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Abstract
Development of techniques for detection of mental fatigue has varied applications in areas where sustaining attention is of

critical importance like security and transportation. The objective of this study is to develop a novel real-time driving

fatigue detection methodology based on dry Electroencephalographic (EEG) signals. The study has employed two methods

in the online detection of mental fatigue: power spectrum density (PSD) and sample entropy (SE). The wavelet packets

transform (WPT) method was utilized to obtain the h (4–7 Hz), a (8–12 Hz) and b (13–30 Hz) bands frequency com-

ponents for calculating corresponding PSD of the selected channels. In order to improve the fatigue detection performance,

the system was individually calibrated for each subject in terms of fatigue-sensitive channels selection. Two fatigue-related

indexes: (hþ a)/b and h/b were computed and then fused into an integrated metric to predict the degree of driving fatigue.

In the case of SE extraction, the mean of SE averaged across two EEG channels (‘O1h’ and ‘O2h’) was used for fatigue

detection. Ten healthy subjects participated in our study and each of them performed two sessions of simulated driving. In

each session, subjects were required to drive simulated car for 90 min without any break. The results demonstrate that our

proposed methods are effective for fatigue detection. The prediction of fatigue is consistent with the observation of reaction

time that was recorded during simulated driving, which is considered as an objective behavioral measure.
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Introduction

The rising number of traffic accidents has became a major

issue in our daily life and has attracted concern from both

the society and the governments (Williamson et al. 2011).

Experts agree that driving fatigue is a significant cause for

traffic accidents and is believed to account for 20–30% of

all vehicle accidents (Rau 2005). This, in reality, is a

conservative estimate and it is understood that the actual

contribution of fatigue to road accidents is significantly

higher than the mentioned (Zhao et al. 2011). Mental

fatigue is defined as a feeling of extreme physical or mental

tiredness, resulting in the reduction of the ability of an

individual to focus at a given task, leading to errors and an

irregular driving aptitude (Khushaba et al. 2011). Beha-

viourally, an increase in reaction time and an increase in

false alarms are classic estimators of the onset of mental

fatigue (Ba et al. 2017). Therefore, the development of a

wireless and mobile system that can identify fatigue status

to prevent disastrous traffic events is a crucial and an

urgent topic of study. Previous studies have focussed on the

detection and quantification of fatigue by measuring

physiological biomarkers extracted from electroen-

cephalogram (EEG), electrooculogram (EOG), and elec-

tromyogram (EMG) (Kar et al. 2010; Hirvonen et al. 2010;

Chew et al. 2016). Compared with machine vision based

biometrics (Jo et al. 2011), neurophysiology-based mea-

sures provide a detailed account of the driver’s brain state
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by objective characterization of brain signals (LaFleur

et al. 2013). Among numerous physiological indicators

available to estimate the driver’s fatigue level, the EEG

signal has been proven to be one of the most predictive and

reliable indicator of task induced fatigue (Panicker et al.

2011). Previous efforts for development of automatic sys-

tems, to detect driver drowsiness from EEG signals, can be

broadly classified into three categories (Wang et al. 2015;

Zhao et al. 2017; Dai et al. 2017): (1) power spectrum

based analysis, (2) entropy based analysis, (3) brain net-

works based analysis.

In this paper, we have used power spectrum analysis and

entropy analysis as major estimators of mental fatigue.

Several attempts have been made to predict driver

drowsiness by detecting changes in all the major EEG

frequency bands (d (0.5–3.5 Hz), a (4–8 Hz), b (8–13 Hz),

h (13–30 Hz)) (Eoh et al. 2005; Jap et al. 2009; Liang

et al. 2006). These frequency bands provide a plethora of

interesting and relevant information that can be used as

features for classification of alert vs fatigued cognitive

states. Established estimators like usage of statistically

relevant features (mean, median, variance, standard devi-

ation) of sub-bands and changes in a power are some of the

previous attempts made for prediction of mental fatigue

using multi-channel EEG (Gharagozlou et al. 2015;

Gurudath and Riley 2014). There have also been efforts for

estimation of fatigue using signal channel but they have not

yielded significant performance accuracy (Atchley et al.

