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Single-cell RNA sequencing (scRNA-seq) enables the quantifica-
tion of each gene’s expression distribution across cells, thus
allowing the assessment of the dispersion, nonzero fraction, and
other aspects of its distribution beyond the mean. These sta-
tistical characterizations of the gene expression distribution are
critical for understanding expression variation and for selecting
marker genes for population heterogeneity. However, scRNA-seq
data are noisy, with each cell typically sequenced at low cov-
erage, thus making it difficult to infer properties of the gene
expression distribution from raw counts. Based on a reexamina-
tion of nine public datasets, we propose a simple technical noise
model for scRNA-seq data with unique molecular identifiers (UMI).
We develop deconvolution of single-cell expression distribution
(DESCEND), a method that deconvolves the true cross-cell gene
expression distribution from observed scRNA-seq counts, lead-
ing to improved estimates of properties of the distribution such
as dispersion and nonzero fraction. DESCEND can adjust for cell-
level covariates such as cell size, cell cycle, and batch effects.
DESCEND's noise model and estimation accuracy are further eval-
uated through comparisons to RNA FISH data, through data split-
ting and simulations and through its effectiveness in removing
known batch effects. We demonstrate how DESCEND can clarify
and improve downstream analyses such as finding differentially
expressed genes, identifying cell types, and selecting differentia-
tion markers.

single-cell transcriptomics | RNA sequencing | differential expression
Gini coefficient | highly variable genes

ells are the basic biological units of multicellular organisms.

Within a cell population, individual cells vary in their gene
expression levels, reflecting the dynamism of transcription across
cells (1-5). Traditional microarray and bulk RNA-sequencing
(RNA-seq) technologies profile the average gene expression
level of all cells in the population. In contrast, recent single-cell
RNA-seq (scRNA-seq) methods enable the quantification of a
much richer set of properties of the gene expression distribu-
tion across cells. For example, measures of dispersion such as the
coefficient of variation (CV) and the Gini coefficient can be used
to elucidate biological states that are not reflected in the pop-
ulation average (6-8). Two-state mixture models, alternatively,
allow a better understanding of transcriptional regulation at the
single-cell level (5, 9-11).

However, it is challenging to compute such distribution-
based statistics of true gene expression due to the techni-
cal noise in scRNA-seq data (12-16). Single-cell RNA-seq
protocols are complex, involving multiple steps each con-
tributing to the substantially increased noise level of scRNA-
seq relative to bulk RNA-seq. Unique molecular identifiers
(UMI) (17) were introduced as a barcoding technique to
reduce amplification noise, but the observed expression dis-
tribution computed from observed UMI counts is, for most
genes, still a poor representation of their true expression
distribution.
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Recently, many computational methods for scRNA-seq anal-
ysis have been proposed, including methods for quantifying
dispersion, for characterizing expression “states” using mixture
models, and for finding differentially expressed genes (6, 18-26).
Although some of these methods have taken technical noise into
consideration, to our knowledge, there is currently no method
for recovering the cross-cell gene expression distribution from
scRNA-seq data, unless strong assumptions are made about
this distribution. There is also a lack of methods for compar-
ing aspects of this true biological distribution beyond the mean,
especially when there is a need to adjust for confounding factors.
In fact, there is still active debate on the technical noise distribu-
tion for scRNA-seq data, and a proper technical noise model is
critical for studying the underlying distribution.

Here we develop deconvolution of single-cell expression dis-
tribution (DESCEND), a statistical method that deconvolves
the true cross-cell gene expression distribution from observed
scRNA-seq counts and quantifies how this distribution depends
on cell-level covariates. Examples of common cell-level covari-
ates are cell size, defined as the total number of RNA
molecules in a cell, and cell-cycle stage. DESCEND adopts the
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“G-modeling” distribution deconvolution framework (27), which
avoids constraining parametric assumptions. The accuracy
of DESCEND is evaluated using population-matched RNA
fluorescence in situ hybridization (FISH) data, in silico sam-
ple splitting, and parametric and down-sampling simulations.
Our evaluations show that, under very reasonable data qual-
ity assumptions, DESCEND can accurately deconvolve the true
gene expression distribution, leading to improved estimates of
expression dispersion and proportion of cells with zero/nonzero
expression. We benchmark against existing methods (6, 25, 28)
for analyses in which comparable methods exist, but focus on
demonstrating the unique applications of DESCEND in the case
studies that follow.

Although the DESCEND framework can be used with any
technical noise model, the datasets we use in this paper all use
UMIs, for which we have decided upon a satisfactory noise
model. There is a lot of debate regarding what noise model to
use, even for UMI-based scRNA-seq data. Through a reanaly-
sis of nine public datasets, we show that a Poisson distribution
is sufficient to capture the technical noise in single-cell UMI
counts, once the cross-cell differences in capture and sequenc-
ing efficiency have been accounted for. Thus, DESCEND adopts
a “Poisson-alpha” noise model for single-cell UMI counts, which
allows fast computation and stable estimation. We show using
the data from Tung et al. (29) that, with this noise model,
DESCEND can effectively remove artificial differences between
known experimental batches.

We demonstrate the applications of DESCEND through three
case studies. The first case study illustrates how to conduct dif-
ferential expression analysis under a two-state model for gene
expression. Here, we also conduct a transcriptome-wide exami-
nation of how gene expression distributions are associated with
cell size, again using population-matched RNA FISH to vali-
date our findings. Next, we illustrate how to use the DESCEND
estimated dispersion measures, and their standard errors, for
downstream inference. The second case study focuses on cell
type identification, and the third case study focuses on the
selection of marker genes for cell differentiation.

