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Incineration of Nanoclay 
Composites Leads to Byproducts 
with Reduced Cellular Reactivity
Alixandra Wagner1, Andrew P. White1, Man Chio Tang1, Sushant Agarwal1, Todd A. Stueckle2, 
Yon Rojanasakul3, Rakesh K. Gupta1 & Cerasela Zoica Dinu1

Addition of nanoclays into a polymer matrix leads to nanocomposites with enhanced properties to be 
used in plastics for food packaging applications. Because of the plastics’ high stored energy value, such 
nanocomposites make good candidates for disposal via municipal solid waste plants. However, upon 
disposal, increased concerns related to nanocomposites’ byproducts potential toxicity arise, especially 
considering that such byproducts could escape disposal filters to cause inhalation hazards. Herein, we 
investigated the effects that byproducts of a polymer polylactic acid-based nanocomposite containing 
a functionalized montmorillonite nanoclay (Cloisite 30B) could pose to human lung epithelial cells, 
used as a model for inhalation exposure. Analysis showed that the byproducts induced toxic responses, 
including reductions in cellular viability, changes in cellular morphology, and cytoskeletal alterations, 
however only at high doses of exposure. The degree of dispersion of nanoclays in the polymer matrix 
appeared to influence the material characteristics, degradation, and ultimately toxicity. With toxicity 
of the byproduct occurring at high doses, safety protocols should be considered, along with deleterious 
effects investigations to thus help aid in safer, yet still effective products and disposal strategies.

Biodegradable polymers such as linear aliphatic thermoplastic polyester1 polylactic acid (PLA)2–4, made from 
renewable resources2,3,5, have shown good biocompatibility6–8 and applicability in food packaging2 and medical 
areas7,8. Biodegradable polymers allow for the reduction of environmental risks resulting from high greenhouse 
gas emissions and fossil fuel energy usage5 otherwise encountered at the implementation of conventional petro-
chemical polymers such as polyethylene (PE), polyethylene terephthalate (PET), polyvinylchloride (PVC), poly-
propylene (PP), or polystyrene (PS)5,6,9. Additionally, since biodegradable polymers require 25–55% less power 
at their production when compared to the power used to generate petroleum-based polymers5, and because of 
their relatively low production cost resulting from implementation of new processing techniques6, it is expected 
that biodegradable polymers’ usage will increase in the future especially when considering the amount of plas-
tics being needed and/or consumed daily10,11. However, such biodegradable polymers, including PLA, are still 
brittle6,12,13 and lack the barrier4,12, thermal4,12, and impact resistance properties13 displayed by the conventional 
petroleum-based polymers6, thus limiting their consumer application.

Recent studies have showed that incorporation of nanoclays, i.e., layered mineral silicates14,15 with a platelet 
thickness of about 1 nm and lengths and widths in the micron range16,17, could enhance polymers’ mechani-
cal strength18–20, barrier21,22, and thermal properties6,18,23 when mixed at a low weight percent16,18. When such 
incorporation is attempted, the nanoclays need to be fully exfoliated within the polymer matrix6 to allow for 
increased interactions with the polymer, thus minimizing chain mobility and creating reinforcement effects18. 
For the increased interactions, such nanoclays need to be functionalized with organic modifiers to allow for 
the required miscibility within the polymer24,25, as well as a better incorporation/exfoliation19. One example of 
a nanoclay isolated from the clay fraction of soil14,15 is montmorillonite (MMT) which can be easily modified 
with methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium (to form Cloisite 30B (CC)) for facile incor-
poration within PLA1,19,26,27. The good miscibility observed upon such nanoclay incorporation is presumably 
due to interactions of the C=O moieties present in PLA with its modified hydroxyl groups1. Due to the result-
ing increased barrier properties20,28,29, UV dispersion21,30, transparency31, mechanical strength28,32, and a longer 
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shelf life17, polymer-based nanoclay nanocomposites have shown increased implementation in food packaging 
with the ability to withstand physical stresses associated with transportation and handling33. Further, PLA-CC 
nanocomposites were shown to provide a “green” packaging material that has a lower environmental impact and 
increased sustainability relative to conventional polymers1,12,17. Upon the end of their use, such nanocomposites 
are known to either be disposed in the landfills, incinerated, or recycled34,35. However, due to plastics relatively 
high stored energy value11, the PLA-based nanocomposites make good candidates for disposal via municipal solid 
waste (MSW) plants, with the waste being combusted to allow for the recovery of energy and reduction of volume 
of waste of up to 90%11.

Considering the large implementation that is envisioned for such nanocomposites, recent research is focused 
on determining whether they have toxicological profiles. The need to identify possible deleterious pathways is 
driven by the minimal studies on their toxicity in both manufacturing and disposal areas, with the available tox-
icity studies only considering the migration extracts from such nanocomposites36,37, and other numerous results 
showing that nanoclays by themselves can induce toxic effects upon exposure to lung cells38–41 in such areas42–44. 
Specifically, Maisanaba et al. examined the toxicity of migration extracts from a PLA-Clay 1 (a nanoclay modi-
fied with hexadecyltrimethyl-ammonium bromide (HDTA)) and PLA-Clay 2 (a nanoclay modified with HDTA 
and acetylcholine chloride) nanocomposite on Caco-2 and HepG2 cells and found no significant toxic effects36. 
Similarly, Maisanaba et al. examined the toxicity of a PLA-Clay 1 migration extract on Wistar rats and found no 
significant toxic effects37. However, Zia et al. examined the toxicity of nanocomposite films via investigation of cell 
attachment and spreading of L-929 cells on a chitin based polyurethane-bentonite nanocomposite and found that 
nanocomposites with increasing amounts of bentonite had adverse effects on the samples’ biocompatibility with 
less adhesion and dissimilar morphology of the cells relative to control cells45. Complementary, we and others 
showed that nanoclays by themselves decrease cellular proliferation38,40, cause mitochondrial46 and membrane 
damage46,47, induce reactive oxygen species (ROS) generation46, and genotoxic effects, such as micronuclei induc-
tion48,49 and changes in mRNA expression48.