2014). EEG signals are known to be highly specific and

vary in great detail among individuals. Thus, the best way

to categorize these signals is to develop classifiers that

account for individual variability so that they are robust

enough to be applied beyond the controlled laboratory

settings (Zhang et al. 2015; Hu 2017).

Jap et al. have used four parameters h/b, a/b, (aþ h)/b
and (aþ h)/(aþ b) separately for fatigue prediction (Jap

et al. 2009). In this work, we further propose an integrated

metric combined by averaging the PSD of (hþ a)/b and h/

b, and have applied a subject specific procedure for

selection of fatigue sensitive channels to predict the driving

fatigue. In order to make the study more robust and easily

applicable in realistic situation, the employed EEG

recording headset is wireless and characterizes advanced

dry-sensor technology (Myrden and Chau 2017). Latest

EEG headset using the 3D printed products from

Cognionics, Inc., USA, was used to reduce subject dis-

comfort, extensive time for subject preparation and sub-

stantially higher impedances between the scalp and the

electrodes. The integration of easily wearable EEG headset

and the development of fatigue index using a combination

of predictors of drowsiness have made our study more

applicable to realistic settings.

Methodology and materials

Recruitment of subjects

To evaluate the performance of the proposed driving fati-

gue detection system, ten healthy subjects (seven males and

three females, aged 20.6 ± 3.2) from National University

of Singapore participated in the driving fatigue experi-

ments at the Cognitive Engineering Laboratory of Singa-

pore Institute for Neurotechnology (SINAPSE). All the

experiments were carried out in the afternoon from 3 to 5

pm as it was easier to induce fatigue. All subjects were

right-handed and had normal or corrected-to-normal vision.

Subjects were asked to refrain from consuming caffeine

and alcohol approximately 4 and 24 h respectively before

they participated in the experiments.

The experiments were approved by the Institutional

Review Board of the National University of Singa-

pore,written informed consent was obtained from all sub-

jects before the experiment and monetary compensation

was given for their participation. System calibration was

performed during their first visit to the laboratory and the

data collected was used in validation of the driving fatigue

detection system by online experimentation during the

second section. In order to acquire a complete evaluation of

the proposed system, subjective workload and satisfaction

were assessed with the NASA Task Load Index (NASA-

TLX) questionnaire after each session (Mugler et al. 2010;

Riccio et al. 2011).

Experimental setup and task

Experimental setup

As shown in Fig. 1, the driving fatigue detection system

mainly consists of two components: a simulated driving

system and a wireless dry EEG acquisition system. The

simulated driving system comprises of three 65 inches

LCD screens, a driving simulator (Logitech G27 Racing

Wheel) and a host computer which provides a driving

environment. The wireless dry EEG acquisition system is a

highly integrated product and includes an EEG headset, a

bluetooth module transmitter and receiver. Twenty four dry

sensors are used to measure electroencephalogram from the

subject’s scalp. The analog signals from the electrode

sensors are sent through an amplifier, converted into digital

signals and then sent wireless by a bluetooth module

transmitter. The bluetooth receiver collects the converted

digital signals for further processing in the host laptop. The

Intel(R)Core(TM)i5-6200U Duo 2.4 GHz host laptop

(Toshiba) is used to run the acquisition software and the

driving fatigue detection algorithm.

366 Cognitive Neurodynamics (2018) 12:365–376

123



Experiment task

The experiment was performed with the subject seated at

1.8 m in the front of three screens displaying the simulated

driving immersive 3D environment while the task lasted

for about 1.5 h. The subjects were asked to respond in a

timely manner upon presentation of relevant visual stimuli

while driving a simulated car in a two-way rural road. They

are encouraged to drive at a safe distance in order to avoid

rear-end collision and crashes with the cars from the other

lane. The reaction time (RT) is recorded during the

experiment, which is defined as the visual stimuli of break

signal in the guide car and the break signal made by the

participant. The interval of the break signal in the guide car

was set to be randomly distributed. The experimental task

is designed similar to the protocol being followed in our

previous study (Abbasi et al. 2017). The total duration of

the experiment is about 1.5 h, that is when the guide car

turns left and stop, subjects are requested to stop the

engine. Then, a questionnaire is self-completed by the

subject independently according to the NASA task load

index.

