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Spiral waves propagating in Saturn’s rings have
wavelengths that vary with radial position within the
disc. The best-quality observations of these waves
have the form of radial profiles centred on a particular
azimuth. In that context, the wavelength of a given
spiral wave is seen to change substantially with
position along the one-dimensional profile. In this
paper, we review the use of Morlet wavelet analysis to
understand these waves. When signal to noise is high
and the cause of the wave is well understood, wavelet
analysis has been used to solve for wave parameters
that are diagnostic of local disc properties. Waves
that are not readily perceptible in the spatial domain
signal can be clearly identified. Furthermore, filtering
in wavelet space, followed by the reverse wavelet
transform, has been used to isolate the part of the
signal that is of interest. When the cause of the wave
is not known, comparing the phases of the complex-
valued wavelet transforms from many profiles has
been used to determine wave parameters that cannot
be determined from any single profile. When signal
to noise is low, co-adding wavelet transforms while
manipulating the phase has been used to boost a
wave’s signal above detection limits.

This article is part of the theme issue ‘Redundancy
rules: the continuous wavelet transform comes of age’.

1. Introduction
Saturn’s ring system is a disc characterized by a wide
array of structures over a wide array of length scales. A
prominent form of structure in some parts of the rings
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are spiral waves, which follow the same basic physical processes that give rise to spiral arms
of galaxies [1–3], but which are much more tightly wound due to the much higher mass ratio
between the central mass (i.e. Saturn) and the disc [3].

Spiral density waves (SDWs) and spiral bending waves (SBWs) are, respectively, caused by in-
plane and vertical perturbations of ring particle orbits by periodic forcing. Most commonly, the
forcing is due to one of the moons of Saturn, though some spiral waves have been linked to mass
anomalies within the planet Saturn [4–6]. Spiral waves occur at locations in the rings where the
forcing frequency is in resonance with the orbital frequency of ring particles. The wave propagates
away from the resonance in one direction, with a wavelength that decreases downstream. Some
aspects of the linear theory of SDWs are reviewed in §2.

The variation of the spatial frequency with location makes it difficult to analyse spiral waves
with classical Fourier analysis. Other phenomena in Saturn’s rings, such as ‘moonlet wakes’ [7],
also have spatial frequencies that vary with location. Horn and co-workers [8,9] employed a
somewhat ad hoc form of localized Fourier analysis to interrogate these structures, an approach
that culminated in the most comprehensive pre-Cassini survey of spiral waves in Saturn’s
rings [10].

Tiscareno et al. [11] were the first to approach this problem using Morlet wavelet analysis
[12–15] as an optimized method of ‘localized Fourier analysis’, able to pinpoint the dominant
wavelength(s) at a given location and the locations at which a given wavelength predominates.
We review some aspects of wavelet theory, as we used it, in §3, and we outline the method of
Tiscareno et al. [11] for analysing an SDW with wavelet analysis in §4a.

The work [11] was an analysis of images from the Cassini ISS camera [16], which we reduced
to radial profiles by summing pixels in the azimuthal direction. We used filtering of the wavelet
power spectrum, followed by a reverse wavelet transform, to isolate distinct waves in the
frequency dimension, even when they overlap in the spatial dimension. Furthermore, we used
the wavelet phase to trace the linear increase in the spatial wavenumber of well-sampled waves,
which proved the key to fitting such waves to a five-parameter theory that yields information
regarding the local ring surface mass density, the local ring viscosity, the precise resonance
location, and the longitude and mass of the perturbing moon (or other forcing mass) [11]. The
results of this work, along with those of some follow-up papers [17,18] are described in §§4b
through 4d.

Stellar occultations, in which a star’s brightness is repeatedly measured as it passes behind
the rings, were observed in substantial numbers by the Cassini Ultraviolet Imaging Spectrograph
(UVIS), and Visual and Infrared Mapping Spectrometer (VIMS) instruments [19,20]. Each
occultation provides a one-dimensional cut across the ring, rather than a two-dimensional
image. This makes it more difficult within an individual occultation observation to distinguish
radial ring structure from stochastic optical depth variations. Furthermore, the radial sampling
frequency changes depends on the occultation geometry and can vary over the course of a
single observation depending on the path the star appears to take behind the rings. However,
occultations typically have much finer spatial resolution than images, and their spatial geometry
is much more tightly controlled, enabling data from multiple occultations to be combined in very
productive ways.

Several analyses of UVIS occultations [21,22] employed a ‘weighted wavelet Z’ (WWZ)
transform [23] to co-add multiple occultations together, despite differences in their sampling
and in their signal to noise in order to reveal several weak wave signatures. This work and its
results are discussed in §5. Further advances were achieved by Hedman & Nicholson [4,5] and
French et al. [6], who used the phase information encoded in the real and imaginary parts of the
wavelet transform to ascertain the number of arms and rotation rates of spiral patterns whose
origins were not clear. That group also developed a method that used wavelet phase information
when combining data from multiple occultations to isolate signals from specific waves that would
otherwise would be lost among the noise in each profile [24]. This work and its results are
discussed in §6.
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2. Theory of spiral density and spiral bending waves
The linear theory of spiral waves in discs has been described in several classic publications (for
review, see [25]). At the location of a Lindblad resonance,1 the forcing frequency forms a simple
ratio with the radial (epicyclic) frequency of ring particle orbits, amplifying their eccentricity. The
coherent excitation of ring particles gives rise to compression and rarefaction, initiating a SDW
that propagates through the disc.

