LV, left ventricle.

Comparison between CMR-FT and CMR-tagging
There are currently two main CMR post-processing tech-
niques that have been applied in order to quantify regional 
myocardial function: analysis of CMR tagging and CMR-FT 
using functional cine images.20,21,24 Regional myocardial 
deformation strain is a sensitive measure for detecting onset 

stages of myocardial dysfunctions and can be derived from 
CMR-FT and CMR-tagging techniques. CMR-FT and CMR- 
tagging techniques can help in early identification of myocar-
dial dysfunctions. These techniques could prove important for 
clinical risk management, starting treatment and helping in 
therapy decision-making.2,25 CMR-FT is increasingly being used 

http://birpublications.org/bjr
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in studies to assess its potential in routine clinical evaluation, 
as CMR-FT analysis computes strain from routinely performed 
SSFP cine images without the need to acquire any additional 
CMR sequences. However, CMR-FT requires standardization 
of MRI acquisition and post-processing protocols to reduce 
any possible discrepancies between studies beside inherent 
natural physiological variability between healthy subjects.26 As 
for CMR-tagging, tagged lines fade out towards the end of the 
cardiac cycle making them difficult to track using post-pro-
cessing techniques.27 Few studies have compared CMR-FT to 
CMR-tagging in healthy subjects or patients to diagnose subtle 
myocardial motion abnormalities. The number of subjects in 
each study needs to be taken into account when comparisons are 
being made with other studies. A summary of the studies is given 
in Table 2.

Muscular dystrophies such as Duchenne Muscular Dystrophy 
were the subject of regional myocardial function assessment 
using both FT and tagging techniques.26 The study included 
healthy volunteers and a large population of Duchenne Muscular 
Dystrophy patients of different age groups and severity; when 
strain values from the mid-left ventricular short-axis slice were 
compared between the two techniques, the mean circumferen-
tial strain was highly correlated. This study showed that the two 
techniques were comparable.

Comparison between the two techniques was also carried out 
in cardiomyopathies.2,11,30 One study compared the techniques 
in both healthy subjects and hypertrophic cardiomyopathy 
patients.11 The results showed a closer agreement in time-to-
peak circumferential strain than in the magnitude of strain peak 
between both techniques. A second study compared the tech-
niques in healthy volunteers, patients with left bundle branch 
block and hypertrophic cardiomyopathy.30 The segmental 
peak and time-to-peak for systolic circumferential strains were 
assessed, and both the intra- and inter-observer reproducibility 
were evaluated. This study demonstrated that absolute values 
of peak systolic circumferential strain are higher with CMR-FT 
than with tissue tagging. There was also a significant difference 
in mean peak systolic circumferential strain values between the 
populations studied. The inter- and intra-observer agreements 
were both lower with CMR-FT than with tagging.

While most studies11,26 focused solely on systolic deformation 
parameters, a study by Moody et al2 compared both techniques 
in short and long axis views, both in systole and diastole, in 
healthy subjects and patients with dilated cardiomyopathy. 
The study showed a good agreement between CMR-FT and 
CMR-tagging techniques for systolic global circumferential 
strain (−22.7 ± 6.2% vs −22.5 ± 6.9%, bias = 0.2 ± 4%, p = 0.8) 
respectively and early diastolic global circumferential strain 
rate (1.21 ± 0.44 s−1 vs 1.07 ± 0.3 s−1, bias = −0.14 ± 0.34 s−1). 
There was an acceptable agreement for systolic global longitu-
dinal strain (−18.1 ± 5% vs −16.7 ± 4.8%, bias = 1.3 ± 3.8%, p 
= 0.03) in healthy subjects. In dilated cardiomyopathy patients, 
the difference between both techniques was not significant 
(−9.7 ± 4.5% vs −8.8 ± 3.9%, p = 0.44), whereas the agreement 
for early diastolic global longitudinal strain rate was poor and the 

difference between both techniques was significant (p < 0.001) 
in healthy subjects. Overall, there was an acceptable agreement 
between systolic and diastolic strains for some parameters 
measured by both techniques in both groups. However, the study 
only included 35 healthy subjects and 10 dilated cardiomyopathy 
patients; this could have had an impact on the statistical results, 
and should be considered when comparing this study to other 
studies with larger population sizes.