EEG data acquisition

During the driving fatigue experiment, the subjects were

requested to wear a wireless EEG cap throughout the

experimental task. The EEG signals are referenced to the

right and left mastoids. As shown in Fig. 2, 24 standard dry

electrodes, placed in the frontal, central, parietal, and

occipital regions of the head were used for data acquisition

in accordance with the modified international 10–20 sys-

tem of electrode placement. All impedances are kept below

2000 kX. The EEG signals are amplified, sampled at a rate

of 250 Hz, and band-pass filtered between 0.5 and 100 Hz

in the acquisition software.

Algorithm

As shown in Fig. 3, we designed two driving fatigue pre-

diction algorithms: power spectrum density analysis and

sample entropy analysis. The power spectrum density

analysis algorithm includes signal preprocessing, discrete

wavelet transform, system calibration, sensitive channels

PSD calculation and integrated metric fatigue prediction.

The sample entropy analysis algorithm includes signal

preprocessing, discrete wavelet transform, sample entropy

calculation and fatigue prediction.

Fig. 1 a A scenery of the road captured from the screen, the guide car breaks randomly with the lings flashing. b The simulated driving system

used for the implementation of the proposed protocol

Fig. 2 The names and positions of the 24 Dry-EEG electrodes. The

two channels marked in red are used for sample entropy calculation.

(Color figure online)
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System calibration and signal preprocessing

As mentioned before, our study has employed subject

specific approach for detection of driver fatigue (Wang

et al. 2014). Thus, the first visit of the participating subjects

were used for system calibration by collection of the

training data necessary for the validation of the online

algorithm. The process of system calibration includes

selection of fatigue sensitive channels.

Channels selection

Channels selection is necessary for accurate prediction of

driving fatigue. Thus, the training data was used to deter-

mine the channels that are more susceptible to the onset of

mental fatigue. The correlation between the two fatigue

related indexes described below, power spectrum density

and experiment time was calculated. If the value of the

correlation for a specific channel is higher than the pre-

established threshold, the channel is selected for the online

test. The threshold for this study is set at 0.75. Finally, the

channels with significant associations were retained and

were characterized as fatigue-sensitive channels. Once the

significantly altered channels were obtained, we calculated

the fatigue index according to previously findings in fati-

gue studies (Jap et al. 2009; Larman 2012). Power spec-

trum values within h, a, and b frequency bands were

employed to calculate two fatigue related indexes:

(PSDh þ PSDa)/PSDb and PSDh/PSDb, which were sum-

med across those selected channels.

Preprocessing

The acquired data were processed and analyzed using

EEGLAB (Delorme and Makeig 2004) during the prepro-

cessing stage. The EEG signals preprocessing steps inclu-

ded spatial filtering with common average reference (CAR)

(Ludwig et al. 2009), detrending, removing of mean and

then band-pass filtering at 0.5–32 Hz. We extract segments

of 10 s EEG signals with a sliding window of 5 s for power

spectrum density analysis and segments of 2 s with a

sliding window of 1 s for sample entropy analysis.

Power spectrum density analysis

Discrete wavelet transform

We applied the discrete wavelet transform (DWT) (Amiri

and Asadi 2009; Zhang et al. 2014) with the following

parameters for EEG power spectrum analysis (Wang et al.

