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Abstract: Cancer models derived from patient specimens poorly reflect early-stage cancer development because 
cancer cells acquire numerous additional molecular alterations before the disease is clinically detectable. Earlier 
studies have used differentiated cells derived from induced pluripotent cancer cells (iPCCs) to partially mirror can-
cer disease phenotype, but the highly heterogeneous nature of cancer cells as well as difficulties with reprogram-
ming cancer cells has limited the application of this technique. An alternative approach to modeling cancer in a 
dish entails reprogramming adult differentiated cells from patients with cancer syndromes to pluripotent stem cells 
(PSCs), followed by directed differentiation of those PSCs. A directed reprogramming and differentiation strategy has 
the potential to recapitulate cancer progression and capture the earliest molecular alterations that underlie cancer 
initiation. The reprogrammed cells share patient-specific genetic and epigenetic traits, offering a new platform to 
develop personalized therapy for cancer patients. In this review, we will provide an overview of available reprogram-
ming methods of cancer cells and describe how cancer-derived stem cells have been used to characterize effects 
of defined molecular alterations in specific cell types. We also describe the “disease in a dish” model developed 
to study genetic cancer syndromes. These approaches highlight recent contributions of stem cell technology to the 
cancer biology realm. 
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Introduction

In 2006, Drs. Takahashi and Yamanaka report-
ed the first reprogramming of mature somatic 
cells into induced pluripotent stem cells (iPSCs) 
[1], a type of cell with the potential to generate 
all cell types of adult tissues, by transduction  
of OCT4, SOX2, KLF4, and MYC (OSKM, also 
known as the “Yamanaka four” factors). This 
opened a new avenue for studying a variety  
of human diseases, including in vitro disease 
modeling, organ regeneration, transplantation 
medicine, precision medicine, drug screening, 
fundamental cell fate selection as well as de- 
velopmental research (Figure 1). In 2008, Dr. 
Daley’s lab first described a human genetic dis-

ease model constructed from patient-derived 
iPSCs [2]. Other “disease in a dish” models 
have been successfully set up for a number of 
genetic diseases, including disorders of neuro-
nal, cardiac or hepatic development or function, 
by differentiating patient-derived iPSCs to tis-
sue-specific lineages [3-8]. In cancer studies, 
scientists often utilize immortalized cell lines or 
cancerous lines derived from patient tumor 
specimens. These cell lines not only represent 
cancer phenotypes but also provide a vast 
record of genetic information associated with 
cancer development. The intrinsic differentia-
tion potential of human pluripotent stem cells 
(PSCs) or more restricted progenitor stem cells 
facilitates cancer research by permitting the 
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study of the effect of well-defined mutations 
within the specific lineages/cell types that  
ultimately become cancers. However, since 
cancer cell lines are isolated from well-devel-
oped tumors, they commonly fail to mirror the 
dynamic genetic and epigenetic alterations 
involved in early cancer initiation and progres-
sion. In contrast, cell lines derived from (non-
cancerous) biopsies from patients with a ten-
dency to develop cancers or engineered from 
PSCs expressing particular oncogenes can be 
combined with differentiation protocols to  
characterize cancer development in those 
same lineages but prior to acquisition of late 
cancer mutations.

In this review, we summarize the most recent 
progress of cancer research using repro-
grammed stem cells. We introduce the ways 
different types of cancer cells were repro-
grammed and how their characteristics ch- 
anged after reprogramming (Figure 2). We dis-
cuss the benefits and obstacles in applying 
induced pluripotent cancer cells (iPCCs) to  
both basic and pre-clinical research. We also 
describe the “disease in a dish” model in genet-
ic cancer syndromes using patient-derived 
iPSCs and examples of cancer diseases that 
could be studied by this model system. 