C

Results

Model Overview. Fig. 1 gives an overview of the DESCEND
framework. The observed counts in an scRNA-seq experiment
are a noisy reflection of true expression levels. We model the
observed count Y., for gene g in cell ¢ as a convolution of the
true gene expression A., and technical noise,
Yeg~ Feg(Aeg)s  Aeg~ Hy(0),

where F,(-) quantifies all aspects of the technical noise intro-
duced in the experiment and H, represents the true underlying
expression distribution of gene g across cells. DESCEND decon-
volves H, from the noisy observed counts Y., thus allowing
for the estimation of any quantity related to the true underlying
biological distribution. One difference between DESCEND and
existing methods is that DESCEND models H, using a spline-
based exponential family, which avoids restrictive parametric
assumptions while allowing the flexible modeling of dependence
on cell-level covariates.

Currently, the noise model used by DESCEND is designed
for single-cell experiments that use UMIs. For extension to
non-UMI read counts, see Discussion. For UMI-based single-
cell RNA-seq data, DESCEND uses the default noise model
Yeg ~ Fe(Aeg) =Poisson(acAeg), where a. is a cell-specific scal-
ing constant. This model was suggested by ref. 14, and in the
next section, we show through a reexamination of public data
that this model is sufficient for capturing the technical noise
in UMI counts when there are no batch effects. To account
for batch effects, DESCEND allows a more complicated model,
Yeg ~ Fe(Aeg) =Poisson(acgAeg)-

In the default noise model, DESCEND sets a., by default, to
the total UMI barcode count of cell ¢,

Mc:Z ch7 [1]
g9

where the summation is over all biological genes (i.e., exclud-
ing spike-ins). This leads to the interpretation of ., being the

DESCEND Output

Distribution Recovery
Distribution Characterization
and Testing
with Absolute Bursting:
A B — spike-ins Expression \ ’ nonzero mean/fraction
True Expression Observed UMI ...
Counts Dispersion:
+ technical library size Relative CV, Gini, Fano factor
noise normalization Expression
(+ batch effect) Differential testing:
burstiness or dispersion
Covariates-adjusted differences
e T v ez 4 6 Distribution
Cellsize, +m ,‘f\\ Covariates Effects
cell cycle, ... L/ \ \ eg. cell size effect on nonzero
\\ mean or nonzero fraction

Fig. 1.

Illustration of the framework. (A and B) The cross-cell distribution of observed counts Y, (B) is assumed to be a convolution of the distribution of true

gene expression (A) and technical noise. (C) For each gene, the output of DESCEND includes the distribution of the absolute expression levels when spike-ins
are available, the distribution of relative expression with library size normalization, the distribution of covariates-adjusted expression level if covariates are
presented, estimates of the bursting and dispersion parameters, differential testing results comparing the change between two cell populations, and the

effects of observed covariates on gene expression.
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relative expression of gene ¢ in cell c¢. If, instead, we were
interested in deconvolving the distribution of the absolute gene
expression count, then we would need to rely on cell-specific
spike-ins to compute the efficiency, defined as the proportion of
transcripts in the cell that are sequenced,

efficiency of cell ¢ = Z Yeo/ Z Ag, [2]

g is spike-in g is spike-in

where )\, is the expected input molecule count of spike-in gene
g, computable from known dilution ratios. Setting . to this
estimated efficiency of cell ¢ leads to the interpretation of Ay
being the absolute expression of gene g in the cell. Details are in
Materials and Methods and SI Appendix, Mathematical Details of
DESCEND.

The true gene expression distribution H, is expected to be
complex, owing to the possibility of multiple cell subpopulations
and to the transcriptional heterogeneity within each subpopu-
lation. In particular, this distribution may have several modes
and an excessive amount of zeros and cannot be assumed to
abide by known parametric forms. To allow for such com-
plexity, DESCEND adopts the technique from Efron (27) and
models the gene expression distribution as a zero-inflated expo-
nential family which has the zero-inflated Poisson, lognormal,
and Gamma distributions as special cases. Natural cubic splines
are used to approximate the shape of the gene expression
distribution (Materials and Methods).

One meaningful aspect of H, is the proportion of cells where
the true expression of the gene is nonzero; that is,

nonzero fraction £ P [\, #0]. [3]

Complementary to this is the nonzero mean, defined as the
average expression level among cells where the gene is expressed,

nonzeromean = E[Ay |\ #0)]. [4]

Note that Eqs. 3 and 4 refer to the underlying, unobserved, true
gene expression distribution. The concepts of nonzero fraction
and nonzero mean have appeared, under varying definitions and
differing names, in single-cell studies (5, 25, 30), yet many exist-
ing approaches to estimate them (5, 18, 30-32) do not account
for technical noise. If the population from which the cells are
sampled can be assumed to be ergodic, then a two-state tran-
scriptional bursting model (9, 11, 33), formulated as a periodic
stochastic dynamic process, leads to a Poisson-Beta distribution
for gene expression across cells. In that scenario, Eqs. 3 and 4 can
be derived from the burst frequency and burst size parameters
defined in the Poisson-Beta distribution. However, the strong
ergodicity assumption is, in most cases, too ideal for sScRNA-seq
experiments, in which cell populations are unavoidably heteroge-
neous even when limited to a specific cell type. In DESCEND, we
choose not to assume the Poisson-Beta distribution and instead
focus on the more transparent quantities [3, 4].

DESCEND allows the modeling of covariate effects on both
the nonzero fraction and nonzero mean. When covariates are
specified, DESCEND uses a log-linear model for the covari-
ate effect on nonzero mean and a logit model for the covariate
effect on nonzero fraction. In this case, Aoy ~ Heg; that is, the
distribution of A, is cell specific, and the deconvolution result
is the covariate-adjusted expression distribution (Materials and
Methods).

A cell-level covariate that we study in detail is the cell size,
defined as the total RNA molecule count in the cell. Cell size can
be estimated by spike-in molecules added to the cell after RNA
extraction: Let a. be the efficiency of cell ¢ obtained through Eq.
2; then

size estimate of cell ¢ = M./ a., [5]
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where M, is defined in Eq. 1.

DESCEND also computes standard errors and performs
hypothesis tests on features of the underlying biological distri-
bution, such as dispersion, nonzero fraction, and nonzero mean.
See Materials and Methods for details.