Considering that ultrafine and fine-sized particles could result from disposal of nanocomposites via MSW 
plants to potentially escape exhaust filters42, and that the high temperatures encountered in the MSW disposal42 
could cause property changes of the incinerated material50,51 to create a byproduct with its own toxicological pro-
file40,52, we aimed to determine the toxicity of incinerated PLA-CC nanocomposites through the use of a model 
in vitro cell line, human bronchial epithelial (BEAS-2B) cells53. The toxicity of such thermally degraded nano-
composites (i.e., herein called byproducts) is expected to allow for correlation studies between the consumption/
usage and disposal stages during the nanocomposite’s life cycle, while also ensuring the individual toxicological 
impacts and material characteristics of the components themselves, i.e. PLA and nanoclay, as well as their associ-
ated byproducts, are explored. Such a study could potentially lead to mitigation strategies for worker protection 
and controlled land field disposal of byproducts to minimize bio-interactions.

Results and Discussion
Considering that nanocomposites (or nanoclay melt-mixed within polymers) have seen increased implementa-
tion in food packaging54,55, with such products being disposed by incineration because of their energetic costs 
reduction and cost recovery11,56, we aimed to design a platform for meaningful assessment of possible toxicity 
profiles. The need for toxicity studies is driven by the recent reports that show that nanoparticles resulted from 
incineration have the potential to escape filters in disposal areas42,57 and induce toxic effects on the lung40,41 of 
the workers present in such environments. However, no reports are existing that assess human exposures in such 
areas.

To demonstrate the feasibility of the designed platform, we used a model polylactic acid (PLA)-based nano-
composite since PLA has seen a high consumer implementation in the food packaging industry58,59 due to its 
known “green polymer” characteristics and granted approval by the Food and Drug Administration32,60. In the 
first part of the assessment strategy, we evaluated materials’ and byproduct resulting from incineration charac-
teristics, while in the second we assessed any induced deleterious effects of such byproducts on model human 
lung cells and correlated the observed toxicological mechanistic profiles with the starting material or resulting 
byproducts physico-chemical characteristics.

We first created the PLA-based nanocomposite (PLACC) by melt mixing Cloisite 30B (CC) into PLA61–64. 
Films formed from solely PLA served as controls. Consideration was given to CC as a model nanoclay because 
of its good miscibility in PLA4, large consumer implementation65,66, and the available reports on its toxicity on 
systems such as liver67, colon68, and lung40, where it has shown both reductions in proliferation and viability40,67,68, 
as well as cellular membrane damages67, changes in cellular morphology40, and increased reactive oxygen species 
(ROS) generation69.

We then aimed to mimic the route of disposal by incineration of such nanocomposites using conditions 
encountered in MSW plants42. Specifically for this, we thermally degraded both PLACC and the PLA control 
films under temperatures ranging from 25 to 950 °C and then evaluated the resulting moisture, volatile, and ash 
contents. As expected, no ash was obtained upon PLA films incineration, indicating complete degradation of 
the polymer (Table 1). However, PLACC had around 4% of its weight remaining as ash, likely due to CC, which 
was added at 5 wt. %. Additionally, PLACC had a significantly lower amount of volatile content relative to PLA, 
again, presumably due to the presence of such nanoclay. Our results are supported by Koh et al. who also showed 
byproduct formation after degradation at up to 700 °C of PLA containing either Cloisite 15A or Cloisite 20A 
respectively70. However, the ash content identified in our study was larger than the previous one, most likely 
because of a more prominent char resistance of the CC relative to the other nanoclays70 as dictated by their 
different thermal stability resulted from their respective organic modifier composition (i.e. amount of volatile 
compounds present) and the wt. % in which the organic modifier was added to them41. Specifically the organic 
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modifiers for Cloisite 15A or 20A respectively are made up of 2 tallow groups when compared to CC which is 
made up of only one tallow group (Scheme S1)70.

Based on our analysis, both PLA and PLACC lost the majority of their weight in the range of 300–600 °C, 
with PLACC showing a slightly slower degradation rate relative to control PLA (Fig. 1a). Overall, the differences 
in degradation rate and onset degradation temperature were fairly minimal between PLA and PLACC, showing 
that the addition of CC did not appear to significantly influence PLA’s thermal stability. It is known that thermal 
stability of nanocomposites is generally dependent on the degree of dispersion and wt. % of the nanoclays, with a 
well exfoliated nanocomposite displaying increased stability71,72. This is presumably due to the thermal stability of 
inorganic materials70, their interactions with the polymer substrate that allow for the formation of char by hinder-
ing the release of volatile products70,72,73, or/and to the nanoclays themselves which could potentially be creating 
a protective barrier when on the surface of the nanocomposite71.

The nanocomposites, control films, and their byproducts resulting from incineration were subsequently inves-
tigated for their chemical (elemental and molecular compositions) and physical (morphology, mechanical and 
optical properties, crystallinity and degree of exfoliation of CC in PLA, and hydrodynamic diffusion versus pro-
jected area of byproducts, respectively) characteristics.

For chemical characteristics specifically, the elemental composition of PLA, PLACC, and PLACC900 was 
determined by energy dispersive X-ray (EDX) spectroscopy. Analysis confirmed the presence of carbon and oxy-
gen as the majority of the elements for PLA (Fig. 1b), as well as a significant decrease in carbon content and 
increase in oxygen and silicon contents respectively in the PLACC nanocomposite presumably resulting from 
the incorporation of the CC14. Upon thermal degradation, the amount of carbon was significantly decreased, 
confirming the loss of PLA74. Additionally, PLACC900 had a significantly higher amount of oxygen, magnesium, 

Moisture Volatile Ash

PLA 0.49 +/− 0.18 99.70 +/− 0.27 0 +/− 0

PLACC 0.60 +/− 0.17 95.37 +/− 0.43* 3.92 + /− 0.10*

Table 1.  The amount of moisture, volatile, and ash present in PLA and PLACC as determined by TGA. The 
symbol * indicates a significant difference between PLA and PLACC (n = 4).

