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Abstract
Driver fatigue is increasingly a contributing factor for traffic accidents, so an effective method to automatically detect

driver fatigue is urgently needed. In this study, in order to catch the main characteristics of the EEG signals, four types of

entropies (based on the EEG signal of a single channel) were calculated as the feature sets, including sample entropy, fuzzy

entropy, approximate entropy and spectral entropy. All feature sets were used as the input of a gradient boosting decision

tree (GBDT), a fast and highly accurate boosting ensemble method. The output of GBDT determined whether a driver was

in a fatigue state or not based on their EEG signals. Three state-of-the-art classifiers, k-nearest neighbor, support vector

machine and neural network were also employed. To assess our method, several experiments including parameter setting

and classification performance comparison were performed on 22 subjects. The results indicated that it is possible to use

only one EEG channel to detect a driver fatigue state. The average highest recognition rate in this work was up to 94.0%,

which could meet the needs of daily applications. Our GBDT-based method may assist in the detection of driver fatigue.

Keywords Driver fatigue � Electroencephalogram (EEG) � Gradient boosted decision tree (GBDT) � Entropy

Introduction

A worldwide increase in traffic accidents have resulted in

very large casualties with driver fatigue named as one of

the most important causes. Driver fatigue is the transitory

period between wakefulness and sleep, which can lead to

sleep if not interrupted. Driver fatigue has been defined as a

state that reduces psychological alertness, which can affect

performance in cognitive and psychomotor tasks such as

driving. The automatic detection of driver fatigue is a

meaningful research field in the driving safety assistance

system (Lal and Craig 2001; Saini and Saini 2014). Many

methods have been proposed in the past few years,

including various vehicle sensor parameters (Sahayadhas

et al. 2012), eye state (Lin et al. 2015), video imaging

techniques (Jo et al. 2014), and physiological signals.

Furthermore, some methods have been specially developed

to detect driver fatigue via using electromyograms (EMG)

(Wang 2015; Fu and Wang 2014), electrocardiograms

(ECG) (Fu and Wang 2014), electrooculograms (EOG)

(Ma et al. 2014), and electroencephalograms (EEG) (Cor-

rea et al. 2014; Mu et al. 2017; Yin et al. 2017; Wang et al.

2018), where EEG is considered the most common and

effective way to identify driver fatigue as the direct reac-

tion of the brain states (Kar et al. 2010). Furthermore, EEG

has been widely used in various fields nowadays, especially

computer signal recognition (Dietrich and Kanso 2010;

Donoghue et al. 2015; Shalbaf et al. 2015; Swapna et al.

2013; Mumtaz et al. 2017).

Various approaches based on EEG signals have been

developed to detect driver fatigue. Chai et al. (2016) pre-

sented an autoregressive (AR) model for feature extraction

and a Bayesian neural network for the classification algo-

rithm, where they achieved a highest accuracy of 88.2%.

Nguyen et al. (2017) proposed a new approach for com-

bining EEG, EOG, ECG and NIRS signals to detect driver

drowsiness based on fisher’s linear discriminant analysis

method and achieved the mean result with 79.2 (± 9.4) of

9 subjects. Li et al. (2012) collected 16 channels of EEG

data and computed 12 types of energy parameters, and
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obtained the highest accuracy of 91.5% from two channels

(FP1 and O1). Chai et al. (2017) presented an improvement

of classification performance for EEG-based driver fatigue

classification from 43 participants by using AR feature

extractor and sparse-deep belief networks, obtained an

improved classification performance with a sensitivity of

93.9%, a specificity of 92.3%, an accuracy of 93.1%.

Xiong et al. (2016) combined features of AE and SE with

an SVM classifier and achieved the highest accuracy of

91.3% at channel P3. Fu et al. (2016) proposed a fatigue

detection model based on the Hidden Markov Model

(HMM), and achieved the highest accuracy of 92.5% based

on EEG signals of two channels (O1 and O2) and other

physiological signals. Silveira et al. (2016) proposed a

method for assessing alertness level based on a single EEG

channel (Pz–Oz) by using the normalized Haar discrete

wavelet packet transform, found that the second index

(c ? b)/(d ? a) achieved the best results. Shen et al.