2015): Daubechies wavelet of db4 and decomposition level

of six. DWT is particularly effective for representing var-

ious aspects of signals where other signal processing

approaches are not as effective (Coifman et al. 1994). In

order to reveal the spectral dynamics of the brain activity,

the features were extracted by wavelet packets for each

channel of interest. The powers in the h, a, b bands asso-

ciated with these channels were collected for power spec-

trum analysis using DWT. Further, the wavelet-packet

decomposition was performed at the j-th level of EEG

signals for a given 2 j set of sub-band coefficients of length

Pj;m nð Þk ¼ 1; 2; . . .; N
2 j

� �
. These wavelet coefficient vectors

can be represented using the following equation:

m� 1ð ÞFs

2jþ1
;
mFs

2jþ1

� �
ð1Þ

where Fs ¼ 250 Hz, which is the sampling frequency in

this study and m ¼ 0; 1; . . .; 2j�1. The frequency indexes

vary from 0 to 2 j � 1 for the frequency ranges between

zero to the Nyquist frequency (125 Hz) with an original

sampling frequency of 250 Hz. Figure 4 illustrates the

decomposition of the original EEG signals with a WPT of

levels 1, 2, 3, 4, 5 and 6 used in this study.

The frequency bands a, b, h are defined by acquiring the

mean of corresponding frequency ranges in relevant level

and is summarized in Table 1.

Fig. 3 The flow chart of the proposed two driving fatigue prediction algorithms
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Inverse wavelet transform

In order to reconstruct the original signal, inverse wavelet

transform was applied to the wavelet coefficients in the

following manner:

1. h band of the EEG signal was constructed using the

wavelet coefficients W6:2–W6:3.

2. a band was reconstructed using the wavelet coeffi-

cients W6:4–W6:6.

3. b bands was reconstructed using the wavelet coeffi-

cients W6:7–W6:15.

The summary of this analysis can be found in Table 1. The

recovered EEG signals were further used for power spec-

trum density calculation.

Power spectrum density

In the power spectrum density calculation, we applied a

sliding Hamming window with a length of 2500 (10 s) and

an overlap of 1250 (5 s) sampling points for the spectral

estimation. Firstly, the estimation of the parameters for the

model is performed from a given data sequence x(n),

0� n�N � 1;N ¼ 2500. Secondly, we used the autore-

gressive (AR) method for modelling the data sequence x(n)

as the output of a causal and discrete filter (Li et al. 2017).

This method can be represented using the following

equation:

x nð Þ ¼ �
Xp

k¼1

a kð Þx n� kð Þ þ x nð Þ ð2Þ

where a(k) is the AR coefficient, x(n) is the white noise of

variance equal to r2, and p is the order of the AR model.

From the estimation of AR parameters, we can calculate

the PSD:

P̂ fð Þ ¼ êp

1 þ
Pp

k¼1 âp kð Þe�jpfk
�� �� ð3Þ

where êp is the total least squares error. The model order is

taken as p ¼ 10 here. The PSD results of each frequency

band are then normalized to obtain the relative PSD of one

band with respect to the other relevant frequency bands.

P ¼
Pf¼f 2

f¼f 1
P fð Þ

Pf¼f h
f¼f l

P fð Þ
ð4Þ

where ½fl; fh� ¼ ½3:91; 31:25� and ½f1; f2� is determined by the

selected sub-band frequency.

Integrated metric for fatigue detection

On the basis of Eqs. (3) and (4), the relative powers are

computed as well. An integrated metric by averaging two

EEG
0-125Hz

W1,0

0-62.5Hz
W1,1

62.5-125Hz

W2,0

0-31.25Hz
W2,1

31.25-62.5Hz

W3,0

0-15.63Hz
W3,1

15.63-31.25Hz

W5,1

3.91-7.81Hz
W5,0

0-3.91Hz

W4,0

0-7.81Hz
W4,1

7.81-15.63Hz
W4,2

15.63-23.44Hz
W4,3

23.44-31.25Hz

W5,4

11.72-15.63Hz
W5,3

7.81-11.72Hz

W6,0

0-1.95Hz
W6,1

1.95-3.91Hz
W6,14

27.34-29.30Hz
W6,13

25.39-27.34Hz
W6,2

3.91-5.86Hz
W6,15

29.30-31.25Hz

Fig. 4 Wavelet packets transform (WPT) decomposition over six levels

Table 1 Frequency bands extracted from the wavelet coefficients and

grouped into corresponding frequency bands

Wavelet coefficients Frequency range Frequency bands

W6:2–W6:3 3.91–7.81 Hz h

W6:4–W6:6 7.81–13.67 Hz a

W6:7–W6:15 13.67–31.25 Hz b
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fatigue related indexes which based on the sum PSD of

(hþ a)/b and h/b is used for prediction of the driving

fatigue:

Integrated metric ¼ 1

2
�
Xn

n¼1

PSDh nð Þ þ PSDa nð Þ
PSDb nð Þ þ

Xm

m¼1

PSDh mð Þ
PSDb mð Þ

 !