Figure 1.  (a) Thermal degradation profile of PLA and PLACC as determined by TGA (n = 2). Chemical 
characteristics analysis. (b) Elemental composition of PLA, PLACC, and PLACC900 as determined by EDX 
(n = 5; taken from 5 different areas on the sample). The symbol * and ~ indicate significant differences between 
PLA and PLACC and between PLACC and its incinerated byproduct, PLACC900, respectively. (c) FTIR spectra 
for PLA, PLACC, and PLACC900 (n = 2).
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aluminum, silicon, and iron, all relative to PLACC with such elements being associated with the presence of the 
nanoclay itself14,75, thus signifying that the ash content was made up mostly of the nanoclay byproduct.

Molecular composition of the nanocomposites, PLA control films, and PLACC900 was determined by 
Fourier Transform Infrared Spectroscopy (FTIR). PLA and PLACC both displayed similar spectra (Fig. 1c), 
as previously reported for PLA itself21,76–78. Specifically, both PLA and PLACC displayed peaks at 1267, 1181, 
1090, and 1045 cm−1, indicative of -C-O- stretching76,77 and at 1454, 1384, and 1362 cm−1, indicative of symmet-
ric and asymmetric deformational vibrations of C-H present in the CH3 groups of the PLA respectively21,76–78. 
Additionally, the peaks present at 2995 and 2944 cm−1 and 1747 cm−1 were indicative of -CH-76–78 and C = O 
stretching21,77,78, respectively. Finally, the peak at 871 cm−1 was presumably due to -C-C bond formation76,77. Peaks 
specific for CC did not show up in PLACC likely due to the low concentration at which this nanoclay was added 
when the nanocomposite was formed. Similar results were obtained by Moo-Espinosa et al., when CC was exfo-
liated into segmented polyurethanes at concentrations of 2, 6, or 10 wt. %, respectively79.

All of the peaks associated with PLA were no longer present for the byproduct, PLACC900, confirming the 
degradation of the polymer upon nanocomposite’s incineration. The only 2 peaks remaining for PLACC900 
were associated with Si-O-Si stretching vibration of silicate as indicated by the peak around 1000 cm−1 46,80, and 
Si-O indicated by the peak observed around 780 cm−1 81. Along with the loss of polymer, the nanoclay itself also 
lost its organic modifier as confirmed by the absence of peaks at 2920, 2850, and 720 cm−1 46,80–82. Further, the 
loss of the alumino-silicate lattice normally displayed by MMT was confirmed by the loss of peaks associated 
with Al-OH-Al deformation (900 cm−1)46,80 and OH respectively which was previously linked to Al3− and Mg2− 
(840 cm−1) (Supplementary Fig. S1)81.

For physical characteristics we considered that thermal degradation led to an ash byproduct, as such we only 
investigated the crystallinity of PLA and PLACC, as well as the degree of exfoliation of CC within the polymer, 
by using X-ray diffraction (XRD) in the 2θ ranges of 5–80° and 1–10°, respectively. In the context of our goal 
to design a platform for meaningful assessment of toxicity, crystallinity was to be evaluated since it has been 
previously shown to influence toxicity83–85, with crystalline materials being known to produce oxidant species 
with pronounced deleterious cellular effects83,85. Also, exfoliation of nanoparticles has previously shown to influ-
ence toxicity, with studies showing that toxicity generally decreased when nanoparticles were properly exfoliated 
versus when they were in agglomerate forms86,87. Further, both crystallinity and exfoliation have been shown to 
influence degradation of materials64,87,88, which in itself could potentially cause for a differential change in dele-
terious effects89.

Our analysis showed that in the 2θ range of 5–80°, both PLA and PLACC displayed broad peaks around 15.4 
and 18.1°, respectively (Fig. 2a), which are characteristic of neat PLA90 thus confirming the amorphous structure 
and low crystallinity of the samples79,91 likely induced by the high cooling rates used during the molding process 
of the polymer92.

No peaks were observed for PLA in the 1 to 10° 2θ range which was in contrast with CC and PLACC which 
both displayed peaks within that range (Fig. 2b). Specifically CC, displayed a peak at around 4.8°, presumably 
indicating a basal spacing of 1.85 nm93. This peak was also present for PLACC, however at a lower intensity, 
presumably demonstrating that a small amount of the nanoclays were likely agglomerated within the polymer 
matrix12. Additionally, PLACC displayed peaks at smaller angles, i.e., around 1.8° (basal spacing of 4.92 nm) and 
2.5° (basal spacing of 3.54 nm) respectively, presumably due to the penetration of the polymer chains between 
the nanoclay platelets and that resulted in increased basal spacing to confirm intercalation or exfoliation of the 
nanoclay within the PLA12,94–96.

The CC did not seem to be completely surface exfoliated within PLA96, as confirmed by surface morphology 
analysis performed by scanning electron microscopy (SEM). Specifically, results showed that PLACC displayed a 
slightly rougher morphology relative to PLA used as control (Fig. 3a,b). Complementary, upon nanocomposites 
degradation, PLACC900 displayed generally two types of morphologies, namely one with a fragmented surface 
with platelets jutting out, and a second one with a porous conformation (Fig. 3c,d). Such different morphologies 
may be due to differential distribution and degrading of the nanoclay within the polymer matrix, interactions 
of the nanoclay with the polymer, and/or the different exfoliation noted. Degree of dispersion can be controlled 

Figure 2.  Physical characteristics analysis. (a) Crystallinity of PLA and PLACC as determined via XRD. (b) 
Exfoliation of CC in PLACC as determined via XRD.
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in the future by manufacturing parameters, such as, temperature97, time22, and feed rate98. Previous results by 
Stueckle et al., showed a porous morphology if only CC was degraded, with the degraded CC’s (CC900) mor-
phological changes being attributed to the interactions of the organic modifier with Si-O and Al-O bonds in 
the pristine clay and an increase in basal spacing of the nanoclay52. The porous morphology of the degraded 
nanocomposite, PLACC900, could also be attributed to the polymer increasing the basal spacing between CC, 
with the fragmented morphology potentially due to agglomerated CC. Indeed, our control experiments of ther-
mally degraded CC (CC900) showed that the main difference between the thermally degraded nanocomposite 
(PLACC900) and CC900 respectively, appeared to be related to the physical properties and not changes in the 
elemental or molecular properties of the two samples (Supplementary Fig. S1).