Cancer cell reprogramming

Inspired by discovery of reprogramming ma- 
ture somatic cells to embryonic-like iPSCs by 

expressing appropriate transcriptional factor 
combinations [1, 9, 10], the “cancer cell repro-
gramming” concept was quickly extended to 
cancer research. The idea of reprogramming 
differentiated malignant cells to iPCCs offers a 
novel tool to investigate effects of the cancer 
cell genome in lineages not present within a 
biopsy, model disease progression, recapitu-
late specific cancer phenotypes in cell culture, 
and understand the dynamic oncogenic trans-
forming process during tumorigenesis. In the 
past ten years, several labs have applied iPCCs 
to characterize tumorigenic properties of cer-
tain malignancies. Kim et al. reported that 
injection of a single iPCC derived from a pan- 
creatic ductal adenocarcinoma reprogrammed 
into immune-deficient mice led to a teratoma 
composed of pancreatic intraepithelial neopla-
sia (PanIN) precursors. In addition, the PanIN-
like cells secreted proteins similar to those 
expressed in early-to-intermediate stage hu- 
man pancreatic cancers, including those in- 
volved in the HNF4α transcription factor net-
work. However, most iPCCs derived from re- 
programmed pancreatic ductal adenocarcino-
ma cells do not express the expected cancer 
genotype, implying that recapitulation of the 
cancer phenotype is a rare event [11]. The  
process by which iPCCs reacquire a cancer 
phenotype was illuminated by the work of 
Gandre-Babbe et al. who generated iPCCs  
from malignant cells of two Juvenile Myelo- 
monocytic Leukemia (JMML) patients with 

Figure 1. Timeline of stem cell research milestones in the past 50 years.
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somatic heterozygous mutations [12]. Diffe- 
rentiation of JMML iPCCs to the myeloid linea- 
ge revealed a similar phenotype to primary 
JMML cells from patients, including increased 
proliferative capacity, constitutive activation  
of granulocyte macrophage colony-stimulating 
factor (GM-CSF), and enhanced STAT5/ERK 
phosphorylation. Similarly, Chao et al. reported 
successful reprogramming of acute myeloid 
leukemia (AML) patient cells harboring MLL 
rearrangement to AML iPCCs [13]. Although  
the AML iPCCs retained the original genetic 
abnormalities of patient samples, reprogram-
ming the AML iPCCs reset their leukemic DNA 
methylation and gene expression patterns. 
Differentiation to the hematopoietic lineage 
reestablished leukemic DNA methylation and 
gave rise to leukemia in vivo. The different 

genomic alterations found in distinct AML iPCC 
clones could be used to predict clinical drug 
responses. These findings illustrated the value 
of AML iPCCs for investigating the mechanistic 
basis and clonal properties of human AML. 

Interestingly, by using a similar approach, Stri- 
cker et al. differentiated glioblastoma (GBM) 
iPCC-derived neural stem (GNS) cells to the 
neural lineage [14]. Reprogrammed GBM  
iPCC-derived GNS cells demonstrated a wide-
spread reset of common GBM-associated epi-
genetic profiles but still maintained high malig-
nant potential both in vitro and in vivo, sug- 
gesting that GBM malignancy is not depen- 
dent on many previously associated epigene- 
tic characteristics. However, GBM iPCCs differ-
entiated to mesodermal cell types cells showed 

Figure 2. Two major stem cell disease modeling strategies used in cancer research. Upper strategy: iPSCs are used 
to study cancer predisposition. Somatic cells carrying genetic alterations leading to a cancer predisposition are 
biopsied from a patient and paired with normal somatic cells from healthy family member controls. Both are re-
programmed to iPSCs using classic OSKM factors and then differentiated sequentially to cell lineage(s) of interest. 
The frequency and severity of disease phenotypes are compared at various iPSC differentiation stages with healthy 
iPSCs. Lower strategy: Generating iPCCs from patient tumor cells. Tumor cells from different stages of disease pro-
gression are reprogrammed and subsequently differentiated to a cancer-specific cell lineage. Differentiated cells 
from reset iPCCs will often mirror cancer disease phenotypes. 
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less malignant potential. Another study also 
reported loss of some malignant properties in 
reprogrammed sarcoma cells compared with 
parental sarcoma cells [15]. 

Kotini et al. attempted to model the effect of 
reprogramming on a cancer phenotype by  
generating iPSCs and iPCCs from the entire 
spectrum of malignant transformation of my- 
eloid malignancy, from preleukemia to low  
risk MDS (myeloid plastic syndrome), high risk 
MDS and secondary AML (acute myeloid  
leukemia) [16]. They concluded that the  
stage-specific iPSCs and iPCCs successfully 
model hematopoietic phenotypes of graded 
severity by demonstrating stage-specific pro-
gression. This result provides a novel platform 
for modeling cancer diseases by using patient-
derived somatic pre-cancer/cancer cells. 