The density wave can be described as a density variation �σ on the background surface
density σ0. At orbital radius r greater than the resonance location rL, we have

�σ (r) = Re
{

iAL e−iφ0

[
1 − iξ e−iξ 2/2

∫ ξ
−∞

eiη2/2 dη
]}

e−(ξ/ξD)3
, (2.1)

where the dimensionless radial parameter is

ξ =
(

DLrL

2πGσ0

)1/2
· r − rL

rL
(2.2)

and further terms are defined below.
Assuming Saturn’s gravity is well described as a point mass plus a J2 harmonic, the factor DL

is given in [26,27]

DL = 3|m − 1|n2
L + J2

(
rS

rL

)2 [21
2

− 9
2
|m − 1|

]
n2

L, (2.3)

where the second term is a small correction except for m = 1.
The Lindblad resonance occurs at rL. The local mean motion is nL, which must be calculated

accounting for the higher order moments of Saturn’s gravity field [28]. Saturn’s radius rS =
60 330 km by convention [29]. The resonance’s azimuthal parameter is m, an integer that is positive
when the perturbing moon orbits outside the rings, but can be negative for resonances involving
the planet. In either case, |m| is equal to the number of spiral arms. The amplitude AL is related
to the mass of the perturbing satellite, while the damping constant ξD describes the ring’s viscous
response (see §2c).

(a) Initial phase
For a given longitude on the rings, λ, the initial phase of a density wave generated by an exterior
satellite is given by

φ0 = mλ− (m + K)λs + K	s, (2.4)

where λs and 	s are the mean longitude and longitude of periapse of the perturbing satellite.
The integers m and K describe the resonance—a (K+1)th-order Lindblad resonance is commonly
labelled (m+K):(m−1). A third integer p describes resonances linked to the perturbing satellite’s
inclination, but no such resonances are discussed in this paper.

The above expression can be generalized to cases when the wave is generated by a resonance
with a structure inside the planet. In those situations, a more useful expression for the initial wave
phase is

φ0 = |m|(λ−Ωpt) + φ00, (2.5)

where Ωp is the rotation rate of the planetary structure and φ00 is the orientation of this structure
at the epoch time t = 0.

1In most respects, the theory of vertical resonances and SBWs is similar to that of Lindblad resonances and SDWs. On the
other hand, some of the details of SBW theory are less well developed, though these differences generally do not affect the
frequency structures on which our wavelet analysis is founded. In this review, for simplicity, we focus on the theory of SDWs.
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(b) Local wavenumber and phase
The integral in equation (2.1) is a Fresnel integral, which significantly modulates the result near
the wave’s generation point, but oscillates about unity for higher values of ξ . Downstream, then,
the dominant component of equation (2.1) has the form of a sinusoid with constantly decreasing
wavelength (as well as modulating amplitude), such that the wavenumber, k = 2π/λ, increases
linearly with distance from rL [3]:

kDW(r) = DL

2πGσ0rL
(r − rL). (2.6)

Since the wavenumber increases linearly with r, the accumulating phase naturally increases
quadratically. Indeed, making use of

∫
k dr = ξ2/2, the instantaneous phase of the sinusoid far

from ξ = 0 (i. e. r = rL), as a function of radial location ξ (r), asymptotically approaches [3]

φDW = φ0 + ξ2

2
+ π

4
. (2.7)

It is important to note the term of π/4 (or 45◦) added to this quantity. This asymptotic limit is a
good approximation only for ξ � 1 [30].

(c) Ring viscosity and vertical scale height
When the damping constant ξD � 1 (i.e. when damping is inefficient enough to allow at least
several wavecycles), the local ring kinematic viscosity ν can be estimated as [3,31]

ν = 9

7κLξ
3
D

(
rL

DL

)1/2
(2πGσ0)3/2, (2.8)

where, for this purpose, the radial frequency κL is approximately equal to the orbital
frequency ΩL.

The viscosity ν is directly related to the rms random velocity c [32]

c2 = 2νn

(
1 + τ 2

τ

)
, (2.9)

where τ is the local optical depth. Equation (2.9) assumes that ring particle interactions are
isolated two-particle collisions; it is not valid when the ring particle density is high enough that
particle size becomes important [33]. This assumption is probably valid for the A Ring.

Under the assumption that random velocities are isotropic, the ring’s vertical scale height can
be estimated as H ∼ c/Ω . However, this assumption is violated in much of the A Ring.

(d) Summary
The density wave equation (equation (2.1)) contains five parameters that may vary from wave to
wave (not counting the azimuthal parameter m, which is fixed by the identity of the resonance),
and which are sensitive to physical quantities concerning the ring or the perturbing moon.

(i) The background surface density of the ring, σ0, governs the rate at which the
wavenumber increases with distance from resonance.