Model Assessment and Validation

Technical noise model for UMI-based scRNA-seq experiments. For
UMI-based scRNA-seq data, Kim et al. (14) gave an analytic
argument for a Poisson error model, which we discuss and clar-
ify in SI Appendix, Mathematical Details of DESCEND. Several
studies (18, 34, 35) used spike-in sets and bulk RNA splitting
experiments to explore the technical noise in scRNA-seq data,
finding that a Poisson distribution for UMI-based counts is plau-
sible, but raised the issue of overdispersion. While the analyses
from these studies were insightful, we believe that they failed to
account for the inevitable random variations across cells/samples
in the spike-in input at low concentrations. We reexamined the
spike-in data from nine UMI-based scRNA-seq datasets, cover-
ing seven scRNA-seq protocols (6, 7, 29, 36-40). All of the data
except for those in ref. 29 have also been analyzed in ref. 40,
which showed that capture efficiency varies substantially across
cells within each experiment and across experimental protocols.
We show that, after accounting for the cell-to-cell variation in
efficiency, the technical noise of UMI counts is simply Poisson in
most cases.

For External RNA controls Consortium (ERCC) spike-in
“genes,” the observed count for each gene in each cell depends
on the number of input molecules and the technical noise. Due
to the low spike-in concentration added to each cell, the number
of input molecules for each spike-in is not fixed, but random with
a certain target expectation. If we assume that the molecules in
the spike-in dilution are randomly dispersed, then the number
that results in each cell partition is Poisson with mean com-
putable from the dilution ratios (see SI Appendix, SI Text, for
more details). If the molecules in the spike-in dilution are not
randomly dispersed, e.g., due to clumping, or if there are uncon-
trolled batch issues, then the input number of spike-in molecules
for each cell would be overdispersed compared with the Poisson.

The key point here is that the input quantity of spike-in
molecules is not fixed across cells, as assumed by current stud-
ies, but random with Poisson noise in the ideal case of perfect
random dispersion with no batch variation. Such randomness in
the input should not be counted as part of the technical noise of
scRNA-seq experiments, as that is due to the spike-in process.
Previous analyses of spike-in data have attributed this input-
level variation to technical noise, thus inflating their estimates
of technical noise dispersion.

To assess whether the Y, ~ Feg(A¢g) = Poisson(acA¢y) model
fits the technical noise of each dataset, we did the following:
DESCEND is applied to each spike-in gene in each dataset
with this error model to obtain the underlying distribution of
the input molecule counts. If this model is a good approxima-
tion to the true technical noise distribution of the scRNA-seq
experiment, and if the spike-ins are ideal in the sense described
above, then the DESCEND-recovered input molecule (A¢y) dis-
tributions of the spike-in genes should be Poisson. Conversely,
if the recovered distributions show zero inflation or overdisper-
sion compared with the Poisson, then that may be due to either a
misspecified technical noise model or unaccounted experimental
factors in the spike-ins. Note that the default use of DESCEND
does not require spike-ins; here, the spike-ins from these nine
studies are simply used to assess whether the technical noise
model assumed by DESCEND is appropriate.

Fig. 24 shows that the DESCEND-recovered distribution in
all but one (37) of the nine UMI datasets has overdispersion
0 <0.015 compared with the Poisson, where 6 is defined in
the variance-mean equation o2 = i+ 6p?. The overdispersion
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Fig. 2. Validation of DESCEND. (A) Noise model. The Poisson-alpha model is tested using nine different ERCC UMI datasets. Svensson et al. (40) include
datasets at two different concentrations. The black dots are estimated quantities (Gini, CV and nonzero fraction) from the deconvolved distribution of each
spike-in gene. The two solid curves show expected values of these quantities under the Poisson distribution (red) and negative binomial distribution with
fixed # = 0.015 (blue). (B) RNA FISH. Gini, CV, and nonzero fraction of 11 genes are compared between RNA FISH and the DESCEND estimates from Drop-seq
counts (13). Values computed directly from observed counts and by other methods are also included. (C) FISH distribution recovery. Relative gene expression
distribution is compared among RNA FISH distribution, DESCEND, and the distribution of Drop-seq observed counts. (D) Simulations. For sample splitting,
estimated quantities are compared between the two split groups. For the parametric simulation, coefficients of the covariate cell are compared with the true
values. The false discovery proportion (FDP) is compared with nominal FDR. For the down-sampling simulation, boxplots of estimated and “true” (original
raw counts) values across genes are compared. (E) Batch effect removal in Tung et al. (29). The DESCEND-estimated Gini for each gene is compared between
two replicates before (Left) and after (Center) adding batches as covariates and between two individuals (Right) after batch adjustment. The red dots are
the significantly differential genes (of Gini) when FDR in controlled at level 5%.

is effectively zero in six of the datasets and less than 0.015 in
the other two, indicating that the technical noise model used by
DESCEND well approximates the technical noise in the data.
As discussed above, the misfit of the Poisson to the recovered
distribution for (37) data can be due to either a wrong techni-
cal noise model or clumping in the spike-ins. Note that for ref.
37, the overdispersion is high for low input values, which is the
reverse of that for typical RNA-seq experiments. This pattern
of overdispersion can be explained by a clumping model on the
input molecules (see Materials and Methods for discussion).

Evaluation of deconvolution accuracy using RNA FISH as gold
standard. Next, we evaluate the accuracy of DESCEND on the
data from ref. 13, where Drop-seq and RNA FISH are both
applied to the same melanoma cell line. A total of 5,763 cells and

E6440 | www.pnas.org/cgi/doi/10.1073/pnas.1721085115

12,241 genes were kept for analysis from the Drop-seq experi-
ment, with median 1,473 UMIs per cell. Of these genes, 24 were
profiled using RNA FISH (VCF and FOSL1 were removed from
the original data; SI Appendix, SI Text). We further excluded
genes with zero UMI count in more than 98% of the cells,
resulting in 12 genes. Relative gene expression distributions were
recovered by DESCEND and are compared with gene expres-
sion distributions observed by RNA FISH. Since distributions
recovered by DESCEND reflect relative expression levels (i.e.,
concentrations), for comparability the expression of each gene
in FISH was normalized by GAPDH (41).