Clinically, cancer patients have various respons-
es to chemotherapy drugs. Melanoma repro-
grammed iPCCs showed an increased resis-
tance to MAPK inhibition compared to parental 
cancer cells [17]. iPCCs generated from ima-
tinib-sensitive CML patient cells demonstrated 
imatinib resistance after reprogramming [18]. 
In contrast, differentiated cells from colorec- 
tal cancer cell reprogrammed iPCCs showed 
increased sensitivity to anti-cancer drugs com-
pared to parental cells [19]. These data sug-
gest that the degree of similarity between  
cancer-derived iPCC-derived cells and patient 
cancer cells is likely to depend on both the 
“parental” cancer cell type as well as the lin-
eage to which the iPCC is differentiated.  

Not all somatic cancer cells can be repro-
grammed to iPCCs, and the reprogramming 
ability of certain cancer cells can be highly vari-
able. Unlike normal somatic cells, which dem-
onstrate substantial epigenetic homogeneity 
within a cell lineage, malignant cancer cells are 
highly epigenetically heterogeneous. Full repro-
gramming of cancer cells is highly dependent 
on their internal epigenetic network. In 2010, 
Miyoshi et al. demonstrated successful repro-
gramming to iPCCs in only 8 of 20 gastroin- 
testinal cancer cell lines when using a viral 
OSKM expression system [19]. In addition, 
NOTCH1 initiated T-acute lymphoblastic leuke-
mia cells have not to date been successfully 
reprogrammed to a pluripotent state [20],  
paralleling reported unsuccessful reprogram-
ming in both primary B-ALL blasts and leukemic 
B cell lines [21]. These findings suggest that  

differentiation to particular lineages from which 
cancers arise may impose intrinsic develop-
mental and reprogramming blockades that  
cannot be overcome by OKSM. 

In contrast, the expression of certain onco- 
genic pathways in cancer lines may obviate  
the need for all 4 OKSM factors in reprogram-
ming efforts. Utikal et al. demonstrated that 
ectopic SOX2 is not required for R545 mela- 
noma cell reprogramming [22]. Oshima et al. 
claimed that OCT3/4, SOX2 and KLF4 (without 
MYC) are sufficient for colon cancer cell pluri- 
potency induction [23]. Skin cancer cells have 
been reportedly reprogrammed to the pluripo-
tent state with a single-factor system (miR-302) 
that has the benefit of not introducing any 
oncogenic transcription factors [24]. These 
findings demonstrate that reprogramming con-
ditions may benefit from customization to indi-
vidual cancer cell profiles.

Somatic cell reprogramming in syndromes 
with cancer predisposition

PSCs, including ESCs and iPSCs, hold great 
promise as a disease modeling tool for familial 
cancer predisposition syndromes [25-28]. Such 
genetic cancer disease models can be built up 
by two strategies. One is by introducing gene- 
tic alterations into wild-type ESCs or iPSCs 
using gene editing technologies, such as Zinc-
finger nucleases (ZFNs), transcription activator-
like effector nucleases (TALENs), or clustered, 
regularly interspaced, short palindromic re- 
peat/Cas9 (CRISPR/Cas9) [29-35]. The other  
is by reprogramming of patient somatic cells 
(e.g., fibroblasts and blood cells) carrying in- 
herited mutations into iPSCs using a defined 
transcription factor cocktail (e.g. OSKM). Se- 
veral cancer predisposition syndromes have 
been studied using patient-derived iPSCs using 
this approach. 

Li-Fraumeni syndrome

Li-Fraumeni syndrome (LFS) is a rare heredi- 
tary autosomal dominant cancer syndrome 
with a germline mutation in the TP53 gene [25]. 
In 2015, our group investigated the function  
of mutant p53 in osteosarcoma genesis using 
LFS patient-derived iPSCs carrying a G245D 
germline mutation [36]. Defective osteoblas- 
tic differentiation and tumorigenic ability were 
observed in osteoblasts differentiated from 
LFS iPSC-derived mesenchymal stem cells. 
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Through transcriptome analysis and functional 
studies, the dysregulation of long noncoding 
RNA H19 and its associated imprinted gene 
network was suggested to contribute to the 
osteogenic differentiation defects and tumori-
genesis in LFS-associated osteosarcoma.