ð5Þ

where n is the number of fatigue-sensitive channels for the

first fatigue related index, while m is the number of fatigue-

sensitive channels for the second fatigue related index.

Sample entropy analysis

Before we calculate the sample entropy of ‘O1h’ and

‘O2h’, it is customary to calculate the power spectrum

energy first. As the wavelet ua;bðtÞ has an orthogonal basis

at L2ðRÞ, the j-th level power spectrum energy of the

wavelet coefficients for each frequency bands is calculated

by the following equation (Lee et al. 2014):

Pk ¼
X

k

d
iþ1ð Þ
k nð Þ

���
���
2

ð6Þ

here the band of 0.01–31.25 Hz is taken into account,

which is corresponding with W6:0–W6:15.

Sample entropy (Richman and Moorman 2000) is used

to measure the complexity of EEG and is estimated using

the following equations:

SampEnðm; r;NÞ ¼ � ln
Bmþ1 rð Þ
Bm rð Þ

ð7Þ

Bm rð Þ ¼ 1

N � m

XN�m

i¼1

Cm
i rð Þ ð8Þ

where m ¼ 2 and r ¼ 0:2 � SD. We use a sliding window

with the length of 2 s (500 sample points) and 1 s (250

sample points) overlapping to calculate the SE of EEG

from channels ‘O1h’ and ‘O2h’. This is because the

occipital region has been previously pinpointed to exhibit

significant change in entropy and complexity related to

fatigue (Zhang et al. 2014).

Results

Power spectrum density analysis

We show the power spectrum analysis results of these

selected channels with significant fatigue-related patterns

for the subject 1 in Fig. 5. The index of most of these

channels exhibited a positive association with the time,

both indexes of (PSDh þ PSDa)/PSDb and PSDh/PSDb in

the specific channels can be see clearly.

Furthermore, one-way analysis of variance (ANOVA)

(González-Rodrı́guez et al. 2012) is used to analyze the

differences among the means of fatigue-related indexes and

their associated procedures. In Fig. 6, the means of

(PSDh þ PSDa)/PSDb and PSDh/PSDb of subject 1 during

the whole process of rested to fatigued states every 10 min

are calculated, the ANOVA results are (F = 2.88, p = 0.01)

and (F = 2.61, p = 0.019) respectively, which revealed a

significant effect of time-on-task.

Using these pre-selected channels, we assessed the

fatigue index the integration of the channel-based indexes

online (Fig. 7), where a gradually increasing pattern was

observed. It demonstrated that the subjects were detected to

be in a state significantly different than the initial phase,

suggesting increased levels of fatigue.

Sample entropy analysis

For the sample entropy (SE) analysis, the mean SE of

channels ‘O1h’ and ‘O2h’ was used for fatigue level

predication (Fig. 8). Previous research indicated consistent

patterns of fatigue which are correlated with entropy

changes observed on EEG (Zhao et al. 2011). In our

analysis, for most subjects, decreasing values of SE are

observed, suggesting the effects of fatigue are reflected in

SE trends.

NASA-TLX analysis

The NASA-TLX contains six factors, each of which has 20

steps scoring from 0 to 100. The questionnaire was self-

completed by these subjects independently. The given

scores are reported in Fig. 9. The average score for the

factor ‘‘Mental demand’’ is equal to 77 and ‘‘Frustration’’ is

equal to 66, which indicate that after 90 min of driving,

most of the drivers perceived high levels of mental fatigue.

According to the NASA-TLX, the factor of ‘‘Performance’’

represents how satisfied was the subject with his perfor-

mance in accomplishing the driving task. The more satis-

fying, the lower score. So the average score 33 means that

all the subjects can effectively complete the driving task

with relative ease.