Additional physical characterizations of transparency and UV dispersion of PLA and PLACC provided fur-
ther insights into the exfoliation of CC into PLA. Both means of characterizations have previously been shown to 
be contributing to understanding physical properties and implementation as they allow for a consumer “to see the 
product” and for the blocking of light/UV transmission to increase product’s shelf life99 by reduction in the UV 
driven lipid oxidation and discoloration100. Analysis showed that PLA and PLACC displayed similar absorbance 
spectra with peaks around 245 and 270 nm, respectively (Supplementary Fig. S2). PLACC also had a significantly 
higher transparency than PLA (Supplementary Table S1) which could indicate a better orientation upon addition 
of CC in the nanocomposite volume12,101 since previous analysis showed that cast control films typically have a 
low degree of crystallinity and transparent appearance due to the rapid cooling74. Complementary, both PLA 
and PLACC generally displayed good UV dispersion properties with around 4 and 3% transmittance, respec-
tively. The slight decrease in PLACC’s UV dispersion relative to PLA was most likely due to the presence of the 
nanoclays which are known to enhance the scattering of the UV light102. Additionally, upon incorporation of CC, 
PLACC displayed a color change (to a brown color, Supplementary Fig. S2), further known to be preferable for 
preventing UV transmission in food packaging103.

Mechanical properties analysis of the nanocomposite showed that PLACC had a significantly higher Young’s 
Modulus relative to PLA films, thus indicating that CC interacted with the polymer within the volume of the 
nanocomposite (Supplementary Table S2)71. However, both the elongation and the tensile strength were lower 
for the nanocomposites when compared to control films of PLA, presumably due to an uneven dispersion of 
CC with reduction in chain mobility caused by dispersed nanoclay104 and the reduction in strength caused by 
agglomerated or poorly dispersed areas containing nanoclay105. Further, such agglomerated nanoclays caused for 

Figure 3.  Surface morphology of (a) PLA, (b) PLACC, and (c), (d) the two morphologies displayed by 
PLACC900 as determined by SEM.
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poor interfacial bonding between the nanoclays and polymers, leading to the formation of microcracks in such 
areas104,106, as well as lower plasticity107, thus confirming uneven distribution of CC, with likely both agglomerated 
and exfoliated particles, as previously shown for the PLACC nanocomposite.

Lastly, the hydrodynamic diffusion versus projected area of byproducts was evaluated via dynamic light 
scattering (DLS) since previous analysis have showed that the size of a particle could influence its toxicity108 
and internalization profiles108. Specifically, spherical particles less than 10 µm can be inhaled109,110 with parti-
cles smaller than 2.5 µm potentially reaching the alveoli109. Further, particles of up to 25 µm in diameter were 
shown to be deposited in ciliated airways if they had a platelet like morphology and a thickness of less than 
0.1 µm111. In our investigations, a cellular relevant media and a control buffer solution (PBS) were used. Analysis 
showed that PLACC900 displayed size distributions in the micrometer range in both media and control buffer, 
PBS (Supplementary Fig. S3). Specifically, 90% of the particles were under 13 µm, with 50% of such particles being 
under 5 µm, respectively (Table 2). The lack of difference in size distribution between the 2 chosen solutions was 
presumably due to the recorded loss of the organic modifier from CC and the majority of the polymer matrix41. 
Specifically, the presence of the organic modifier has shown to cause for size differences between organically 
modified clays41 due to interactions of the modifier with proteins in the media, with differences dependent on 
the make-up of the organic modifier and its relative hydrophilicity. However, once the organic modifier was lost, 
these size differences between the nanoclays no longer existed41.

Thermally degraded PLACC byproduct (i.e., PLACC900) was exposed to model human bronchial epithelial 
(BEAS-2B) cells. BEAS-2B cells were chosen for inhalation toxicity assessment due to their ease of handling and 
incorporation in numerous studies evaluating toxicity of nanoparticles via the route of inhalation112–115.

A dose response curve was initially performed to identify the PLACC900 concentrations that will create a 
differential effect on the cell viability. Specifically, cells were exposed to doses of 0.1, 1, 50, 100, 250, 300, 500, and 
750 µg/ml for 24 h (Fig. 4a). The large number of doses was chosen to mimic what a worker might inhale in areas 
of disposal, where it is known that concentrations could vary based on the point of emission, time of day, the 
amount and incorporation of the nanoparticle in the material being disposed, as well as the amount of the mate-
rial being disposed, respectively43,116,117. Additionally, such doses represent different working lifetimes by taking 
into account total work hours, and particle and lung characteristics of the worker118.

Analysis showed that the resulting IC50 value (i.e., concentration of PLACC900 required to inhibit cell growth 
by 50%) of PLACC900 was 435 µg/ml. No significant decrease in cell viability was observed for cells exposed to 
100 µg/ml (below IC50) over the 72 h (Fig. 4b). However, after 24 h of exposure a significant decrease in cellular 
viability (around 20 and 50%) was observed when BEAS-2B cells were exposed to PLACC900 at 300 and 500 µg/
ml, respectively. This effect continued for BEAS-2B cells exposed to 500 µg/ml PLACC900 throughout the 72 h of 
exposure. When examining the effect of doses under the IC50 value of PLACC900 over time on cellular prolifera-
tion, there were not any significant decreases even after 72 h of exposure (Supplementary Fig. S4).