(2007) used random forest (RF) with a heuristic initial

feature ranking scheme based on EEG signals from 12

subjects, which yielded the highest accuracy of 87.7%.

With respect to driver fatigue detection based on EEG

signals, the performance of many linear and non-linear

single classifiers has already been assessed; however, it

may be difficult to build a better single classifier as EEG

signals are unstable and the training set is usually com-

paratively small. Consequently, such classifiers may have a

poor performance or be unstable. Recent studies have

shown that ensemble classifiers perform better than single

classifiers (Hassan and Subasi 2016; Yang et al. 2016);

however, few studies have been conducted on using

ensemble classifiers based on EEG signals to study driver

fatigue detection. Nevertheless, multichannel EEG acqui-

sition systems such as the 32-channel EEG system used in

this study, can only be used in the laboratory. Therefore, an

EEG system with less channels, or even one channel,

would be more convenient, and more comfortable.

In this study, a complete study of an EEG-based driver

fatigue detection system was provided by using GBDT

including data acquisition, data processing, feature

extraction and classification. The study focused on apply-

ing a machine learning method to detect driver fatigue. The

rest of this article was organized as follows. In ‘‘Methods’’

section, the gradient boosting decision tree algorithm was

described in detail, and feature extraction was presented,

including SE, FE, AE and PE. ‘‘Results’’ section showed

that the experiments conducted on 22 subjects based on the

GBDT method, and was followed by our conclusions in

‘‘Discussion’’ section.

Methods

Subjects

Twenty-two students (8 female, 17–24 years) participated

in this experiment. All subjects had a driver’s license and

were asked to abstain from alcohol, medications, or tea

before and during the experiment. Prior to the experiment,

they practiced the driving task for several minutes to

become acquainted with the experimental procedures and

purposes. This work was approved by the Academic Ethics

Committee of Jiangxi University of Technology. The

subjects provided their written informed consent as per

human research protocol in this study.

Experimental paradigm

A sustained-attention driving task was performed by each

subject on a static driving simulator (The ZY-31D car

driving simulator, produced by Peking ZhongYu Co., Ltd).

This equipment is an analog form of a real driving car, and

contains all the driving capabilities of a vehicle. Using

computer software technology, different driving environ-

ments and conditions can be constructed, such as sunny,

foggy, or snowy weather and mountainous, highways, or

the countryside. The driving environment selected for this

experiment was a highway with low traffic density to more

easily induce monotonous driving. Some researches had

pointed out that our brains (under this type of driving

environment) were more easily turned into a fatigue state

and the EEG signals were more stable, which was good for

recording data. All subjects in this experiment had

approximate real driving experience.

Data recording and preprocessing

In summary, the total duration of the experiment was

40–120 min. The first step was to become familiar with the

simulation software, then there was continuous mono-

tonous driving until driver fatigue was determined, and the

experiment was terminated.

When the driving lasted 10 min, the last 5 min of EEG

signals were recorded as a normal state. When the con-

tinuous driving lasted between 30 and 120 min until self-

reported fatigue, the questionnaire results showed that the

subject was in driving fatigue (obeying the Chalder fatigue

scale and Lee’s subjective fatigue scale) (Lee et al. 1991;

Borg 1990) so the last 5 min of the EEG signals were

labeled as the fatigue state. EOG was also used to analyze

eye blink patterns as an objective validation of the fatigue

state. It should be noted that the validation of the fatigue

condition has also been conducted with a self-reported
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fatigue questionnaire as per the Chalder fatigue scale and

Lee’s subjective fatigue scale in our recent researches (Mu

et al. 2017; Yin et al. 2017), and the method of using a

questionnaire for identifying fatigue condition has been

used in many other studies (Li et al. 2012; Craig et al.

2012; Liu et al. 2010). The drivers were required to com-

plete all tasks and ensure safe driving. Prior to the exper-

iment, the drivers familiarized themselves with the

operation of the driving simulator and the completion of

the driving tasks.

All channel data were referenced to two electrically

linked mastoids at A1 and A2, digitized at 1000 Hz from a

32-channel electrode cap (including 30 effective channels

and two reference channels) based on the international

10–20 system and stored in a computer for offline analysis.