Reaction time analysis

During online experiments, in order to validate the pro-

posed integrated metric for driving fatigue detection, we

record the reaction time to evaluate the behavioral
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Fig. 5 a, b Are the (PSDh þ PSDa)/PSDb and PSDh/PSDb fatigue index for fatigue-sensitive channels of subject 1 respectively
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performance of subjects. The reaction time is defined as the

interval between the visual stimuli of brake signal in the

guide car and the breaking action took by the participant.

Guiding car braking is triggered randomly during the

whole online experiment. The reaction time of the ten

subjects are shown in Fig. 10. The results of reaction time

analysis indicate the changing process of the subjects from

the alert phase to fatigue phase, which are well consistent

with the prediction of integrated metric fatigue index.

Discussion

Onset of mental fatigue exhibits high level
of individual variability

Mental fatigue onset is seen to have variable patterns

amongst the subjects performing the same task and under

the same conditions. As seen in the Fig. 7, for some sub-

jects, there is an sharp increase in the power spectrum

density integrated metrics for fatigue prediction with the

Fig. 6 The first and second rows present the topographic map of

fatigue-related index (PSDh þ PSDa)/PSDb constructed through

integrating the channel-based fatigue index, means of the every

10 mins of subject 1. The third and fourth rows present the

topographic map of fatigue-related index PSDh/PSDb) constructed

through integrating the channel-based fatigue index, means of the

every 10 mins of subject 1
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time on task, showing a marked increase in the prediction

curve (subject 4 and subject 10). The other subjects are

shown to have a more slow and conservative increase in the

prediction curve as the task progresses (subjects 3 and

subject 8). A similar trend is exhibited in the entropy

specific properties for fatigue detection (Fig. 8). This

phenomenon has been explored in literature and is seen to

have similar outcome (Wu et al. 2016; Charbonnier et al.

2016). Therefore, system calibration for individual detec-

tion of fatigue sensitive channels is of utmost importance,

making the algorithm more robust and applicable in real-

istic conditions.

Comparison of the two methods

In this paper, we have assessed two methods for estimating

mental fatigue levels: power spectrum density and sample

entropy analysis. From the prediction lines, there is obvi-

ous increasing trend of power spectrum density and

decreasing trend of sample entropy during the experiment.

It demonstrated that the subjects were detected to be in a

fatigue state, significantly different than the initial state at

the beginning of experiments. However, the change of PSD

prediction line is more clear than the SE prediction line,

making PSD more robust for setting a threshold for early

prediction of fatigue.
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Fig. 7 Power spectrum density integrated metrics for driving fatigue prediction during the online experiment of 5400 s (90 mins) for subject 1 to

subject 10
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Fig. 8 Sample entropy fatigue index for driving fatigue prediction during the online experiment of 5400 s (90 mins) for subject 1 to subject 10
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Conclusion

In this paper, a novel real-time driving fatigue detection

system based on wireless dry EEG headset has been pro-

posed. Power spectrum density (PSD) and sample entropy

(SE) are applied in the online detection of mental fatigue.

For the PSD method, three frequency bands a, b and h are

extracted by wavelet packets transform and their corre-

sponding power spectrum density is obtained. Furthermore,

an integrated metric from subject specific fatigue-sensitive

channels by combining the two fatigue related indexes,

(PSDh þ PSDa)/PSDb and PSDh/PSDb is used to predict

the driving fatigue. For the sample entropy method, the

average SE of EEG from ‘O1h’ and ‘O2h’ is calculated,

and used for fatigue detection. Ten healthy subjects par-

ticipated in the experiment for two sessions, each being

conducted for 90 mins. From the results of the fatigue-

related index constructed through integrating the channel-

based fatigue index, there is an increasing trend being

observed during the experiment as the onset of fatigue

occurs. There is also a decreasing trend observed in the

sample entropy patterns when the driving fatigue appears.

This study indicated that both the proposed fatigue related

indexes are effective indicators for prediction of driver

fatigue.
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