(ii) The resonance location, rL, fixes the wave against translation in the radial direction.
(iii) The initial phase, φ0, is fixed by the moon’s orbital phase relative to the location at which

the wave is observed.
(iv) The damping parameter, ξD, governs the location at which the wave’s amplitude ceases

to grow and begins to decay; it is sensitive to the dynamical viscosity of the ring.
(v) The amplitude, AL, governs the overall strength of the perturbation (irrespective of its

shape); it is sensitive to the mass of the perturbing moon.
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Figure 1. The Morlet wavelet withω0 = 6. The solid line shows the real part, the dashed line the imaginary part. For ease of
viewing, the Gaussian envelopewithinwhich thewavelet oscillates is shown as a dotted line. Thewavelet translates and dilates
in order to interrogate the signal at all scales (s) and locations (r). Figure from Tiscareno et al. [11].

3. Wavelet theory
Here we review the properties of the continuous wavelet transform (CWT), emphasizing aspects
that are relevant to our purposes. For more detailed information on the wavelet transform and its
applications, see [15] and references therein.

(a) The Morlet wavelet
The mother wavelet governs the way in which the wavelet transform transfers spatial information
into the frequency domain. The mother wavelet we use is the Morlet wavelet, which is optimally
suited for identifying oscillatory components of a signal.

A wavelet transform using the Morlet mother wavelet can be thought of as a localized Fourier
transform. As with standard Fourier analysis, components of the input signal are separated in
the frequency domain, but wavelet analysis additionally pinpoints the locations in the signal at
which a given frequency is important. This is particularly useful when the signal’s dominant
frequency changes with location (as it does in a density wave propagating through a disc). The
advantage of wavelet analysis over other time-frequency methods (such as the windowed Fourier
transform) lies in the automatic scaling of the window along with the interrogating waveform,
yielding optimal simultaneous detection of both high- and low-frequency signal components.

The Morlet wavelet is simply a complex sinusoid within a Gaussian envelope:

ψ(t) = π−1/4 exp

[
iω0t − t2

2

]
. (3.1)

The wavelet’s central frequency, ω0, is selected beforehand by the user (see §3c).
Wavelet analysis is carried out by translating and dilating the mother wavelet (figure 1), and

convolving these daughter wavelets with the input signal (see equations (3.4) and (3.5)). At a given
location r and spatial scale s, the daughter wavelet is given by [15]

ψr,s(r′) = s−1/2π−1/4 exp

[
iω0(r′ − r)

s
− (r′ − r)2

2s2

]
(3.2)

and the daughter of the Fourier-transformed mother wavelet is given by

ψ̂r,s(ω) = (2s)1/2π1/4 exp

[
−iωr − (sω − ω0)2

2

]
. (3.3)
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(b) The wavelet transform
For an evenly sampled radial signal, x(r), the CWT is given in [14,15]

W(r, s) =
∫∞

−∞
x(r′)ψ∗

r,s(r
′) dr′, (3.4)

where ∗ denotes the complex conjugate. In practice, the wavelet transform is more efficiently
calculated in terms of the product of the Fourier transforms

W(r, s) =
∫∞

−∞
x̂(ω)ψ̂∗

r,s(ω) dω. (3.5)

For more discussion, see [13,14], the latter of whose software2 we use for this purpose.

(c) Choosing the central frequency
Wavelet analysis follows a form of the Heisenberg uncertainty principle, in that an increase in
spatial resolution comes only at the cost of decreased frequency resolution and vice versa [15].
Classical Fourier analysis can be seen as an end-member in this trade-off, providing the optimum
possible frequency resolution, but at the cost of having no spatial resolution at all. For the
Morlet wavelet, this trade-off is governed by the central frequency ω0 in equations (3.1)–(3.3).
Higher values of ω0 cause the Gaussian envelope to contain more oscillations of the sinusoid,
and consequently yield higher spectral resolution at the expense of lower spatial resolution (e.g.
figure 13). In this paper, unless otherwise specified, we use a value of ω0 = 6 (although there is
nothing intrinsically special about any particular value of ω0, which need not even be an integer).
A typical Morlet wavelet can be seen in figure 1.

We should note that the expression for the Morlet wavelet given in equations (3.1) to (3.3) is
only valid for ω0 � 5. For smaller central frequencies, one cannot ignore the addition of a real-
valued constant to the sinusoid, which is necessary to ensure compliance with the requirement
that an admissible wavelet must have zero mean [13,15].

(d) Wavelength and wavenumber
The scale parameter, s, is directly proportional to the more familiar Fourier wavelength, λF. For
the Morlet wavelet, this relationship is given in [14]

λF = 4πs
ω0 + √

2 + ω0
. (3.6)

The wavelet plots in this paper are shown with a y-axis that increases linearly with the
wavenumber k = 2π/λF (and thus inversely with s), as the trace of a density wave appears linear
in that representation (see equation (2.6)).

(e) Inverse wavelet transform
The wavelet transform can be inverted, recovering the input signal to good accuracy. Before
inverting, a powerful method of filtering can be implemented by setting undesired elements in
the transform array to zero. The inverse wavelet transform can be written [13]

x(r) = 1
Cδ

∫∞

0

W(r, s)
s3/2 ds. (3.7)

The normalization constant is

Cδ =
∫∞

0

ψ̂0,1(ω)
ω

dω, (3.8)

2Software available at http://atoc.colorado.edu/research/wavelets/.

http://atoc.colorado.edu/research/wavelets/
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where ψ̂0,1(ω) is given by equation (3.3) with r = 0 and s = 1. If the original input signal x(r) was
real, simply take the real part of equation (3.7).