Myelodysplastic syndrome

Myelodysplastic syndrome (MDS) is a hema- 
tological disorder characterized by impaired 
hematopoiesis and a propensity for anemia 
and leukemia. Sporadic loss of one copy of the 
long arm of chromosome 5 [del(5q)] and/or 
chromosome 7 [del(7q)] is the main cytogenetic 
characteristic of MDS [37]. Kotini et al. devel-
oped del(7q) MDS iPSCs from patient hema- 
topoietic stem cells and demonstrated that 
del(7q) MDS iPSCs recapitulated the pheno-
type of defective hematopoietic differentiation 
[38]. Phenotype-rescue screening of the genes 
located on Chr7q identified HIPK2, ATP6V0E2, 
LUC7L2, and EZH2 as haploinsufficient genes 
related to the MDS phenotype. To further map 
the spectrum of myeloid malignancy between 
MDS and AML, Kotini et al. generated a series 
of iPSC lines from patients with low-risk MDS, 
high-risk MDS and secondary AML [16]. These 
patient-derived iPSCs captured a range of  
leukemia phenotypes with stage specificity. 
Through a competitive growth assay, they dem-
onstrated this stage-specific iPSC model can 
be used in drug screening.

Familial adenomatous polyposis

Familial adenomatous polyposis is an inherited 
cancer syndrome caused by APC mutations 
and characterized by cancer of the colon and 
rectum [39]. Crespo et al. generated iPSCs 
from patient fibroblasts and developed iPSC-
derived 3D colonic organoids [40]. They found 
that 3D colonic organoids with APC mutations 
exhibited enhanced WNT activity and increased 
epithelial cell proliferation, findings consistent 
with the majority of colorectal cancers. XAV939, 
rapamycin and gentamicin were identified as 
candidate drugs which reversed the APC muta-
tion-induced phenotype of hyperproliferation  
in human colonic organoids.

Familial platelet disorder (FPD) with a predis-
position to AML

Familial platelet disorder (FPD) is a rare au- 
tosomal dominant disease characterized by 

qualitative and quantitative platelet defects 
and a predisposition to the development of 
AML [41]. Minelli et al. derived iPSCs from two 
pedigrees with germline RUNX1 mutations [42]. 
Hematopoietic differentiation of these iPSCs 
demonstrated a phenocopy of the clinical pre-
sentation, with phenotype severity correlated 
to functional RUNX1 levels. Loss of half of 
RUNX1 activity resulted in less malignant phe-
notypes, such as primitive erythropoiesis and 
megakaryopoiesis, while near complete loss of 
RUNX1 activity led to more malignant pheno-
types, such as amplification of the granulo-
monocytic lineage and increased genomic 
instability. Their results emphasize that the 
FPD iPSC model can elucidate the relation- 
ship between RUNX1 levels and leukemia 
phenotypes.

Noonan syndrome (NS) with JMML

NS is a genetic disorder characterized by a 
wide spectrum of disorders including develop-
mental delay, learning difficulties, congenital 
heart abnormalities, short stature, facial dimor-
phism, and predisposition to hematological 
malignancies [43]. NS patients with PTPN11 
mutations have a tendency to develop juvenile 
myelomonocytic leukemia (JMML), an aggres-
sive, difficult-to-treat myelodysplastic and my- 
eloproliferative neoplasm. Mulero-Navarro et 
al. generated iPSC lines harboring PTPN11 
mutations from NS/JMML patient skin fibro-
blasts and recapitulated several JMML charac-
teristics including hypersensitivity to granu- 
locyte-macrophage colony-stimulating factor 
and increased myeloid population [44]. These 
NS/JMML iPSC-derived myeloid cells exhibited 
increased signaling through STAT5 and upregu-
lation of miR-223 and miR-15a. MicroRNA tar-
get gene expression levels (e.g., FOXO3, SPTB, 
NPM1, WHSC1K1 and DICER1) were reduced in 
iPSC-derived myeloid cells as well as in JMML 
cells with PTPN11 mutations. Reducing miR-
223’s function in NS/JMML iPSCs can restore 
normal myelopoiesis. This study demonstrated 
a genotype-phenotype association for JMML 
and provided novel therapeutic targets. 