Eye movements and blinks were monitored by recording

the horizontal and vertical EOG.

After collecting EEG signals, the main steps of data

preprocessing were carried out by the Scan 4.3 software of

Neuroscan (Neuroscan, Compumedics, Australia). First,

the raw signals were filtered by a 0.15–45 Hz band-pass

filter to remove the noise. Next, 5 min of EEG data from

thirty electrodes were sectioned into 1-s epoch, resulting in

approximately 300 epochs. With 22 subjects, a total of

6600 units of datasets were formed for the normal state and

another 6600 units for the fatigue state. A 10-fold cross

validation approach for measuring classification results

was used.

Feature extraction

As nonlinear parameters can quantify the complexity of a

time series, it can be used to evaluate the non-linear,

unstable EEG signals (Azarnoosh et al. 2011; Mateos et al.

2017). Spectral entropy (PE) was calculated by applying

the Shannon function to the normalized power spectrum,

which was described in detail in the literature (Kannathal

et al. 2005). Approximate entropy (AE) was calculated as

proposed by Pincus (1991). Like AE, sample entropy (SE)

was calculated as proposed by Richman and Moorman

(Richman and Moorman 2000). The calculation algorithm

of AE and SE were defined clearly in the literature (Song

et al. 2012), as was fuzzy entropy (FE) (Xiang et al. 2015).

In the four above-mentioned types of entropies, AE, SE

and FE have parameters setting, m and r, which are the

dimensions of phase space and similarity tolerance,

respectively. Generally, too large an r will lead to a loss of

useful information; however, if r is under estimated, the

sensitivity to noise will increase significantly. In the pre-

sent study, m = 2 while r = 0.2 * SD, where SD denotes

the standard deviation of the time series, as refer the lit-

erature (Yentes et al. 2013).

For optimizing the detection quality, the feature sets

were normalized for each subject and each channel by

scaling between 0 and 1.

Classification

Since there is no uniform classification method suitable for

all subjects and all applications, it is useful to test ensemble

classification methods.

To assess the GBDT method for driver fatigue detection,

three widely used classifiers (KNN, SVM and NN) were

employed as a comparison. KNN is a supervised learning

technique where a new instance is classified based on the

closest training samples present in the feature space. KNN

implements learning based on the k-nearest neighbors of

each query point, where k is 10 in this study, if not

otherwise specified. In the case of nonlinear classification,

kernels (such as radial basis functions (RBF)) are used to

map the data into a higher dimensional feature space where

a linear separating hyper-plane could be found. When

training an SVM classifier with the RBF kernel (Mu et al.

2016), two parameters must be considered: c and c. A

lower c makes the decision surface smooth, while a higher

c aims at classifying all training examples correctly. c
defines how much influence a single training example has.

In this study, c = 2, and c = 1. NN is trained via using

gradient descent and the gradients calculated by using

Backpropagation (BP).

In this work, a recently developed ensemble method

named GBDT, originally derived by Friedman (Friedman

2001; Hastie et al. 2009), and was introduced into driver

fatigue detection. The GBDT-based method is based on a

greedy strategy (called gradient boosting), which is dif-

ferent from random forest which is based on bootstrap

aggregating (Bauer and Kohavi 1999). A parameter regu-

larization process can prevent such over-fitting and

improve prediction accuracy by optimizing four parame-

ters: number of boosting stages (N), learning rate (L),

maximum depth (M), and fraction of samples (F).

Performance metrics

To estimate the potential application performance of a

detector, it is very important to properly examine the

detection quality. The total average accuracy based on a

feature set and some classifiers was the average of the

accuracy of all single channel based on the same feature

and the same classifier. The classification capabilities of

different classifiers were comprehensively investigated

with several indexes including Accuracy, Precision, Recall,

F1-score, Matthews Correlation Coefficient (MCC), and

the Brier score (Sokolova et al. 2006). These indexes are

given as follows: Accuracy is the percentage of normal
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predictions corresponding to all samples; Precision is the

percentage of normal predictions corresponding to the

normal samples; and Recall is the percentage of fatigue

predictions corresponding to the fatigue samples. Further-

more, F1-score was used to appraise both Precision and

Recall. The MCC was used as a measure of the quality of

binary classifications as it considers true and false positives

and negatives, and is generally regarded as a balanced

measure which can be used even if the classes are of very

different sizes. The Brier score measures the mean squared

difference between the predicted probability assigned to

the possible outputs and the actual output. Therefore, a

lower Brier score value and higher Precision, Recall, F1-

score, and MCC values relates to higher performance.