The constant Cδ is calculated only once for a given mother wavelet (i.e. in the case of the Morlet,
for a given value of ω0). The discretized form of Torrence & Compo [14] includes a different
method of calculating Cδ , which we will not restate here. Using their method, we find empirically
for ω0 ≥ 6,

CTC98
δ = 0.776

(ω0

6

)−1.024
, (3.9)

with the uncertainty in the last decimal place. This result allows the inverse wavelet transform to
be calculated with software in [14], even when ω0 
= 6.

(f) Wavelet energy and phase
Because our wavelet transform is complex-valued, it can be expressed in terms of two two-
dimensional arrays: the wavelet energy spectrum (or ‘scalogram’)

EW(r, s) = |W(r, s)|2 (3.10)

and the wavelet phase

φW(r, s) = tan−1
(

Im{W(r, s)}
Re{W(r, s)}

)
. (3.11)

Most plots of wavelet transforms in this paper will show only the energy scalogram, which gives
the relative importance of different frequencies at a given location.

The two-dimensional array of wavelet phases can be more usefully reduced to the average
wavelet phase, φ̄W(r), weighted by the modulus, over all scales s at a single location r. For a quasi-
sinusoidal signal, φ̄W(r) gives the local proximity to peaks and troughs, even when the sinusoid’s
wavelength is inconstant (as it is for density waves), and can be compared to a density wave’s
instantaneous phase (equation (2.7)). As with the filtering method described above, selected
values of W(r, s) can be set to zero before performing this calculation, in order to isolate a desired
component of the signal.

Considering each complex element of W(r, s) as a vector in the real–imaginary plane, φ̄W(r)
can be calculated by finding the average vector, then taking its phase. This is done by separately
summing the real and imaginary parts of W(r, s) over the desired scales:

φ̄W(r) = tan−1
(
Σs Im{W(r, s)}
Σs Re{W(r, s)}

)
, (3.12)

keeping in mind that π/2 ≤ φ̄W(r) ≤ 3π/2 if the real part is less than 0.

(g) Wavelet ridges
It can be useful to plot local maxima in the two-dimensional representation of wavelet
information. Wavelet ridges are those locations in the (r, s) plane for which

d[EW(r, s)]
ds

= 0 (3.13)

and are useful for pinpointing important scales (and thus frequencies, from equation (3.6)) at a
given location r [34].

(h) The cone of influence
The cone of influence (COI) is the region in the wavelet transform within which edge effects
may contaminate the signal. The size of the COI varies with the scale s, as a consequence of the
dilation of the mother wavelet. It is up to the user to define a COI with which they are comfortable
[15]. We follow [14] in using the distance over which the wavelet energy contributed by the edge
discontinuity decreases by a factor of e, which is

√
2s for the Morlet wavelet.
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Figure 2. (a) Synthetic density wave radial profile generated by equation (2.1) with the values of table 1, (b) wavelet phase
and (c) wavelet energy. As with all wavelet plots in this paper, contours are logarithmic, with three contours to an order of
magnitude, and the lowest contour level is at the square of the median error estimate for the scan (here we artificially set
σinput = 0.1). The region filled with cross-hatching is the cone of influence. The dashed line is the foreknown wavenumber
kDW(r) (equation (2.6)), while the solid line shows the calculated location of a wavelet ridge (equation (3.13)); here, the two
diverge visibly only for r − rL< 40 km, corresponding to ξ < 6. Figure from Tiscareno et al. [11].

This form of the COI is, more generally, the interval over which the wavelet signal from any
localized feature would be expected to spread. For example, the wavelet transforms of many
density waves in this paper show some signal extending to the left of rL, a smearing effect
which is the inevitable consequence of the spatial frequency trade-offs discussed in §3c. The
reader can use the COI to visualize the expected spatial resolution along any horizontal line in a
transform plot.

For a given Fourier wavelength λF, the COI width
√

2s is proportional to the denominator in
equation (3.6). Thus, the COI is broader for higher values of ω0 (e.g. figure 2).

In all wavelet plots in this paper, the COI is denoted by a region filled with cross-hatching.
It is sometimes absent, in cases where the radial scan has been cropped so that true edges are
not shown.

(i) Significance levels
When uncertainties in the input signal are characterized by Gaussian white noise (with standard
deviation σinput), the normalized wavelet energy EW(r, s)/σ 2

input is distributed as χ2 with 2 d.f.
[14]. For our radial scans, each element is individually calculated as the weighted average of a
number of image pixels, and thus possesses a roughly Gaussian error estimate σinput.3 Therefore,

3For a radial scan element x̄, which is a weighted average of pixel values xi with weights wi, the uncertainty can be estimated
with a form of the standard error of the mean (s.e.m.), given in [35].