Both CV and Gini coefficients recovered using DESCEND
match well with corresponding values from RNA FISH (Fig. 2B)
for all 11 genes (GAPDH excluded). In comparison, Gini and
CV computed on the original Drop-seq counts, standardized by
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library size N. (1), show very poor correlation and substantial
positive bias; this agrees with previous observations (6, 13). For
CV, a variance decomposition approach adapted from ref. 6 (S
Appendix, SI Text) shows bias toward 0 compared with values
calculated from RNA FISH. This analysis also shows that the
1-SD error bars given by DESCEND reasonably quantify the
uncertainty of its estimates.

DESCEND provides reasonably accurate estimates of the
nonzero fraction, despite the low sequencing depth of this
dataset (Fig. 2B). In contrast, the naive estimate, derived from
the proportion of nonzero raw counts for each gene, is grossly
inflated due to the low sequencing depth and is not a reliable
estimator of nonzero fraction. DESCEND outperforms a recent
method QVARKS, which estimates the nonzero fraction (called
“ON fraction” in ref. 25) using a Bayesian approach.

Finally, the shape of the relative gene expression distribution
(Fig. 2C) given by DESCEND matches that from FISH. In com-
parison, the distribution of the library-size standardized observed
counts is quite different from that of their FISH counterparts,
showing severe zero inflation and increased skewness.

Assessment of estimation accuracy and test validity by simulations.
We further evaluate the accuracy of DESCEND by in silico sam-
ple splitting and by parametric and down-sampling simulations.
For all in silico evaluations, we start with the observed counts of
the 820 oligodendrocyte cells from ref. 7, for which ERCC spike-
ins are available to estimate cell-specific efficiencies. Details of
each simulation are given in SI Appendix, SI Text.

First, in the sample-splitting experiment, the 820 cells are
randomly split into two equal-sized groups. Since the data are
split randomly, there should not be any real differences between
groups. The agreement in DESCEND estimates of nonzero
mean, nonzero fraction, and Gini coefficients between the two
groups (Fig. 2D) indicates that the procedure has low variance
and is robust to the randomness of observed counts.

The above experiment gives a model-free assessment of
DESCEND estimation variance. To assess the estimation bias,
we then performed a parametric simulation experiment where
true gene expression counts were simulated from a lognormal
distribution with cell size as covariate and where noise was simu-
lated from our proposed noise model. True values of all involved
parameters were set to be estimates from real data. We see
that the estimation of covariate effects on the nonzero frac-
tion/mean (Fig. 2D), for which there is no RNA FISH validation,
is reliable. Nonzero fraction, CV, and the Gini also get accu-
rate and unbiased estimates (S Appendix, Fig. S1A4). In addition,
with the Benjamini-Hochberg procedure, DESCEND effectively
controls the false discovery rate (FDR) in the test of whether the
nonzero fraction is 1 (Fig. 2D).

Finally, we perform down-sampling simulations to assess how
DESCEND performs under varying sequencing depth. The top
150 genes with highest total UMI count are selected and their
UMI counts are treated as true expression levels. These values
are then down-sampled at oo =20%, 10%, and 5% efficiency lev-
els. The nonzero fraction, CV, and Gini coefficients estimated by
DESCEND are robust to change in efficiency level while their
counterparts computed directly from raw counts are severely
affected by such changes (Fig. 2D and SI Appendix, Fig. S14).

There is, of course, an endless list of parameters for which
evaluations can be performed. We have merely summarized here
evaluations that are relevant for the case studies discussed later
in this paper.

Batch effects can be removed in differential analysis by adding batch
as covariate. Tung et al. (29) performed scRNA-seq on three
human iPSC cell lines, with three technical replicates per cell
line, and showed that there can be substantial variation between
technical replicates. Ref. 29 further showed that simple ERCC

Wang et al.

spike-in adjustment and library size normalization cannot effec-
tively remove this technical “batch effect.” We apply DESCEND
to these data to see whether using batch as a covariate can
effectively remove technical differences between replicates.

Starting from the data of ref. 29, we created two groups of cells,
each containing 150 cells obtained by pooling 50 cells randomly
selected from each of the three individuals. Thus, the two groups
of cells should have no biological differences. However, the repli-
cates (batches) are manually chosen to preserve the technical
batch effect between the two groups: The first group contains
cells sampled from one replicate for each subject: NA19098
replicate 1, NA19101 replicate 2, and NA19239 replicate 1; the
second group contains cells sampled from another replicate from
each subject: NA19098 replicate 3, NA19101 replicate 1, and
NA19239 replicate 2. With the two groups of cells constructed in
this way, any detection made during differential testing must be a
false positive due to the technical differences between replicates
(batch effects).

DESCEND was applied to these data to test for differences
in Gini coefficient and CV between the two groups (Fig. 2E
and SI Appendix, Fig. S1B). Without consideration of batch,
DESCEND indeed finds many (false positive) differences in both
Gini and CV. However, with batch added as covariate in the
DESCEND model, the dispersion estimates from the two groups
are comparable, and no significant detections are made. The
fact that spike-in—based normalization cannot effectively remove
this batch effect, which is effectively removed by the DESCEND
model, indicates that batch effects are gene specific. We also
conducted differential dispersion analysis between two biologi-
cally different samples (the three replicates from NA19101 vs.
the three replicates from NA19239), with batch as covariate, and
found some significant changes in Gini. The fact that significant
differences are found between biologically different samples,
but not between biologically identical samples, suggests that
DESCEND still has the power to detect biological signals while
removing batch effect.

Case Studies

Cell-size effect on expression distribution and differential testing of
nonzero fraction and mean. At the single-cell level, many genes
are bursty, being inactive in some cells and active in other cells.
In Egs. 3 and 4, we defined the nonzero fraction and nonzero
mean to characterize this heterogeneity in the true underlying
gene expression. Using DESCEND, we analyze the scRNA-seq
data of mouse hippocampal region from Zeisel et al. (7), where
the 3,005 cells were classified into seven major cell types. Our
goal is to characterize the dependence of nonzero fraction and
nonzero mean on cell size and to find genes that are differ-
entially expressed in these parameters between different cell
types, controlling for cell size. Recall that cell size is estimated
as Eq. S.