The decrease in cellular viability could be due to the accumulation of reactive oxygen species (ROS) and the 
effects that such accumulation could induce on the cells119. In particular, previous studies have showed that CC 
by itself could induce internal ROS69 to lead to cellular membrane damage and cell morphology changes from 
an oval to a more circular profile120,121. Our results showed that the cells exposed to 300 µg/ml PLACC900 had a 
significant decrease in extracellular ROS after 72 h of exposure, indicating that ROS may be building up within 
individual cells119, to potentially cause damage to internal organelles or cell membrane and shape46 (Fig. 4c). 
In our experiments, cells were only exposed to doses below the IC50 in order to ensure that the cell population 
would be high enough to produce observable extracellular ROS (control measurements were from live cells). 
The observed error bars are attributed to the byproducts interaction with the reagent122 or to the variability in 
the surface morphology of the byproduct38. Indeed, when examining the byproduct itself (no cells), both doses 
showed to produce more extracellular ROS relative to the media alone, though this effect was only significant at 
72 h (Supplementary Fig. S5).

Cellular imaging complemented the above results showing a dose-dependent behavior for cells exposed to 
PLACC900 at 100, 300, and 500 µg/ml over a 24 h period. For these observations, the plasma membrane was 
stained red and nucleus blue (Fig. 5a–d). Analysis showed that at 24 h of exposure, the control and cells exposed 
to 100 µg/ml displayed a confluent monolayer with oval cells. However, the cells were no longer confluent upon 
exposure to doses of 300 µg/ml and higher. Further, the cells seemed to assume irregular shapes relative to the 
controls, with stretched or circular profiles being noted. Cells exposed to 500 µg/ml PLACC900 displayed the 
greatest loss in cell monolayer.

The observed change in shape as well as the loss of the cellular monolayer and buildup of ROS could indicate 
that cells may have begun to lose their ability to attach to substrates, as well as to other cells, two mechanisms hint-
ing at deleterious effects and potential toxicity120,121,123,124 of the byproducts. Indeed, our electrical cell-substrate 
impedance sensing (ECIS) analysis indicated that cells exposed to PLACC900 at 100, 300, and 500 µg/ml and 
subsequently monitored for 72 h (Fig. 6a) had changes in their resistance pathways which were both time and 
dose dependent. ECIS is known to monitor changes in cell-cell and cell-substrate interactions, cell morphology, 

PBS Media

<10% 3.00 +/− 0.01 3.12 +/− 0.08

<50% 4.57 +/− 0.01 4.84 +/− 0.29

<90% 12.67 +/− 0.03 12.14 +/− 1.14

Table 2.  Average particle size distributions (µm) of PLACC900 in cellular media and control buffer, PBS 
(n = 3).
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and coverage in real time125,126, with such changes being quantitatively analyzed, at a nanoscale resolution, and 
in a non-invasive122,127, and high-throughput manner125,126,128,129. Specifically, while cells exposed to 100 µg/ml 
had very similar resistance values relative to the control over the whole exposure time, cells exposed to 300 and 
500 µg/ml of the byproducts displayed an initial increase in resistance, with the increase being more dramatic and 
longer for the 500 µg/ml dose. However, after 24 h of exposure, the resistances lowered, again, all relative to the 
control cells. Such drops in resistance complement the observed decreases in cell viability, proliferation, and mon-
olayer coverage. Additionally, changes in cell shape, especially, from a stretched, spread cell to a more rounded 
one with less contact with the electrode surface could explain the decreased resistances125,126.

The recovery of cells exposed to PLACC900 was also non-invasively monitored in order to determine if any 
of the observed effects lasted. Only 100 and 300 µg/ml doses were again used in order to allow for an adequate 
number of cells to be added to the electrodes. Overall, the cells ability to recover was dose dependent. Specifically, 
analysis showed that after 24 h of exposure to 100 and 300 µg/ml of PLACC900, the cells showed lower resist-
ance values relative to the control over their first 24 h of recovery (Fig. 6b). However, cells exposed to 100 µg/ml 
PLACC900 had similar resistances to the control within 48 h of recovery, while cells exposed to 300 µg/ml had 
similar resistances to the control within 60 h of recovery. After a 48 h exposure to PLACC900, cells exposed to 
100 µg/ml also had slightly lower resistance values relative to the control again over the first 48 h of recovery, but 

Figure 4.  (a) Dose response curve (based on live cell counts) for BEAS-2B cells exposed to PLACC900 from 
0–750 µg/ml (n = 5). The data was fit via a sigmoidal curve using OriginPro (OriginLab Corporation) software. 
(b) Cellular viability (based on WST assay) for cells exposed to PLACC900 (n = 6). The symbol * indicates 
a significant difference between the control cells and exposed cells. The values are normalized relative to the 
controls. (c) Extracellular ROS of cells exposed to varying doses of PLACC900 (n = 4). The symbol * indicates 
a significant difference between the control cells and exposed cells. Significance was determined by one-way 
analysis of variance ANOVA with p < 0.05, * indicating significance.

Figure 5.  Fluorescent images of the cell membrane (red) and nucleus (blue) for (a) control cells and cells 
exposed to PLACC900 at (b) 100 µg/ml, (c) 300 µg/ml, and (d) 500 µg/ml after 24 h.
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eventually had similar resistances to the control cells by 40 h of recovery (Fig. 6c). Cells exposed to 300 µg/ml of 
PLACC900 had slightly lower resistances relative to the control cells over the full 72 h of recovery. Finally, after 
72 h of exposure to the byproduct, cells exposed to 100 µg/ml had higher resistances relative to the control for the 
first 40 h of recovery, while cells exposed to 300 µg/ml had lower resistances relative to the control over the full 
72 h of recovery (Fig. 6d). Similar to our results, AshaRani et al. noted that cells exposed to 400 µg/ml concentra-
tions of silver nanoparticles took a month to recover when compared to cells exposed to 100 or 200 µg/ml silver 
nanoparticles which were able to recover completely within 5 or 15 days, respectively130.