σ 2
input = Σi[wi(xi − x̄)2]

NΣiwi
. (3.14)
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Table 1. Parameter values (equation (2.1)) for synthetic density wave discussed in §4a.

parameter name symbol value

resonance label m 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

background surface density σ0 40 g cm−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

resonance location rL 130 000 km
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial phase φ0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

damping parameter ξD 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

amplitude AL 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in this paper, the lowest level shown in each contour plot corresponds to values of EW(r, s) equal
to σ 2

input. Further contour levels are logarithmic, with three levels per order of magnitude in EW.

4. Application to individual profiles of Cassini ISS images

(a) Wavelet analysis of a synthetic density wave
We here describe a multi-step semi-automated algorithm introduced in [11], using wavelet
methods to measure the parameters describing a density wave. To illustrate the utility and
limitations of our method, we consider a signal whose characteristics are known beforehand.
We use the density wave curve taken from equation (2.1), with parameters set equal to round
numbers typical of the mid-A Ring (table 1). We note that these values allow the dimensionless
radial parameter to be calculated as ξ = C(r − rL), where C = 0.147 km−1 (equation (2.2)).

(i) Obtaining the density wave’s high-frequency shape

Figure 2 shows the radial trace of the synthetic density wave, �σ (r), from equation (2.1) with
the values of table 1, along with the phase and energy of its wavelet transform. Note that �σ (r)
as discussed in this section is identical with the generic x(r) discussed in §3. The phase φ̄W(r) in
figure 2b is 0◦ at local maxima of �σ (r), and 180◦ at local minima, as we would expect. Figure 2c
also shows the relationship between the foreknown wavenumber (equation (2.6)) and the wavelet
ridge (equation (3.13)). For the first few wavecycles, the ridge is drawn away by non-sinusoidal
components in the signal, but farther downstream it agrees with the expected wavenumber. The
residual between the two is shown in figure 3b. A linear fit to the portion of the wavelet ridge that
is closest to linear can be used to re-obtain the background surface density σ0 and the resonance
location rL from equation (2.6); the fitted values are also given in figure 3b, with error estimates
taken from the linear regression.

Figure 3c shows how the wavelet phase φ̄W(r) can be ‘unwrapped’ by adding 360◦ at
every successive ‘wraparound’, to reveal a shape very close to quadratic. The residual between
the wavelet phase and the expected phase φ̄DW(r) (equation (2.7)) is shown in figure 3d. As
with the wavelet ridge, the regions closest to rL do not correspond well to the foreknown values.
But the phase reaches stable behaviour much sooner (at much lower values of r − rL) than does
the ridge. As in the previous case, the portion that is closest to quadratic can be fit to re-obtain the
initial phase φ0, the background surface density σ0 and the resonance location rL; the fitted values
are also given in figure 3d, with error estimates taken from the linear regression.

We use the quadratic fit to the phase, rather than the linear fit to the wavenumber ridge, not
only because it obtains all three parameters at once, but also because more of the curve is available

Our methodology does not allow for the above calculation; instead, we estimate σinput as two times the unweighted
standard deviation, normalized by the square root of the local width of the scan area in pixels, which we find to be a good
approximation for the scans discussed in this paper. Since the only current role for σinput is to normalize contour plots of the
wavelet transform, we judge this approximation to be sufficient for our purposes.
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Figure 3. (a) Calculated wavelet ridge (§3g), as in figure 2c (solid line); the expected wavenumber kDW(r) (dotted line). The
region of thewavelet ridge plotted in boldwas used in a linear fit (dashed line); the y = 0 point is plotted as a solid diamond. (b)
All three curves from figure 3a, shown as residuals with the expected wavenumber kDW(r). (c) Calculated wavelet phase φ̄W(r),
as in figure 2b, ‘unwrapped’ to show how phase accumulates quadratically (solid line); the expected phase φDW(r) (dotted
line). The region of φ̄W(r) shown in bold was used in a quadratic fit (dashed line); the zero-derivative point is plotted as a solid
diamond. (d) All three curves fromfigure 3c, shown as residuals with the expected phaseφDW(r). (e) The input synthetic density
wave from figure 2a (solid line); the fitted density wave, after the analysis of §4a(i), but still with randomly chosen values of ξD
and AL (bold solid line). Fitted values given in the figure can be compared with the input parameters (table 1) used to generate
the wave. Figure from Tiscareno et al. [11].

for fitting. In practice, it is important to look at the residuals for each individual fit, and judge
those portions of the phase curve deviating from quadratic behaviour, in order to exclude them;
only portions that conform to quadratic behaviour should be used in the fit.

When this phase of the analysis is completed, the high-frequency behaviour of the wave has
been obtained, but the shape and height of the wave’s envelope is still unknown, as illustrated
in figure 3e.

(ii) Obtaining the shape of the density wave’s envelope

Now that we have determined the three parameters that define the shape of the wave’s high-
frequency components (σ0, rL and φ0), we now accept that shape as given and proceed to fit the
two remaining parameters (AL and ξD) that define the wave envelope (i.e. the amplitude and
decay of the high-frequency components).