A different study was carried out to compare the two techniques 
for diastolic and systolic strain measurements in patients with 
aortic stenosis.29 In this study, the strain parameters were consis-
tently higher with FT than with tagging. Furthermore, the inter-
study reproducibility for circumferential peak systolic strain was 
excellent with FT and good with tagging, whereas the reproduc-
ibility for circumferential peak end diastolic strain rate was good 
only with basal and mid-slices.

Finally, FT and tagging were compared in healthy adults.28 
For global measurement of strain, there was a good agreement 
between both techniques with circumferential strain, but this 
was not the case with radial and longitudinal strains. Reproduc-
ibility showed the same trends with reasonable inter-observer 
variability for circumferential measures. The study showed some 
variation in strain with gender: longitudinal strain values were 
higher in females, whereas radial values were higher in males.

There are obvious limitations in comparison studies that could 
explain the published disparities and disagreements in results. 
CMR-FT studies have been published by numerous centres 
using heterogeneous equipment (including field strength) and 
sequence acquisition parameters (temporal resolution, spatial 
resolution, slice orientation etc.). All these differences can affect 
the reported results and unfortunately, few studies include 
detailed limitations and reproducibility data. Although MRI 
acquisition parameters (temporal resolution, spatial resolution, 
slice orientation etc.) could be made as close as possible for both 
tagging and SSFP sequences, they are not identical.30,31 There 
were also differences in external parameters such as population 
demographics  (population size, age, gender, heart rate, race, 
etc...).32

Comparison between CMR-FT and 
echocardiography
The calculation of strain and strain rate always depends on image 
quality; this can have an effect on the reliability and reproduc-
ibility of deformation parameters derived from echocardio-
graphic images. Echocardiography is limited by acquisition angle 
and operator dependence.27,33 CMR is increasingly the method of 
choice because of its wide field-of-view, better image quality and 
reproducibility.34 A few clinical studies have compared echocar-
diography and CMR-FT in patients and healthy subjects to eval-
uate the clinical usefulness of the latter in assessing myocardial 
deformation parameters.35,36 A summary of studies comparing 
CMR-FT to echocardiography is given in Table 3.

Most comparative studies have focussed on adult congenital 
heart disease, in particular Tetralogy of Fallot (TOF).35,37 A 
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study was carried out in adult TOF patients and healthy subjects 
comparing CMR-FT to speckle tracking echocardiography 
(STE).37 There was a close agreement between global longitu-
dinal and circumferential LV strains measured by CMR-FT and 
STE techniques, but the agreement was poor for global radial 
LV strain. There was also a good agreement between both tech-
niques for global longitudinal RV strain. Inter-observer agree-
ment for both techniques was similar for LV global longitudinal 
strain; however, CMR-FT showed better inter-observer repro-
ducibility for LV circumferential and radial strains and RV global 
longitudinal strain. There was no significant difference between 
TOF patients and healthy subjects in LV circumferential strain 
(−23.5 ± 6vs−22±3.9%, p = 0.28) with CMR-FT, while LV longi-
tudinal strain (−19.2 ± 4vs−21.3±3.3%, p = 0.048) and LV radial 
strain (22 ± 8.9 vs 28 ± 11.3%, p = 0.2) were found to be lower 
in patients. Furthermore, RV longitudinal strain was lower in 
patients compared to healthy subjects (18.3 ± 4.3 vs 24.1 ± 4%, 
p = 0.0001).37

The agreement between CMR-FT and STE techniques were also 
assessed for LV and RV global longitudinal, radial and circum-
ferential strains in TOF patients.35 LV global circumferential 
and longitudinal strains had the best inter-modality agreement, 
whereas poorer intermodalities and interobserver variability 
were found for global radial strain, contrary to what was observed 
for radial strain in a previous study.37 When comparing TOF 
patients to healthy subjects, LV global circumferential, radial 
and longitudinal strains and RV global longitudinal strain were 
lower in patients compared to healthy subjects; this is in line with 
previously reported data.37

The feasibility of CMR-FT technique was assessed in patients 
with dyssynchrony.36 There was a reasonable agreement in radial 
dyssynchrony in patients with more marked dyssynchrony 
between CMR-FT and STE. The results showed a significant 
increase in radial myocardial contraction and circumferential 
strain after stent implantation. The feasibility of CMR-FT tech-
nique compared to echocardiography was also assessed in healthy 
subjects and patients with left ventricle hypertrophy cardio-
myopathy.34 CMR-FT-derived strain and strain rate correlated 
well with echocardiography, and consequently could become an 
alternative to echocardiography for assessing myocardial defor-
mation parameters in clinical settings in the future.