In contrast to cancer cells, somatic cells main-
tain an intact genome, permitting more consis-
tent generation of normal and/or diseased 
iPSCs than cancer iPSCs. Patient-derived iPSCs 
from somatic cells carrying specific gene aber-
rations can be differentiated into the desired 
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lineage or tissues to recapitulate the disease 
phenotypes in vitro and/or in vivo. This ap- 
proach can be particularly useful in elucidating 
pathological mechanisms, dissecting cellular 
origins of cancer types and screening for drug 
efficacy and toxicity for cancers initiated from 
definite cellular origin. Pre-malignant and/or 
malignant tumors derived from differentiated 
iPSCs with somatic mutations may help identify 
early-stage cancer drivers and cancer evolution 
and in turn enable therapies targeted to this 
stage of disease. Assessment of the malignant 
potential of patient-derived iPSCs differentiat-
ed into different lineages or tissues can clarify 
the cellular origins of cancers and determine 
the genetic basis of their phenotypes. 

Some iPSCs retain epigenetic evidence of their 
tissue of origin, potentially affecting the differ-
entiation process. Gene editing technology pro-
vides a helpful solution by introducing specific 
mutations into normal ESCs or wild-type iPSCs 
[45, 46]. Using these powerful gene editing 
tools to correct gene alterations in patient-
derived iPSCs or induce them in wild-type PSCs 
facilitates provides an ideal isogenic control 
and enables a detailed reconstruction of the 
relationship between phenotype and genotype. 
This strategy not only allows researchers to 
eliminate unexpected influences from distinct 
genetic and epigenetic backgrounds but also 
increases the external validity the cancer dis-
ease model. 

To date, most established cancer PSC disease 
models have focused on monogenic diseases, 
particularly those with an early-onset pheno-
type. However, most cancers are polygenic dis-
orders. Gene editing to introduce or remove 
traits for polygenic disorders, while technically 
more challenging, is also possible with engi-
neered PSCs. 

Application of iPSC technology to cancers

During the past decade, PSCs have shown 
great promise in facilitating regenerative medi-
cine, drug discovery and drug safety assess-
ment. Screening for candidate drugs and test-
ing for differential toxicity are major current 
applications of PSCs in the cancer-translational 
field. PSCs and PSC-based disease models 
facilitate testing for candidate drugs to rescue 
a specific phenotype driven by a well-defined 
genotype within human cells. There are several 

excellent reviews on applications of PSC tech-
nology for drug discovery in human diseases 
(e.g., neural degeneration) [47-50]. Here, we 
focus on cancer-related drug development. 
Crespo et al. generated APC mutant iPSCs  
and applied 3D colonic organoids (COs) to 
investigate the role of APC mutation in develop-
ing colorectal cancer [40]. Using this platform 
to test the tumor suppression effect of candi-
date drugs, they demonstrated that XAV939, 
rapamycin and gentamicin can effectively re- 
verse APC mutation-induced hyperproliferation 
in human COs. However, XAV939 and rapamy-
cin also affected cell proliferation in wild-type 
COs, suggesting a very limited therapeutic  
window for use of XAV939 and rapamycin in 
colorectal cancers with APC mutations. Mo- 
reover, Kotini et al. applied drug testing in a 
series of iPSCs and/or iPCCs derived from 
patients with low-risk MDS, high-risk MDS and 
secondary AML, respectively [16]. They found 
different responses of hematopoietic progeni-
tor cells differentiated from iPSCs and iPCCs  
to treatment with 5-AzaC and Rigosertib.

Tyrosine kinase inhibitors (TKIs) and chemo-
therapeutic agents are the first-line treatments 
for many human cancers. One particularly clini-
cally challenging side effect is cardiotoxicity, 
which presents with a wide spectrum of car- 
diac complications including heart failure, 
reduced left ventricular ejection fraction, myo-
cardial infarction, and arrhythmias. Any of 
these complications may limit the amount or 
duration of otherwise highly active therapy. 
Cardiomyocytes, endothelial cells and cardiac 
fibroblasts generated from iPSCs from both 
healthy individuals and cancer patients were 
used to screen the toxicities of U.S. Food and 
Drug Administration-approved TKIs in a high-
throughput system. Sharma et al. was able to 
generate a “cardiac safety index” for these TKIs 
using a collection of measurements of cardiac 
viability, contractility and signaling. Moreover, 
they were able to demonstrate that that car- 
diotoxicity caused by vascular endothelial grow- 
th factor receptor 2 (VEGFR2)/platelet-derived 
growth factor receptor (PDGFR)-inhibiting TKIs 
could be mitigated by up-regulating insulin/IGF 
signaling in PSC-derived cardiomyocytes [51]. 
Similarly, doxorubicin is a powerful chemother-
apy agent for solid tumors with a well-recog-
nized side effect profile including dose-depen-
dent cardiotoxicity. Burridge et al. generated 
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cardiomyocytes differentiated from breast can-
cer patient-derived iPSCs and demonstrated 
that iPSC-derived cardiomyocyte sensitivity to 
doxorubicin predicted patient predilection for 
doxorubicin-induced cardiotoxicity [52]. Ideally, 
a set of assays can be established to enable 
the restriction of drugs specifically from the 
patients who will experience unacceptably seri-
ous drug-related toxicity, ultimately enabling 
the wider use of many effective but otherwise 
risky anticancer agents. 