In the absence of other effects, the shape of the amplitude modulation (i.e. the location of
the point of maximum amplitude) is governed by the damping parameter ξD. In fact, the non-
oscillatory components of equation (2.1) are proportional to ξ e−(ξ/ξD)3

. If a reliable representation
of the amplitude can be obtained, the best way to fit for ξD is to find the dimensionless radial
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parameter (equation (2.2)) at which its derivative is zero. Denoting this point as ξmax, we
then have

ξD = 31/3ξmax. (4.1)

Figure 4a shows the result of this calculation, in which we take the absolute value of the input
waveform �σ (r) (after first ensuring that the waveform oscillates about zero) and smooth it
three times with a boxcar filter. The boxcar’s width should be � 3 times the largest peak-to-peak
wavelength in the scan.

When this phase of the analysis is completed, only the overall amplitude of the wave remains
unknown, as illustrated in figure 4b.

The effects of ξD are observable only in waves that can be described throughout by the linear
theory of equation (2.1), and indeed the analysis in this paper is limited to such waves. By
contrast, the stronger resonances in Saturn’s rings (including nearly all of the waves observed
by Voyager) quickly become nonlinear—that is, the oscillations �σ become comparable to the
background surface density σ0, causing the assumptions underlying equation (2.1) to break down
[36,37]. Nonlinear density waves are characterized by sharp peaks and flat troughs, though the
wavenumber kDW(r) is still fairly well described by linear theory.

Consequently, ξD has sometimes been ignored in previous work. Firstly, Lissauer & Cuzzi [38]
discuss and calculate the fractional distance XNL at which a density wave becomes nonlinear, a
calculation which assumes that the amplitude grows linearly with no modulation from the ξD
term. Secondly, Rosen et al. [39] entirely ignored the e−(ξ/ξD)3

term in equation (2.1) in their fits of
density waves, which they justified by noting that they fit only the first few wavecycles of their
waves. It is important to recognize that both of these treatments apply only to strongly nonlinear
waves and are too simplistic for the myriad of weaker waves observable with Cassini’s higher
resolution.
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(iii) Obtaining the density wave’s amplitude

Finally, we calculate AL using a Levenburg–Marquardt least-squares fit [40] to compare the
density wave’s radial trace to the shape defined by σ0, rL, φ0 and ξD, obtained using the processes
described above. Figure 4c shows the fitted curve overlying the original synthetic wave, with the
fitted parameter value also given.

We note that it is possible to obtain AL and ξD simultaneously with the least-squares fit,
comparing the density wave’s radial trace to the shape defined by only σ0, rL and φ0. Although
this method yields acceptable results, our analysis of the synthetic wave shows that obtaining ξD
independently is superior. Still, the two-parameter least-squares fit is occasionally necessary, such
as when the wave is truncated by an image edge or by an unrelated nearby radial structure.

When the amplitude AL is given in terms of the perturbation in surface density, the mass
of the perturbing moon can in principle be obtained through appropriate coefficients from the
disturbing function [2,39,41]. In practice, however, complexities inherent in the dataset have
prevented this measurement from being systematically done with Cassini ISS images [11].

(iv) Fitting the parameters of real density waves

We apply the method described in this section to the SOI imaging data presented in [11],
calculating parameter values for many density waves in the rings. Two modifications of the
method are required to allow for the differences between our synthetic wave and the real data.

Firstly, we remove low-frequency components of the signal by setting selected elements of
W(r, s) to zero, taking the inverse wavelet transform, and then starting the analysis with this
filtered wave. This ensures that waves oscillate about zero (as does equation (2.1)). In most cases,
it is easy to draw the dividing line through regions of the wavelet transform with essentially zero
energy (e.g. figure 6). More problematic cases are noted in [11]. We do not filter out high-frequency
noise, which is difficult to separate quantitatively from the desired signal.

In thus filtering the signal, we explicitly assume that variations in the background surface
density are either absent or unimportant in determining the wave structure. In practice, we
find that even waves with significant variation in background brightness can be well fit to
equation (2.1), thus justifying this assumption. Waves for which such brightness variations are
significant are noted in [11].

Secondly, we find in practice that fitted values of the initial phase φ0 are too uncertain to be
useful. They turn out to be highly correlated with rL, as the distances between rL and the peaks of
the wave depend linearly on φ0 [3]. Furthermore, it is easy enough to calculate the value of φ0 from
the location of the perturbing moon on its orbit (the uncertainty of which is exceedingly small).
Therefore, we constrain φ0 to maintain the expected value while fitting for the other parameters.

(v) Error estimates

Meaningful uncertainties can be obtained for the parameters calculated in §4a(i)—namely σ0, rL
and φ0—by simply propagating the normalized errors obtained from the quadratic fit to φ̄W(r)
[40]. However, this treatment assumes that the residuals will have an uncorrelated Gaussian
distribution about the fitted curve. In our case this is not true. Because the wavelet transform
gives up some radial resolution in order to obtain frequency resolution (see §3c), the effective
radial resolution of the wavelet phase φ̄W(r) is lower than that of the original scan. Thus, since we
have used the same radial scale for all quantities, we have oversampled the wavelet phase so that
adjacent pixels are highly correlated.