Receiver Operating Characteristic (ROC) analysis is a

kind of reliability estimation, and ROC curves regard each

detection result as the possible critical value of diagnosis.

The area under the ROC curve (AUC) is accepted as a fair

indicator of measuring classifier performance since it is

invariant to the operating conditions such as different

misclassification costs and skewed class distribution

(Bradley 1997).

Results

To validate the model performance of different combina-

tions of regularization parameters, a series of GBDT

models were built with various boosting stages

(N = 50–2000), learning rate (L = 1.0–0.001), maximum

depth (M = 1–7), and fraction of samples (F = 0.5–1.0).

For the four feature sets, the performances of GBDT

Fig. 1 Performance of different

classifiers and the GBDT

method with different number

of boosting stages. The left

vertical coordinate is for

average accuracy, while the

horizontal coordinate is for

classifier: KNN, SVM, NN,

GBDT (with N = 50), GBDT

(with N = 100), GBDT (with

N = 200), GBDT (with

N = 500), GBDT (with

N = 1000) and GBDT (with

N = 2000), respectively. Where

L = 0.1, M = 3, F = 1. GB50,

GB100, GB200, GB500,

GB1000 and GB2000 represent

the GBDT ensemble classifier

with 50, 100, 200, 500, 1000

and 2000 boosting stages,

respectively
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models based on different combination of regularization

parameters are described in the following figures.

To examine the effectiveness of the GBDT model used

for driver fatigue detection, a comparison was conducted

with other commonly used classifiers including KNN,

SVM, and NN under the same conditions (using the same

data and feature sets). Figure 1 shows a comparison

between the results for the four feature sets, respectively. In

this study, Accuracy, Precision, Recall, F1-score, MCC,

and the Brier score were used as the model performance

indicators. A comparison of the results of different pre-

diction methods and feature sets indicated that the GBDT

model was statistically different to any of other techniques,

and received the best model performance out of all four

feature sets. This finding further confirmed the advantages

of the GBDT model in modeling complex relationships

between EEG signals and the fatigue state.

As shown in Fig. 1, the feature set FE outperformed the

other three feature sets in all views of the six indexes. The

average accuracy using feature set FE achieved 0.919

(when N = 500), which was more than seven percentage

points off set PE (accuracy = 0.848).

The influence of the number of boosting stages (N) on

model performance can also be seen in Fig. 1. Given other

parameters, as N increased, the model obtained a better

performance; however, when the value of the shrinkage

parameter reached a certain level, the model performance

reached equilibrium. Taking feature set FE as an example,

the model performance became better (accuracy increasing

from 0.850–0.919) as the learning rate parameter value

increased from N = 50 to N = 500. However, increasing

the value of the learning rate parameter from N = 500 to

N = 2000 led to few changes (paired t test, p[ 0.05).

The highest average accuracy of a single channel

reached 0.920, which was very competitive compared to

research described in Introduction. Even for the weak

feature set (such as feature set PE), GBDT could signifi-

cantly improve the performance from 0.541 (using

Fig. 2 Performance of GBDT

method with different learning

rates. The left vertical

coordinate is for Accuracy,

while the horizontal coordinate

is for classifier: GBDT (with

L = 0.001), GBDT (with

L = 0.005), GBDT (with

L = 0.01), GBDT (with

L = 0.05), GBDT (with

L = 0.1), GBDT (with L = 0.5)

and GBDT (with L = 1),

respectively. LR0001, LR0005,

LR001, LR005, LR01, LR05

and LR1 represent the GBDT

ensemble classifier with

learning rates of 0.001, 0.005,

0.01, 0.05, 0.1, 0.5 and 1.0,

respectively. Where N = 500,

M = 3, F = 1
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classifier NN) to 0.851 (GBDT1000). Thus, it appears that

GBDT could reduce the difference between the different

feature sets, for example, the difference in average accu-

racy between feature set FE and feature set PE based on

classifier SVM was 0.247 while the difference in average

accuracy between feature set FE and feature set PE based

on GBDT was 0.069. This may result from the GBDT

model being able to effectively enhance the effect of the

weaker feature sets.