The ability of the cells to recover was also confirmed by cell cycle analysis (Fig. 6e) with analysis showing that 
there were no significant differences in cell cycle phases for G1, G2, or S after exposure to any of the doses, all 
relative to the control cells. While previous studies have shown genotoxic effects of nanoclays, ranging from DNA 
strand breaks67 to condensed chromatin131 and micronuclei132, as well as, changes in gene expression132, the lack 
of cell cycle arrest and normal progression through the cell cycle for cells exposed to PLACC900 hints at DNA 
stability133 and lack of DNA damage134 at lower doses.

The observed recovery after removal of the exposure could be attributed to a volume-based dilution of the 
internalized byproducts of PLACC900 and/or lower toxicity that such byproducts have on the cell. For the first, 
previous analysis showed that internalized gold nanoparticles for instance were devised between the surviving 
cells to lead to a cell recovery profile dependent on the cell growth and division135. However, in such studies, the 
nanoparticles were around 45 and 13 nm, much smaller relative to the sizes recorded for PLACC900135. For the 
second, PLACC900 seems to be following a similar toxicity profile to thermally degraded nanoclays which have 

Figure 6.  (a) Representative real-time measurements of normalized resistance for BEAS-2B cells before and 
during exposure to PLACC900 from 100–500 µg/ml. Representative real-time measurements of normalized 
resistance for the recovery of BEAS-2B cells over 72 h after exposure to PLACC900 for (b) 24 h, (c) 48 h, and (d) 
72 h. (e) Percentage of cells in the G1, G2, or S phase of the cell cycle after exposure to 1–100 µg/ml PLACC900 
(n = 4).
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previously been shown to be less toxic relative to their as-received counterparts40,41. Previous results focused on 
nanoclays alone also showed wide ranges in toxicity with IC50 values as low as around 1 µg/ml39 to more than 
1000 µg/ml136, generally with the organic modifier being the cause of the toxicity39,67–69. In particular, thermally 
degraded byproducts of one pristine and three organically modified Nanomer nanoclays had higher IC50 values 
(indicating lower toxicity) relative to their as-received counterparts when exposed to two types of lung cells41. The 
lower toxicity effects were attributed to loss of the organic modifier, along with changes in morphology, size, and 
molecular and elemental composition of the byproduct when compared to the as-received one. Some changes 
may however exist herein for the nanocomposite when compared to the nanoclay most likely due to morphology, 
size, or potential polymer species trapped within the nanocomposite byproduct. For instance, while some of the 
smaller PLACC900 particles may be internalized137,138, it is likely that PLACC900 causes deleterious effects at 
the cell membrane level, disrupting the present macromolecules and potentially causing membrane damage87 
or causing rupturing due to its uneven, jagged profile as displayed by SEM86,87, however with such damage to be 
recovering in a time-dependent manner as shown by our real-time analysis. Additionally, the variability observed 
in toxic effects may be due to the variable surface morphology and size of the byproducts. Finally, PLACC900 
itself may have effects similar to that of crystalline silica, i.e., inflammation and collagen deposition, since it 
contains similar CC900 properties previously shown to produce a low, persistent inflammation profile in mice52.

Conclusions
PLACC900 byproducts were obtained by incineration of a PLA-based nanocomposite reinforced with methyl, tal-
low, bis-2-hydroxyethyl, quaternary ammonium montmorillonite (CC). Characterization of PLACC900 showed 
a loss of CC’s organic modifier and the majority of the polymer matrix, as well as the appearance of two different 
surface morphologies attributed to the uneven dispersion of CC enforcing the PLA. Toxicity in an in vitro human 
lung epithelial cell line only occurred at higher end doses with the majority of the cells displaying the ability to 
recover when exposed at low doses. Specifically, the toxic effects of PLACC900 generally did not appear until the 
dose of 300 µg/ml, with doses at and above 300 µg/ml causing decreases in cellular viability and coverage, as well 
as alterations to cellular morphology and to the cytoskeleton. While more information is required to determine 
mechanisms for nanocomposites degradation and ultimately toxicity of their end of life cycle byproducts, proper 
engineering control and protocols for workers in areas of nanocomposite disposal should be implemented to help 
lessen their inhalation exposure to high doses of thermally degraded byproducts.

Methods
Nanocomposite and Incinerated Byproducts Preparation.  Cloisite 30B (CC) was obtained from 
Southern Clay Products (Gonzales, TX) and, per the manufacturer specifications, organically modified via an 
ion-exchange reaction with methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium (Scheme S1) at a concen-
tration of 90 meq/100 g clay. Polylactic acid 6752 (PLA; NatureWorks) was melt-mixed with CC loaded at a 5 wt. 
%, in a Thermo-Haake internal mixer operating at 200 °C and 80 rpm for 5 min. Thin films were then molded at 
200 °C using a compression press to form PLA-CC nanocomposites (PLACC), as well as PLA films to be used as 
controls.

Samples of PLA and PLACC (1 g per sample) were thermally degraded using a TGA701 Thermogravimetric 
Analyzer (LECO) to mimic their disposal. To determine the moisture content, the samples were heated in nitro-
gen at a rate of 6 °C/min and in a range of temperatures from 25 °C to 105 °C. To determine the volatile content, 
the samples were heated from 105 °C to 950 °C, also in nitrogen and at a rate of 43 °C/min. Finally, to determine 
the ash content, the samples were heated from 550 °C to 900 °C in oxygen, at a rate of 15 °C/min. The resulting ash 
was collected to serve as a model of the byproducts resulted from incineration i.e., thermally degraded PLA-CC 
nanocomposite (PLACC900).