Discussion
An increasing number of research studies are using feature 
tracking and comparing it to tagging techniques or echocar-
diography in both patients and healthy subjects. Some studies 
have proved the usefulness of feature tracking for evaluating 
myocardial deformation indices and differentiating between 
healthy and disease states. As summarized in Tables  1–3, the 
number of subjects vary between studies, so that comparison 
between those studies is affected by the number of subjects, 
with a subsequent impact on statistical results.37 The feature 
tracking technique was used to assess regional cardiac function 
by calculating myocardial deformation parameters and their 
variation with age, gender and different cardiac dysfunction 
conditions.
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Appendix A2

A2: Feature tracking
In 2011, the CMR-FT technique was introduced as a quantita-
tive post-processing technique for cine SSFP sequences that are 
acquired as part of routine clinical cardiac examinations.A10 The 
fundamental principle of the feature tracking method is based 
on optical flow to extract spatiotemporal image features, such 
as varying image signal intensities, local textures and patterns 
from the cine images. The technique can then track anatomical 
features, such as epicardial and endocardial borders and myocar-
dial tissue, in consecutive cine image frames by searching for the 
most comparable features in a local neighbourhood (defining a 
local voxel search window).

Current FT software packages are semi-automated and rely on 
an operator to manually delineate the initial endocardial and 
epicardial contours, usually on the end-diastolic cardiac phase. 
This frame then serves as the initial time point from which all 
motion parameters are calculated. Myocardial deformation 
parameters such as displacement, velocity, strain and strain rates 
can be computed at local and global levels.A11

FT was initially developed for 2D cine images but can easily be 
extended to 3D cine images based on the same principles. The 
details of how tracking is implemented in different FT-software 
packages are not always known and this might affect the quality 
and accuracy of the tracking and of the derived strain measure-
ments. Furthermore, results are also affected by CMR imaging 
sequence parameters, such as temporal and spatial resolutions, 
and image quality, in particular signal-to-noise ratio.

Appendix A1 

A1: CMR Tagging
The first CMR-tagging sequence was introduced in the late 
eighties by Zerhouni.A1 CMR-tagging is based on the applica-
tion of  spatially selective saturation pulses perpendicular to the 
imaging plane, which cause a saturation of the magnetization 
along one (line tagging) or two (grid tagging) spatial directions. 
The intersection of the selected slice and imaging plane create 
visible dark lines (low signal intensity) on the myocardial tissue 
before image acquisition. CMR-tagging acquisition sequences 
have since undergone extensive development and improve-
ments.A1,A2 Different post-processing techniques exist to extract 
and track myocardial tagging lines’ deformation from consec-
utive frames and calculate local and global parameters such as 
displacement or velocity throughout the entire cardiac cycle.A3 
The most common CMR-tagging post-processing approaches 
are listed below.

(1)	 Active contour: This semi-automated method, introduced 
in 1994,A4 uses an active shape model that delineates 
the image contours in a region of interest in the LV. A 
deformable spline is constrained by image forces which pulls 
it iteratively towards the LV and tagged lines’ contours until 
the delineating contour matches the LV boundaries or tagged 
lines.A5

(2)	 Optical flow: This method determines motion by tracking 
and detecting the displacement vector (image velocity) of the 
different image signal intensities and image features (tagged 
and non-tagged tissues) as they move throughout the cardiac 
cycle.A6 Myocardial deformation is calculated from the 
corresponding 2D motion field.

(3)	 Sinusoidal analysis: This method extracts motion from 
CMR-tagging images based on a sinusoidal approach. Image 
intensity distribution of each pixel in the tagging image is 
modelled as a moving sine wave with local frequency and 
amplitude. The displacement is assessed at subpixel accuracy, 
making it highly accurate.A7

(4)	 Volumetric modelling: To allow three-dimensional detection 
of the tagged lines, a set of tagged short-axis and long-axis 
slices are used to compute 3D myocardial deformation and 
rotation parameters.A8

(5)	 Finite element modelling: This method reconstructs 3D 
myocardial motion from CMR-tagging images without prior 
detection of the boundaries and tagging lines locations. A 
model is used to define the heart shape and motion. Model 
tagging points are generated as a material surface, which 
defines the location of the tagged lines. The difference 
between the model tagging points and images’ tagging lines 
is extracted and minimized to allow the model to deform the 
tagging lines.A9
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