The parameter learning rate strongly interacted with the

number of boosting stages. Hastie recommended that the

learning rate was set to a small constant (e.g., learning

rate\ = 0.1) (Hastie et al. 2009). The influence of the

learning rate parameter on model performance can be seen

in Fig. 2. Given the boosting stage (N = 500), an increased

value of the learning rate parameter required fewer trees

and less computational time to achieve its minimum error.

Taking feature set FE as an example, the model perfor-

mance became better (accuracy increased from 0.816 to

0.908) as the learning rate increased from L = 0.001 to

L = 0.1. However, increasing the value of the learning rate

parameter from L = 0.1 to L = 1 led to an insignificant

result (paired t test, p[ 0.05).

Even for the weak feature set, such as feature set PE,

GBDT could significantly improve the performance from

0.582 (LR0001) to 0.851 (LR05). The difference in average

accuracy between feature set FE and feature set PE based

on LR0001 was 0.234, while the difference in average

accuracy between feature set FE and feature set PE based

on LR05 was 0.069.

The influence of the maximum depth on model perfor-

mance can be seen in Fig. 3. For a given boosting stage

Fig. 3 Performance of the

GBDT method with different

maximum depths. The left

vertical coordinate is for

average accuracy, while the

horizontal coordinate is the

classifier: GBDT (with M = 1),

GBDT (with M = 2), GBDT

(with M = 3), GBDT (with

M = 4), GBDT (with M = 5),

GBDT (with M = 6) and GBDT

(with M = 7), respectively.

Md1, Md2, Md3, Md4, Md5,

Md6 and Md7 represent the

GBDT ensemble classifier with

maximum depths of 1, 2, 3, 4, 5,

6 and 7, respectively. Where

L = 0.1, N = 500, F = 1
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(N = 500) and learning rate (L = 0.1), as maximum depth

changed, the model obtained different performances. Tak-

ing feature set FE as an example, the model performance

became better (accuracy increased from 0.814 to 0.920) as

the learning rate parameter value increased from M = 1 to

M = 3. However, an increase in the value of maximum

depth from M = 3 to M = 7 led to no significant changes

(paired t test, p[ 0.05). Even for the weak feature set, such

Fig. 4 Performance of the

GBDT method with a different

fraction of samples. The left

vertical coordinate is for

average accuracy, while the

horizontal coordinate is the

classifier: GBDT (with F = 0.5),

GBDT (with F = 0.6), GBDT

(with F = 0.7), GBDT (with

F = 0.8), GBDT (with

F = 0.85), GBDT (with F = 0.9)

and GBDT (with F = 1),

respectively. Sub05, Sub06,

Sub07, Sub08, Sub085, Sub09

and Sub1 represent the GBDT

ensemble classifier with the

fraction of samples being 0.5,

0.6, 0.7, 0.8, 0.85, 0.9 and 1.0,

respectively, where L = 0.1,

M = 3, N = 500

Fig. 5 ROC Curve

Table 1 The paired-samples t test analysis between different

classifiers

KNN SVM NN GB50 GB200 GB500 GB1000

SVM *

NN * **

GB100 ** * **

GB200 ** ** ** **

GB500 q * ** ** *

GB1000 * q q q * q

GB2000 q q * ** q q q

*p\ 0.05; **p\ 0.01; qp[ 0.05
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as feature set PE, GBDT could significantly improve per-

formance from 0.826 (md1) to 0.919 (md3). The difference

in average accuracy between feature set FE and feature set

PE based on Md1 was 0.16, while the difference in average

accuracy between feature set FE and feature set PE based

on md3 was 0.068.