First, consider the transcriptome-wide patterns of the
DESCEND deconvolved nonzero fraction and nonzero mean,
without adjusting for cell size; these were estimated for each gene
in each cell type separately, with no added covariates (details
in SI Appendix, SI Text). As shown in Fig. 34, the deconvolved
gene expression distributions for most genes have much larger
nonzero fraction in the neuron cell types (CAl pyramidal, S1
pyramidal, and interneurons) compared with the nonneuron cell
types (astrocytes—ependymal, endothelial-mural, microglia, and
oligodentrocytes), thus suggesting that more genes are in the
“on” state in neurons. However, neurons are known to be larger
cells, and, indeed, cell-size estimates are substantially larger for
neurons compared with nonneurons in this dataset (S Appendix,
Fig. S24). Can the global increase in nonzero fraction in neu-
rons simply be attributed to increased cell size? To answer this
question we need to first quantify how cell size affects the gene
expression distribution.
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Fig. 3. Differential testing on nonzero fraction/mean as in Zeisel et al. (7). Violin plots of the estimated nonzero fractions are compared across cell types
(A) before and (B) after adding cell size as a covariate. (C, Left) Estimated coefficients of cell size on nonzero fraction for genes whose nonzero fraction
is significantly smaller than 1 and with estimated value less than 0.9 for the endothelial-mural cell population. (C, Right) Density of all of the dots in C,
Left (black curve) aligned with the density curve of the coefficients of cell size on nonzero fraction for the RNA FISH data (blue). (D) Same as C, but for
coefficients on nonzero mean and all of the genes. (E) Scatter plot for the difference of the estimated nonzero fraction between the endothelial-mural and
CA1 pyramidal cells before and after cell-size adjustment. Significant genes are highlighted at FDR level 5%.

We applied DESCEND, with cell size as a covariate, to obtain
the deconvolved cell-size—adjusted gene expression distribution
for each gene in each of the seven cell types. The coefficients esti-
mated by DESCEND allow us to assess, for each gene, whether
its nonzero mean has superlinear, linear, or sublinear growth
with cell size and whether its nonzero fraction increases, remains
constant, or decreases with cell size. See statistical details in
Materials and Methods. Taking the endothelial-mural cells as an
example, we find that for most genes, nonzero fraction increases
with cell size as the coefficients are positive (Fig. 3C). The mean
trend across genes is that a doubling of cell size is associated with
at least a doubling of the odds of observing at least one tran-
script. We also find that, globally, nonzero mean has a slightly
sublinear dependence on cell size as many coefficients are below
1 (Fig. 3D). The sublinear dependence of nonzero mean on cell
size is consistent with previous findings in ref. 41, which used
RNA FISH to study a small set of genes and found their expres-
sion to have increased concentration in smaller cells, although
the quantity measured in ref. 41 directly reflects transcription
burst size. These relationships between expression distribution
and cell size are consistent across all seven cell types in this study
(81 Appendix, Fig. S2 E and F).

It is important to emphasize here that both cell size and
true expression distribution are not directly observable quan-
tities and that this relationship between cell size and nonzero
mean/fraction is not a direct consequence of larger observed
library size leading to larger change of having a nonzero count for
a gene. To demonstrate further that the discovered relationships
are biological, not technical, we conducted a parallel analysis
of the RNA FISH data of ref. 13 (SI Appendix, SI Text). For
the 23 genes (excluding GADPH) available in the RNA FISH
data, we observe the same trends as above: The nonzero frac-
tion increases with cell size, with a mean odds ratio of at least 2,
and the nonzero mean increases sublinearly with cell size (Fig.
3 C and D and SI Appendix, Fig. S2C). The fact that this trend
is observed using two different technologies and for eight differ-
ent cell types (seven by scRNA-seq, melanoma cell line by RNA
FISH) suggests that it may be a general relationship between cell
size and single-cell gene expression distributions.
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Fig. 3B shows the nonzero fractions across genes within each
cell type, estimated by applying DESCEND with cell size as
a covariate. After adjusting for differences in cell size, the
transcriptome-wide patterns in nonzero fraction/mean are much
more similar across cell types. This suggests that the increased
nonzero fraction in neuron cells can mostly be attributed to
cell-size differences. For example, compare two cell types:
endothelial-mural and pyramidal CAl cells. Before cell-size
adjustment, 879 genes show significant decrease of nonzero frac-
tion in pyramidal CA1 at FDR of 5% (Fig. 3E and SI Appendir,
Fig. S2B); the results change substantially after cell-size adjust-
ment, with only 84 significant genes, 78 of which were in the
original set of 879 genes. This highlights the importance of
cell-size adjustment in differential testing.

We also test for the change on nonzero mean between
endothelial-mural and pyramidal CA1 cells. Across genes, the
estimated change in nonzero fraction does not seem corre-
lated with the estimated change in nonzero mean (Fig. 3H),
indicating that, after accounting for cell size, the two types of
change are unrelated. Differential testing results on nonzero
mean and nonzero fraction, taken together, give a more detailed
characterization of differential expression (S Appendix, Fig. S3).

DESCEND improves the accuracy of cell type identification by a bet-
ter selection of highly variable genes. One major step in cell type
identification is the selection of highly variable genes (HVG)
before applying any dimension reduction and clustering algo-
rithms (6, 34, 37, 42). Filtering out genes with low variation
reduces noise while keeping the genes that are more likely to
be cell subpopulation markers. Current pipelines select HVGs
mainly by computing dispersion measurements, such as CV and
Fano factor, directly on the raw or library-normalized counts or
by variance decomposition. However, as shown in Fig. 2B, these
methods are not as accurate as DESCEND in estimating the
true biological dispersion of the gene expression levels. Further-
more, compared with CV and Fano factor, the Gini coefficient
is a more robust indicator of dispersion (see Materials and Meth-
ods for derivation), and we have shown that DESCEND allows
accurate estimate of this indicator. Here, we examine whether
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DESCEND-selected HVGs improve the accuracy of cell type
identification when used with existing clustering algorithms.