We estimate the oversampling factor by examining the Fourier transform of the residual phase
from figure 3d. Indeed, as seen in figure 5, very little power resides at scales within an order of
magnitude of the nominal pixel scale. We define the ‘effective pixel scale’ λ90 as the scale above
which 90% of the Fourier power resides. Thus, the calculated error estimates must be multiplied
by a factor

√
λ90. This has been done for the synthetic error estimates quoted in figure 3 and will

be done throughout this paper.
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We estimate the uncertainty in our fitted values of ξD as being comparable to the largest peak-
to-trough wavelength in the wave, since it is these wavecycles that are smoothed over in order to
estimate the shape of the wave envelope (§4a(ii)). This error estimate is converted from units of
km to the dimensionless units of ξ by inserting it in place of the quantity r − rL in equation (2.2).

(vi) Method summary

The steps used in this paper to fit density waves in Saturn’s rings are described above in detail,
illustrated in figure 6, and briefly enumerated here:

(i) The wavelet transform W(r, s) is taken of the input signal �σ (r).
(ii) A line is drawn through the two-dimensional wavelet transform, passing through local

minima, separating the wave signature from lower-frequency background variations.
(iii) Elements of the wavelet transform with wavenumber below the line are set to zero,

yielding the filtered wavelet transform W ′(r, s).
(iv) The inverse wavelet transform of W ′(r, s) is taken, yielding a high-pass-filtered signal

�σ ′(r).
(v) The average wavelet phase of W ′(r, s) is taken, yielding φ̄′

W(r).
(vi) A radial interval [r1, r2] is defined, and the phase φ̄′

W(r) on r1 < r< r2 is fit to a quadratic
function. The residual between φ̄′

W(r) and the fit is inspected to verify that [r1, r2] well
describes the interval that behaves quadratically.

(vii) If the amplitude of �σ ′(r) has a well-behaved shape (verified by visual inspection), then
its maximum is used to determine ξD.

(viii) Taking the parameters fitted heretofore as given, a Levenburg–Marquardt least-squares
fit of �σ ′(r) is used to determine the remaining parameters (either AL only, or both AL
and ξD).

Note that steps 2 and 6 explicitly require human input, while all steps are visually monitored to
ensure that calculated curves are well behaved.
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(b) Radial profiles of Cassini ISS images
After navigating each image to precisely determine the location within the rings (see figure 7
for orientation) of the image footprint, a grid in ring coordinates (radius and longitude within
Saturn’s equatorial plane) can be laid across the image. For each radial location, interpolated
values across the longitudes represented in the image are averaged, and these are compiled in
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Figure 7. Location within Saturn’s main ring system of figures in this paper.

132 000 km from Saturn's centre

131 250 km from Saturn's centre

‘record grooves’

‘record grooves’

‘record grooves’

Mimas 5:3 BW

Prometheus 12:11 DW

Figure8. Aportion ofN1560310219, from the ‘high-resolution radial scan’ 046/RDHRESSCN, shownhere as an example (analysis
is shown in figure 9). The nominal radial scale for this image is 0.7 km px−1. As indicated by the annotations, the ring radius
(i.e. the distance fromSaturn’s centre) increases frombottom to top. Themost prominent features in this image are the outward-
propagating Prometheus 12:11 SDW and the inward-propagating Mimas 5:3 SBW. The rest of the image is pervaded by a more
subtle structure that resembles the grooves on a vinyl record. Figure from Tiscareno & Harris [18].

order to obtain a one-dimensional ‘radial profile’ of the image (the image shown in figure 8 is
represented by the radial profile plotted across the top of figure 9).

(c) Evaluating the presence of ring features
A quasi-periodic feature in a radial profile will create a linear or quasi-linear signature in the
wavelet plot. A true periodic feature with a constant wavelength λ will produce a horizontal
wavelet signature. A feature with a wavenumber k = 2π/λ increasing (decreasing) at a constant
rate will create a linear wavelet signature that slants upward (downward): this is expected for a
spiral wave that follows the linear theory. A nonlinear spiral wave will create a wavelet signature
that curves or is otherwise nonlinear (see [18] for details). A moonlet wake, created when a
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Figure 9. Radial profile and wavelet plot for image N1560310219, continuing the example begun in figure 8. The radial profile
extends across the top, and the greyscale shading in the main part of the plot indicates power in the wavelet transform (§4b).
The signature of the Prometheus 12:11 SDWhangs downward from the associated cyan dashed linewith a concave-up geometry
[18], while the signature of the Mimas 5:3 SBW hews more closely to the associated magenta dashed line, because SBWs do
not display significant nonlinearity. The ‘record grooves’ mentioned in figure 8 are here revealed to be weaker SDWs, mostly
resonance with Pan (red) but some resonances with Atlas (green) and second-order resonances with Prometheus (cyan) and
Pandora (dark blue). Wave models shown in bold are judged to appear in the data, while those shown as thin lines (e.g.
Pan 49:48, the Janus/Epimetheus 16:13 bending waves) are not perceptible because they are overwritten by other, strong
structures. All wave models in this figure use an unperturbed surface mass density σ0 = 32 g cm−2. Figure from Tiscareno &
Harris [18].

recently passed nearby moon organizes the streamlines of ring particles, also creates a curved
wavelet signature [7,11].

Conversely, bare peaks and sharp edges produce power at all frequencies. Similarly, an aspect
of ‘peakiness’ in the wavecrest of a quasi-sinusoidal feature will produce power in frequencies
above that of the quasi-sinusoidal frequency. Finally, dappled or speckled wavelet signatures
indicate simple noise.