Materials Characterization.  Elemental composition and surface morphology of PLA, PLACC, and 
PLACC900 were investigated using a Hitachi S-4700 Field Emission Scanning Electron Microscope (SEM, 
Hitachi High-Technologies Corporation) equipped with energy dispersive X-ray (EDX) spectroscopy. Surface 
morphology was examined at 5.0 kV while elemental composition was determined at 20.0 kV. For the analyses, 
dry films or powder samples (ca. 10–15 mg) were mounted onto a carbon tape and then sputter coated with gold/
palladium for 10 s in vacuum injected with argon. The argon atoms were ionized and collided with the gold/
palladium target, causing the metal ions to deposit on the sample in a thin conductive layer of about 3 nm, as 
calculated using the equation

=d kIVt,

where d is thickness, k is a constant value of 0.17, I is plasma current, V is voltage, and t is the time. For the EDX 
analysis, data was obtained from 5 different areas of each respective sample portion used.

Molecular composition of the samples (PLA, PLACC, and PLACC900) was determined using Fourier 
Transform Infrared Spectroscopy (FTIR, Digilab FTS 7000) equipped with diamond Attenuated Total Reflection 
(ATR). Scans were collected in the range of 4000–400 cm−1 at a resolution of 4 cm−1; a total of 100 scans were 
co-added to form the final spectrum for each of the samples.

The crystallinity of PLA and PLACC and the degree of exfoliation of CC in PLACC was determined via X-ray 
diffraction (XRD). Specifically, PANalytical X’Pert Pro XRD (PANalytical) was used to determine crystallinity 
via a Cu-kα1 8047.2 eV source at 45 kV and 40 mA with a 10 sec/step in a 5–80° 2θ range. Bruker D8 Discovery 
XRD (Bruker) was used to determine the degree of exfoliation of CC in PLACC; thin films were mounted on the 
sample holder and diffraction was obtained in the 2θ range of 1–10° at an increment of 0.02° and scan speed of 
10 sec/step via a Cu-kα1 8047.2 eV source at 40 kV and 40 mA. Basal spacing was determined by Bragg’s equation
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λ = θn 2dsin ,

where n is an integer, λ is the wavelength of the X-ray radiation (0.1546 nm), d is the spacing between lattice 
planes, and θ is the measured diffraction angle.

The absorption spectra for PLA and PLACC was determined in the range of 200–800 nm via the Shimadzu 
UV-Vis spectrophotometer (Shimadzu Scientific Instruments). UV barrier properties of the film were deter-
mined by measuring transmission at 280 nm, and transparency of the films was determined by measuring trans-
mission at 660 nm, also via the Shimadzu UV-Vis spectrophotometer.

The tensile strength, Young’s Modulus, and elongation at break for films of PLA and PLACC were evaluated 
via the Instron E1000 (Instron Corporation) under a 2 kN load cell and using the Bluehill 3 software. For this, rec-
tangular films of PLA and PLACC, 5 mm in width × 32 mm in length × 0.3 mm in thickness, were placed in the 
Instron grips, and the experiments were performed with a crosshead speed set at 5 mm/min. A specimen gauge 
length of about 25 mm was used for each sample upon gripping in the crosshead.

The size distribution of PLACC900 was determined by dynamic light scattering (DLS) via the Mastersizer 
2000 with a Hydro 2000S accessory (Malvern Instruments). For this, solutions of PLACC900 dispersed and bath 
sonicated in cell culture media (Dulbecco’s Modified Eagle Medium: DMEM) containing 5% fetal bovine serum 
(FBS), 1% L-glutamine, and 1% penicillin-streptomycin or in phosphate buffered saline (PBS) were dropped into 
the Hydro 2000S until laser obscuration was within 10–20%. The size analysis was performed 3 consecutive times 
with a stirrer speed of 1750 rpm and under continuous sonication. The media and sonication conditions were 
chosen to mimic the cell exposure studies.

Cell Culture.  Immortalized human bronchial epithelial (BEAS-2B) cells were cultured in DMEM media 
containing 5% FBS, 1% L-glutamine, and 1% penicillin-streptomycin (all reagents were purchased from Life 
Technologies). The cells were passaged regularly using 0.25% trypsin (Invitrogen) and incubated at 37 °C, 5% 
CO2, and 80% relative humidity. Before each experiment cells were grown to a confluent monolayer.

Dose Response Curve (IC50)/ Cell Viability.  BEAS-2B cells were seeded in a 12 well plate (Falcon) at a 
density of 2.0 × 105 cells/ml. After 24 h, the cells were exposed to PLACC900 from 0–750 µg/ml, with the doses 
obtained by serial dilutions. For this, samples were first sonicated for 8–10 min in media by using a bath sonicator 
(Branson). After 24 h of exposure to PLACC900, the cells were trypsinized and stained with 0.4% trypan blue 
solution (Invitrogen). Subsequently, 10 µl of the sample containing the stained cells was added to a hemocytom-
eter (Hausser Scientific), and the number of cells in the 4 outer grids was counted through use of the Leica DM 
IL optical microscope (Leica Microsystems) using a 10X objective. Cell counting was performed via the hemo-
cytometer and microscopy to allow for proper distinction between cells and any remaining byproduct present in 
the cellular suspension. OriginPro (OriginLab Corporation) software was used to determine the IC50 value via fit 
with a sigmoidal curve.

In another assay, BEAS-2B cells were seeded in a 96 well plate (CellTreat Scientific Products) at a density of 
2.0 × 105 cells/ml. After 24 h, the cells were exposed to PLACC900 at 100, 300, and 500 µg/ml dispersed in media 
following 8–10 min sonication. Cells in only media served as controls. The 4-[3-(4-Idophenyl)-2-(4-nitrophenyl)-
2H-5-tetrazolio]-1,3-benzene disulfonate known as WST-1 assay (Roche, USA) was used to determine cellular 
metabolic activity since it is known that changes in color of such reagent are produced when cellular dehydroge-
nases of metabolically active cells reduce it to formazan139. Twenty four, 48, and 72 h post exposure to PLACC900, 
10 µl of WST was added to the wells. Cells (exposed and control) were incubated for 2 h and absorbance was read 
at 485 nm using a FLUOstar OPTIMA plate reader (BMG LABTECH). Media and PLACC900 byproduct dis-
persed in media served as blanks with their absorbance values being subtracted from the cellular measurements 
counterparts.