We consider cell type identification in two datasets where
somewhat reliable cell type labels are available. One consists
of the 3,005 cells in ref. 7, which were classified into seven
major cell types with the help of domain knowledge. The
other is obtained from 10 purified cell populations derived
from peripheral blood mononuclear cells (PBMC) in ref. 39,
where 1,000 cells were sampled randomly from each cell type
and combined to form a 10,000-cell dataset. Since the PBMC
data consist mostly of immune cell subtypes (CD4* helper T
cells, CD4*/CD25" regulatory T cells, CD4*/CD45RA*/CD24~
naive T cells, CD4*/CD45RO* memory T cells, CD8" cytotoxic
T cells, and CD8*/CD45RA™* naive cytotoxic T cells) which are
well known to have similar transcriptomes, it is a more challeng-
ing test case. For both datasets, we treat the cell type labels given
in their original papers as the gold standard.

There are many existing cell clustering methods for scRNA-
seq. To focus on evaluating the effectiveness of the initial HVG
selection step, we limit to Seurat, one of the most widely used
algorithms, and compare clustering results of Seurat (Version
2.1) with a modified version of Seurat where the initial HVG
selection step is replaced by DESCEND. Seurat selects HVGs
by ranking the Fano factors of the normalized counts, yield-
ing a list with only ~50% overlap with the HVGs selected by
DESCEND (Fig. 44) for both datasets. To compare cell cluster-
ing accuracy, we use the adjusted Rand index, which ranges from
0, for a level of similarity expected by chance, to 1 for identical
clusters (43). The number of clusters is set to the truth for both
datasets and both pipelines. Fig. 4B shows that with DESCEND,
Seurat achieves consistently better results than its original ver-
sion. Seurat, like most other clustering algorithms, first performs
dimension reduction using principal components analysis (PCA),
and the number of principal components (PCs) affects down-
stream clustering. As seen in Fig. 4B, the accuracy boost obtained
from DESCEND-based HVG selection is consistent across the
number of PCs used for dimension reduction.

Dispersion analysis using the DESCEND-estimated Gini coefficient
highlights early-stage differentiation markers for mES cells. We
apply DESCEND to data from Klein et al. (6), where sin-
gle cells were sampled from a differentiating mESC population
before and at 2 d, 4 d, and 7 d after Leukemia inhibitory factor
(LIF) withdrawal. In these data, while pluripotency markers and
differentiation-related genes have changes in mean expression
over time, due to complete transcriptome remodeling, almost all

A

Highly variable gene selection

Zeisel (brain, 2015)

> Cell Type Identification Accuracy
DESCEND

Seurat (AR|)
Zeisel (K=7) Zheng (K=10)
DESCEND DESCEND
#0f PCs  Seurat | gq ot Seurat | geyrat
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Fig. 4. Selection of HVGs and cell type identification. (4) Venn diagram of
the number of selected HVGs in Seurat and using DESCEND based on the
Gini coefficient. (B) Comparison of cell type identification accuracy using
Adjusted Rand Index (ARI) between the original Seurat and Seurat with the
HVG selection step replaced by DESCEND.
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genes have significant change in mean expression even by day 2
(81 Appendix, Fig. S4C). Thus, change in mean is not an effective
measure for identifying differentiation markers. Instead, we used
DESCEND to test for change in expression dispersion across the
early time points, under the rationale that early differentiation
markers would exhibit high heterogeneity at this initial stage.

First, consider expression dispersion as quantified by the
Gini coefficients computed from the observed counts distri-
bution, before deconvolution by DESCEND: For most genes,
they are much higher at days 2 and 4, compared with days 0
and 7 (Fig. 54). Although this pattern is consistent with our
expectation that cells should exhibit higher heterogeneity dur-
ing differentiation, compared with directly before or directly
afterward, it is confounded by the substantially lower sequenc-
ing depth for the day 2 and 4 samples (SI Appendix, Fig.
S4A). Are the higher Gini coefficients in days 2 and 4 due to
the technical reason of lower sequencing depth or the biologi-
cal reason of increased population heterogeneity? We applied
DESCEND to compute Gini coefficients of the true expression
distribution, thus removing the technical confounder of sequenc-
ing depth. DESCEND-estimated Gini coefficients confirm that
Gini coefficients are indeed higher at days 2 and 4, compared
with days 0 and 7 (Fig. 5B), as expected for this evolving
population.

The differentiation of mES cells upon LIF withdrawal is a
poorly characterized process. Ref. 6 observed that, whereas at
day 7, almost 100% of cells have become epiblasts, at day 2 the
proportion is below 10%. Thus, the cross-cell mean expression of
known epiblast markers, such as Krt8, Krt18, Tagln, Cald1, Tpml,
and Fxyd6, does not show significant increase until day 4 (Fig.
5C), when almost half of the cells show complete transcriptome
reprogramming (SI Appendix, Fig. S54). In comparison, these
known marker genes belong to a much smaller set of genes that
show a dramatic increase in Gini coefficient between day 0 and
day 2 (Fig. 5C and SI Appendix, Fig. S4C).

DESCEND allows the computation of SEs, and from these
SEs we assessed the significance of change in Gini coefficient
between day 0 and day 2. At an FDR threshold of 5%, 750
genes are significant for change in Gini coefficient. In compar-
ison, more than 10,000 genes have significant, but very small
changes, in mean between day 0 and day 2 using either DESeq2
or DESCEND, with the significance driven mostly by the much
smaller SEs for mean estimation (SI Appendix, Fig. S4C). Of the
56 genes with significant change in Gini coefficient but not in
mean computed by DESCEND, many are meaningful differenti-
ation markers. For instance, the genes Tagln, Anxa2, H19, Sparc,
and Ccno are listed in ref. 6 as marker genes for the cell types
that appear during differentiation (SI Appendix, Fig. S4D). Jun,
Anxa3, KIf6, Fos, and Dusp4 can also be marker genes for the
epiblast cells as these genes show significant increase in mean
expression at the later stages (day 4 or day 7) (SI Appendix,
Fig. S4E).