Induced stem cells can also be engineered to 
function as an anticancer drug or drug-carrier. 
Neural stem cells (NSCs) are self-renewing mul-
tipotent cells capable of replenishing neurons 
and glial cells. Aboody et al. and Benedetti et  
al. found that NSCs have the unique ability to 
home to brain tumor [53, 54]. When NSCs  
were engineered with effective cytotoxic ag- 
ents, they could home in on tumors and sec- 
rete cytotoxic reagents, which were regarded 
as a promising new therapeutic strategy for 
glioblastoma [55, 56]. Kauer et al. investigated 
an approach to treat human glioblastoma in a 
mouse model using therapeutic NSCs encap- 
sulated in a biodegradable, synthetic extra- 
cellular matrix. The release of tumor-selective 
secretable tumor necrosis factor apoptosis 
inducing ligand (S-TRAIL) from sECM-encapsu-
lated NSCs placed within the resection cavity 
killed residual tumor cells by inducing caspase-
mediated apoptosis and delayed tumor re- 
growth to significantly increase survival. This 
study proved the therapeutic effect of NSCs in 
a preclinical model and facilitated the transla-
tion of stem cell-based therapies for the treat-
ment of glioblastoma [57]. Bago et al. used a 
single-factor SOX2 strategy to transdifferenti-
ate glioblastoma patient-derived fibroblasts 
into tumor-homing early-staged induced neural 
stem cells (h-iNSCTEs). h-iNSCTEs engineered 
to express S-TRAIL show significant cytotoxi- 
city towards human glioblastoma xenografts in 
a mouse model. This work demonstrated that 
autologous cell-based therapy can be com-
bined with iPSC technology and genetic engi-
neering to develop novel cell-based antitumor 
therapies [58, 59].

Conclusion

iPSC technology has now been used in cancer 
research for over ten years, providing a unique 
platform to investigate the entire transforma-

tion process from normal cell to cancer and 
explore its underlying pathological mecha-
nisms. The two major PSC-based cancer model 
systems (iPCCs and patient-derived iPSCs) 
offer unique relative advantages. iPCCs can, in 
principle, be derived from all cancer types;  
however, the low reprogramming efficiency of 
certain cancer cell type limits this technology  
in practice until more efficient reprogramming 
methods can be developed. In addition, unex-
pected phenotypes seen in multiple iPCC-
based cancer models highlight the challenges 
of characterizing and controlling for epigenetic 
alterations during reprogramming. In contrast, 
methods for derivation of iPSCs from somatic 
cells are now well-established. This system 
avoids sorting out the complicated genomic 
alterations that occur in cancer cells and  
allows us to watch as a cancer develops from 
the earliest stage and prior to acquisition of 
secondary genetic alterations. The iPSC sys- 
tem models the natural disease development 
process and has significant potential to illumi-
nate the role of oncogenic genes and/or tumor 
suppressor genes in the early stage of tumori-
genic transformation. In the future, corrected 
patient iPSCs and disease trait-engineered 
PSCs generated by genome-editing tools will 
provide an ideal set of paired isogenic sam- 
ples to exclude cell-line specific genetic back-
ground effects [60-64]. Furthermore, newly 
developed PSC-related technologies provide 
more flexible tools to complete PSC-based  
cancer research. For example, 3D organoid 
generation and culture techniques facilitate 
modeling cancer initiation in a more precise 
and comprehensive human organ microenvi- 
ronment. 

The future use of cell reprogramming systems 
in cancer research is bright. We hope that the 
information obtained from the ongoing merger 
of disparate fields within cancer and regenera-
tive biology will lead to a better understanding 
of pre-cancer and early cancer transformation 
in human disease models and finally provide 
novel cancer prevention tools and personalized 
therapy for affected cancer patients.  
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