The influence of fraction of samples on model perfor-

mance can be seen in Fig. 4. For a given boosting stage

(N = 500) and learning rate (L = 0.1), as fraction of sam-

ples increased, the model obtained a better performance.

Taking feature set FE as an example, the model perfor-

mance became better (accuracy increased from 0.588 to

0.920) as the fraction of samples increased from F = 0.5 to

F = 1. Even for the weak feature set, such as feature set PE,

GBDT could significantly improve performance from

0.549 (Sub05) to 0.851 (Sub1). Unlike the preceding

example, the difference in average accuracy between fea-

ture set FE and feature set PE based on Sub05 was 0.038,

while the difference in average accuracy between feature

set FE and feature set PE based on Sub1 was 0.069.

The highest accuracy of a single channel reached 0.940

based on a combination of channel TP7 and feature set FE,

or a combination of channel C4 and feature set AE. The

highest average accuracy of a single channel reached 0.919

based on feature set FE.

The ROC curve is a plot of true positive rate on the Y

axis and false positive rate on the X-axis by varying dif-

ferent threshold ratios. A random performance of a clas-

sifier would have a straight line connecting (0, 0) to (1, 1).

A ROC curve of the classifier appearing in the upper left

triangle suggest that it has a superior performance classi-

fication. The results of ten independently rounds were used

to draw mean ROC curves. The performance was analyzed

by ROC curves and areas under ROC curves (AUC). Fig-

ure 5 shows the ROC curve for all subjects based on

optimal GBDT classifiers, and the corresponding AUC was

0.946.

Discussion

In this paper, a GBDT-based approach was proposed to

detect driver fatigue in an EEG-based system. Results

showed that it is a promising system to detect driver fati-

gue, and achieved a higher success rate with only one

channel. With the purpose of providing a more efficient

ensemble method for detecting driver fatigue, it was found

that: (1) it was possible to use only one electrode for driver

fatigue detection, where the highest recognition rate of one

electrode could be up to 0.940, which was able to meet the

needs of daily applications; and (2) the GBDT method

could obviously improve the performance of the detector,

especially for the weaker feature sets. This is different from

the traditional computational intelligence algorithms (e.g.,

KNN, SVM, and NN).

But are there significant differences among them? A

paired-samples t test was conducted to compare the per-

formance using different classifiers and results show in

Table 1. By using the paired-samples t test (with double

tail), we can statistically conclude whether the factor has

significantly improved the average accuracy or not. It can

be seen that there is a significant difference between the

majorities of classifiers (p\ 0.05). Performance of classi-

fier GB200 and GB500 are significantly better than that of

other classifiers, while performance of classifier GB2000

significantly worse than that of other classifiers, as also

shown in Fig. 1.

Furthermore, as seen in Table 2, it was found that the

classification performance of the proposed method was

better than that in previous research using different clas-

sification methods based on fewer channels EEG signals.

Although the present study is based on the existing EEG

data, the high performance of detecting driving fatigue by

using a GBDT-based classification indicated that it can be

applied well in the real-time detection of driving fatigue.

As different brain characteristics probably exists

between different subjects, the EEG features may be

Table 2 Studies regarding driver fatigue detection using different methods

Research group Feature method Classifiers EEG channels Average accuracy

(%)

Xiong et al. (2016) AE and SE SVM P3 90.0

Correa et al. (2014) Multimodal Analysis NN C3-O1, C4-A1 and O2-

A1

83.6

Nguyen et al. (2017) Statistical tests Fisher’s linear discriminant

analysis

All channels 88.6

Ko et al. (2015) Fast Fourier

Transformation

The linear regression A single frontal channel 90.0

Chai (Chai et al. 2017) AR Sparse-DBN All channels 93.1

This paper FE GBDT TP7 94.0
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different for different subjects; therefore, different subjects

using the same feature extraction method or the same

classifier may have different performances. It is possible to

choose a combination of subject-specific features, which

are different from the subjects using a different combina-

tion, thus improving the recognition rate of each subject.

These subject-specific EEG features can be distinguished

from different subjects for identification or authentication

of an individual, that is, the EEG password or biometrics

(Hu et al. 2015).
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