DESCEND also allows a more detailed characterization of the
activity of pluripotency factors during differentiation (44, 45).
As discussed in ref. 6, the expression levels of some pluripo-
tency genes drop gradually (Pou5f1, DppaSa, Sox2) while those of
others drop rapidly (Nanog, Zfp42, Kif4) during differentia-
tion. This is revealed by the trend of the DESCEND-estimated
Gini coefficient (Fig. SE) across time. The rapid drop-off genes
react early during differentiation, and thus their Gini coefficients
increase immediately at day 2 (SI Appendix, Fig. S5). In compar-
ison, the gradual drop-off genes react late during differentiation
and thus their Gini coefficients remain unchanged at day 2, start-
ing to increase only at day 4. In contrast, this difference in early
vs. late expression drop-off is not visible by mean expression due
to heterogeneity between cells with regard to their differentia-
tion timing. As a negative control, the cell-cycle marker gene
Ccnd3 has no significant change in DESCEND-estimated Gini
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Fig. 5. Marker genes analysis using Gini as in Klein et al. (6). (A and B)

Violin plots (with solid line indicating the 50% quantile) of Gini coefficients
of raw normalized counts (A) and of the DESCEND-estimated Gini coeffi-
cients on each day (B). (C) Change of the mean relative expression and Gini
coefficients for six epiblast marker genes across days. The colored error bars
indicate 1 SE. (D) Change of the mean relative expression and Gini coeffi-
cients for pluripotency genes across days. For the Gini coefficients, one is
estimated using DESCEND, and the other is calculated using raw normalized
counts. The colored error bars indicate 1 SE.

coefficient during differentiation, agreeing with the fact that its
expression heterogeneity across cells should be steady during
differentiation.

Discussion

We have described DESCEND, a method for gene expression
deconvolution for scRNA-seq. All results in this paper are based
on a Poisson model for UMI counts. The deconvolution accuracy
of DESCEND was extensively assessed through comparisons to
population-matched RNA FISH data and through data splitting
and simulation experiments. DESCEND’s noise model allows it
to remove known batch effects, as demonstrated on data from
ref. 29.

DESCEND’s formulation allows more complex noise models,
which would be necessary for analysis of scRNA-seq data without
UMIs where there is amplification bias and zero inflation beyond
what could be captured by Poisson sampling (24, 46). But such
models contain many more parameters, and the estimation of
these parameters is nontrivial. Some aspects of the deconvolved
distribution, such as Egs. 3 and 4, are highly sensitive to the noise
model and the estimation quality of the technical parameters.
More efforts are needed to develop robust error models for non-
UMI scRNA-seq data.

Even in UMI-based scRNA-seq data, technical noise may have
substantial overdispersion, and a negative binomial distribution
may be more appropriate. DESCEND accepts the negative bino-
mial distribution with a known overdispersion parameter 6. As
shown in Fig. 24, 6 can be estimated using the spike-in genes
as the square of the CV limit when the expected number of
input molecules increases. The overdispersion may also be cell
or gene specific, but a more realistic model with more parame-
ters may not always lead to better analyses if those parameters
cannot be estimated reliably from data. So far, we have settled
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on a simple model with at most one overdispersion parameter
for UMlI-based data.

Without covariate adjustment, DESCEND currently requires
a few seconds for deconvolution of the distribution of a single
gene with hundreds of cells and 10-20 s when there are thou-
sands of cells. Adding covariates and performing likelihood-ratio
tests increase the computation cost by roughly three or four
times. Computation can be easily parallelized across genes.

Accuracy of DESCEND estimation increases with number of
cells and with sequencing coverage. For example, for the Drop-
seq data from ref. 13, although the average UMI count per cell
is only around 1,500, the large number of cells (a few thousand)
allows accurate DESCEND estimation. For the data from refs.
6 and 7, there are only a few hundred cells for each condition,
but the high sequencing depth and the prefiltering allow good
estimates.

Code Availability

The R package DESCEND is available on the Github repos-
itory https:/github.com/jingshuw/descend. All source code and
intermediate analysis results that were used to generate the fig-
ures in this paper are at repository https://github.com/jingshuw/
DESCEND_manuscript_source_code.

Materials and Methods

Model. We introduce the model, estimation procedure, and inference
framework here, but leave technical details and a full discussion to the
accompanying mathematical supplement in S/ Appendix, Mathematical
Details of DESCEND.

The observed count Y, for gene g in cell c is modeled as a convolution
of the true gene expression A, and independent technical noise Fey(-):

ch ~ cho\cg)- [6]
The default technical noise model in DESCEND is the Poisson-alpha model,
Ycg ~ Poisson(acAcg), [71

where a. is a cell-specific scaling factor. There are two ways to set ac,
leading to two interpretations for \y. First, if one wishes to recover the
distribution of absolute expression, one would need spike-in data for each
cell to compute the proportion of transcripts sequenced (2) and set o to
this value. In this case, Ay represents true absolute expression count and
ac is the cell-specific efficiency constant. When spike-ins are not available,
or when one wishes to recover the relative gene expression distribution, .
can be set to the total UMI count for cell ¢ in Eq. 1. In this case, Ay repre-
sents the concentration of gene g in cell c. Thus, the interpretation of A
depends on how we set ac. From now on, we simply refer to A\ as “true
expression.”

DESCEND allows more complex technical noise models with gene-specific
batch effects and Beta-binomial noise distribution. These extensions are
described in S/ Appendix, Mathematical Details of DESCEND.