Extracellular Reactive Oxygen Species (ROS).  BEAS-2B cells were seeded in a 12 well plate at a density 
of 1.5 × 105 cells/ml. After 24 h, the cells were exposed to 100 or 300 µg/ml of PLACC900 dispersed in media 
as previously described. After 24, 48, and 72 h of exposure, 50 µl of media from each treatment was transferred 
to a black-bottomed 96 well plate (Corning, Inc.). Subsequently, 50 µl of PBS and 50 µl of Lumigen ECL Plus 
(Lumigen, Inc.) were added to each well, and the samples were incubated for 5 min in the dark. Luminescence 
was read at 600 nm via the FLUOstar OPTIMA plate reader. Media as well as PLACC900 dispersed in media, at 
each dose, served as blanks. Extracellular reactive oxygen species (ROS) was calculated by subtracting PLACC900 
luminescence (determined via subtraction of media from the PLACC900 + media blanks) from the respective 
cellular measurements.

Cellular Imaging.  BEAS-2B cells were seeded on glass coverslips (15 mm diameter; Fisher Scientific) in a 
12 well plate at a density of 1.5 × 105 cells/ml overnight. The cells were subsequently exposed to 100, 300, or 
500 µg/ml PLACC900 dispersed in media as previously described. After 24 h, the media was removed and the 
cells were washed two times with Hank’s Balanced Salt Solution (HBSS) (Corning, Inc.), fixed with 4% formalde-
hyde (Sigma-Aldrich) for 15 min and at 37 °C, and subsequently washed 3 more times with HBSS to remove any 
remaining formaldehyde. The cells’ plasma membranes and nuclei were then stained with 3 µg/ml Alexa Fluor 
594 wheat germ agglutinin (WGA) and 2 µM Hoechst 33342 (Image-iT LIVE Plasma Membrane and Nuclear 
Labeling Kit, Life Technologies), respectively, both dispersed in HBSS, for 10 min and at 4 °C. After incubation, 
cells were washed 2 times with HBSS, the cover slides were mounted on glass coverslips, and imaged under a 
Nikon Inverted Microscope Eclipse Ti Series (Nikon) and a 40X objective. The NIS-Elements BR 3.1 software was 
used to analyze the size and morphology of the cells.
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Electrical Cell-substrate Impedance Testing.  Real-time measurements of BEAS-2B cellular resistance 
during and after exposure with PLACC900 were performed using an electrical cell-substrate impedance sensing 
instrument (ECIS-ZΘ, Applied Biophysics, NY). For such cellular studies, a 96 well plate (96W10idf) that con-
tained inter-digitated finger connection electrodes covering an area of about 4 mm2 of each well were used. Before 
addition of the cells, the electrodes were stabilized for 2 h with 200 µl of media to minimize any drift during the 
experiment.

For exposure, BEAS-2B cells were seeded on the ECIS electrodes at a density of 2.0 × 105 cells/ml in a volume 
of 150 µl/well. After 24 h, the cells were exposed to 100, 300, or 500 µg/ml of PLACC900, dispersed in media; cells 
in media served as controls. The resistance of the cells was monitored continuously for 72 h. The recovery of the 
cells was also monitored for 72 h. For this, parallel experiments were performed in which, after 24, 48, and 72 h of 
exposure, the cells were trypsinized and counted so that 1.0 × 105 cells/ml could be added to its respective ECIS 
well at a volume of 150 µl/well.

Cell Cycle.  BEAS-2B cells were seeded in a 6 well plate (Corning, Inc.) at a density of 2.5 × 105 cells/ml; cells 
in media served as controls. After 24 h, the cells were exposed to 1–100 µg/ml (1, 10, 25, 50, and 100 µg/ml) 
of PLACC900 dispersed in media as previously described. After 24 h, the cells were washed 2 times with PBS, 
trypsinized, pelleted, and washed again. The cells were then resuspended and fixed with 70% ethanol overnight 
at −20 °C. Subsequently, the cells were pelleted and the ethanol decanted. The cells were once again washed and 
resuspended in 0.2% Tween 20 (Fisher Scientific) for 15 min at 37 °C. In another step, PBS was added and the cells 
were pelleted and resuspended in 180 µg/ml Ribonuclease A-PBS (Sigma-Aldrich) for 15 min at room tempera-
ture. Finally, the DNA of the cells was stained via a 15 min incubation with 75 µg/ml propidium iodide solution 
(Sigma-Aldrich) at room temperature. After incubation, the volume was brought up with 300 µl of PBS. The cells’ 
DNA content was then analyzed via the BD LSRFortessa (BD Biosciences) and BDFACSDiva 8.0 software and 
knowing that the amount of DNA will double in the G2 phase when compared with S phase of the cell cycle. There 
were 20,000 events contained in the gated area of the live cell population per sample (formed via forward scatter 
and side scatter) used for analysis.

Statistical Analyses.  All cellular experiments were repeated at least 4 times for all samples, with the excep-
tion of cellular imaging which was repeated 3 times. All tables are presented as the average value with (+/−) 
SD values. All graphs are presented as the mean value of the number of indicated replicates with (+/−) SE bars. 
Significance was determined by one- or two-way analysis of variance ANOVA with p < 0.05* indicating signifi-
cance. OriginPro software was used for determination of the IC50 value for PLACC900 by using a sigmoidal dose 
response fit on the average of the 5 replicates.

Disclaimer.  The findings and conclusions in this report are those of the author(s) and do not necessarily 
represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease 
Control and Prevention.
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