Without covariates, our model assumes that true expression Ay ~ Hg and
our goal is to estimate Hy. We assume that Hy has a point mass at zero and a
nonzero component belonging to an exponential family of distributions as
in ref. 27. When cell-level covariates U, are specified, we assume that they
affect expression as follows:

Iog()\cg)l)\(g>0 = Ucﬁg + €cgs [8]
l0git(P[Acg = 0]) = Uc By + Bog- [

Thus, the covariate effect is quantified by the parameters 3, Bg, and
ﬁog. Our goal is to conduct inference on these parameters as well as to
deconvolve the “covariates-adjusted distribution.” The nonzero part of the
distribution is the same as that of exp(ey) and the zero probability (denoted
by p) of this distribution is the average of P[A = 0] across cells c. The
covariates-adjusted nonzero fraction is meaningful only for differential test-
ing, which is defined as 1/ (exp(Bog) + 1), with U, centered to have mean 0
across all cell populations.

Modeling the Nonzero Component. Let h(-) be the density of exp(e) or, in
the absence of covariates, the density of Ag|A¢g > 0. We assume
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h(x) = exp{Q() a — ¢(a)}, [10]

where « is a vector of parameters and ¢(a) is the normalization fac-
tor. When Q(x) = (log x, x), then h(x) is the Gamma density. When Q(x) =
(log x, (log x)2), h(x) is the lognormal density. Following ref. 27, to adapt to
data, we set Q(x) to the 5-degree natural cubic spline basis.

As in ref. 27, we discretize to simplify estimation. That is, we assume \ €

A=(\1,...,A\m) and let
P[Aeg =) | Acg > 0] = exp{Q] & — ()}, [11]
where Q =(Q1, ..., Qm) is the 5-degree natural cubic spline base matrix.

In DESCEND, the default setting is m =50 and X is chosen as equally spaced
points between 0 and the 1 — a percentile of {Y¢g/ac, ¢=1,2,---C}. See
SI Appendix, SI Text for how a is chosen.

Penalized Maximum-Likelihood Estimation. Now we combine zero inflation
and covariates adjustment with density h to get the likelihood of the
observed data Yy, which we call fc. It is not hard to show that the likelihood
has the form
fe(ag, Bg) = Pc(ﬂg)Thc(@g).

where p (8g) incorporates the Poisson noise and the covariate effect on
nonzero mean (Eq. 8) (the formula for p_ is in ref. 27), and hc(ag) is an
adjustment of Eqg. 11 to account for Eq. 9,

he(ag) = exp{Qlag — ¢clag)},

1 U 0
QCT:<0 0C QT)

is the cell-specific covariate-adjusted matrix. The first element of ag is a
rescaled fog and the rest of ag is (B, ).

Following ref. 27, we maximize a penalized log-likelihood to estimate
the parameters 8y, &g. Suppressing g in our notation, let the log-likelihood
for counts of gene g across cells be (&, 8) = 3~ log fc(&, B), and the penal-
ized log-likelihood is 7(&, B) =I(ag, Bg) —s(@), where s(&) =col|&l|2 is the
penalty term. Let the Fisher information matrix of & be /(&). Based on the
suggestion in ref. 27, in DESCEND the tuning parameter ¢y is adaptively cho-
sen such that the approximated ratio of artificial to genuine information
R(E):tr{i(@)}/tr{?@)} is less than 1% to avoid overshrinkage but more
than 0.05% to reduce overfitting.

where

Statistical Inference. Ref. 27 showed that second-order approximations pro-
vide useful inference on model parameters. By Taylor expansion of the
log-likelihood around the true values of & and 3, we have

0= {7@ B)~ (&, B) + I, B) () - (‘g)}

from which one can calculate bias and SD of the estimates. For inference on
functions of &, 8 (such as mean, nonzero fraction, etc.), we apply the Delta
method.
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Now consider differential testing between two populations of cells. Let
0; (i=1,2) be the value of some model parameter, which is a function of
&, B, in population j. To test Hy : 61 = 6, we compute a Z score,

91 — éz
\/ MSE(6,) + MSE(8,)

where MSE(d,) = Bias’ (6;) + 5D () is the estimated mean-squared error.
Permutations of the cell labels give the null distribution for P-values
computation.

DESCEND uses likelihood-ratio tests with the unpenalized likelihood
I(&, B) to conduct tests on distribution parameters in a single popula-
tion; e.g., Hoig: P[Ag #0] =1, the test on nonzero fraction in the true
distribution of gene g. Another example is the test of whether the cell-
size covariate, in the first case study, has an effect on nonzero mean
(Hoz2g : Bg = 1) or on nonzero fraction (Hozg : ﬁg =0). These test statistics are
approximately chi-square distributed.

7=

Finding HVGs. We use quantile smooth regression (default quantile 0.5) to
fit a smooth curve of the relationship between the mean of deconvolved
distributions and Gini across genes, using the R package quantreg (47).
The dispersion score of each gene is computed as the distance of the Gini
from the curve, which is further normalized by its SE. We select HVGs as
the genes whose normalized scores are larger than a threshold T (default
value is 10).

Randomness of ERCC Spike-in Counts in scRNA-seq Experiments. Randomness
of both the input counts and technical noise contributes to the randomness
of ERCC spike-ins observed counts. First, the actual count of each spike-in
gene in each cell deviates from its target count computed from dilution
ratios and is approximately Poisson given the following three assumptions:
(i) The molecules are distributed evenly in the dilution, (ii) each molecule
moves independently, and (iii) the distribution of molecules in dilution does
not change during the spike-in process. If any of these assumptions fail, the
actual count landing in each cell would be overdispersed compared with
Poisson. Such randomness is also observed empirically. For example, in ref.
7, 339 of the 3,005 cells have at least one ERCC gene (among the 38 spike-in
genes with expected input count >5) whose observed UMI count is even
larger than its expected input count, which would not have been possible if
we assume the input count is fixed.

In the ERCC data of ref. 37, the variances of the DESCEND deconvolved
distributions are roughly 10, where X is the expected input count. This
overdispersion can be explained by a clumping model: If 10 molecules on
average move together in the dilution before they are added to cells, and if
the clumps move independently, then the variance of the observed counts
would be 10.
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