(d) Results
(i) Iapetus nodal bending wave

Sometimes, a wave extends across a region in which the ring’s unperturbed surface mass density
naturally varies. A good example of this is the Iapetus −1:0 SBW [17]. Because this wave results
from an m = 1 (see §2) nodal resonance, in which it is ring particle precession frequencies that are
commensurate with the orbital frequency of the distant moon Iapetus, its wavelengths are quite
long and it extends over several thousand kilometres before it damps away (figure 10a). Thus,
plugging the observed series of slopes k(r)/(r − rL) into equation (2.6) yields a complex profile of
true unperturbed surface densities σ0(r), which agrees at several points with σ0 values derived
from measurements of smaller SDWs (figure 10b). A key factor that makes this possible is that
even strong SBWs do not concentrate mass (as their perturbations are perpendicular to the ring
plane, rather than within it), so nonlinear effects are negligible.

(ii) Spiral density and bending waves

The methods described above have been used to compile a census of spiral waves in Saturn’s
rings [11,18,21,22]. Using methods like those shown in figures 6 and 9, profiles of the surface
mass density (figure 11) and viscosity [11] have been compiled.
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(iii) Pan wakes

The ‘corduroy’ pattern pervading the image in figure 12 is caused by moonlet wakes excited by
Pan. Such wakes (described in detail by [7,8]) are a fundamentally different process from waves in
that they do not propagate, but arise from ring particle orbits organized coherently by encounters
with nearby Pan.
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20 km

Figure 12. A portion of Cassini image N1467346329, showing a ‘corduroy’ pattern caused bymoonlet wakes excited by Pan. Also
seen are the Pandora 11:10 and Prometheus 15:14 density waves. See figure 13 for analysis. Figure from Tiscareno et al. [11].

Wavelet analysis of the image is shown in figure 13, with two different values of the central
frequency ω0 (§3c) bringing out different aspects of the structure. Like previous authors, we note
that wake wavelengths in the data tend to be a few percent longer than the model predicts, likely
due to mutual gravitation among the ring particles. Also, not only can we verify the existence of
a second-order wake (which is simply structure that has survived after more than one synodic
period after its creation by Pan), but we also see signs of a third-order wake. Thus, wake structure
is seen right down to wavelengths near the resolution limit, indicating that we still cannot place
a limit on the remarkable resiliency of wake structures against damping.

5. Multi-profilewavelet analysis with Cassini Ultraviolet Imaging Spectrograph
occultations

The first use of wavelets to co-add data from multiple radial ring profiles involved Cassini UVIS
stellar occultations [21,22]. Each occultation provides a single one-dimensional profile of the ring’s
opacity, so there is no opportunity to average over longitude to improve signal to noise. However,
these profiles can resolve very fine-scale structures because their spatial resolution is determined
by the apparent size of the star as projected on the rings, and by the spatial scale of diffraction, and
not by the instrument’s instantaneous field of view. Furthermore, the location in the ring probed
by an occultation is determined by the position of the spacecraft relative to the rings and the star,
and is insensitive to the precise orientation of the spacecraft. This allows the geometry of each
occultation to be determined to very high accuracy, enabling data from different occultations to
be combined together effectively.

The analysis of UVIS occultations employed the ‘weighted wavelet Z’ technique [23].
A wavelet transform was performed on each individual occultation, and then the wavelet
scalograms (equation (3.10)) were co-added together with a weighting based on the quality
of each profile in terms of resolution and/or signal to noise. This ‘is equivalent to summing
probabilities, which is the best way to treat datasets of different qualities (as opposed to adding
raw power)’ [21]. The benefits of this approach are illustrated in figure 14, which shows the
detection of two faint SDWs in the C ring despite the fact that neither can be seen by eye in
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Figure 13. Radial scan and two wavelet transforms from Cassini image N1467346329 (figure 12), showing wakes excited by
Pan along with several density waves. (a) The wavelet plot, like all others in this paper, uses a central frequency ω0 = 6;
(b) uses ω0 = 12, resulting in increased resolution in the spectral (y)-dimension at the expense of smearing in the radial
(x)-dimension (see §3c). Density waves are clearer in (a), including the strong Pandora 11:10 and Prometheus 15:14 waves, but
also the weak third-order Janus 17:14. Dashed lines indicate model density wave traces, assuming a background surface density
σ0 = 40 g cm−2. Moonlet wakes excited by Pan are clearer in (b). The three dotted lines denote the frequency profiles [7] of
wakes that have travelled 342◦, 702◦ or 1062◦ in synodic longitude since their last encounters with Pan. Figure from Tiscareno
et al. [11]. (Online version in colour.)

individual occultation profiles. Surface mass density and viscosity measurements were obtained
from these profiles in [22].

6. Multi-profile wavelet analysis with Cassini Visual and Infrared Mapping
Spectrometer occultations

The analyses of the UVIS occultations carried out to date (§5) amount to co-adding the real-valued
magnitude of the wavelet transforms from the various occultations. This approach effectively
beats down noise, as stochastic features in individual profiles are averaged out, while persistent
signals at particular wavelengths and locations remain in the averaged power.

Even more powerful methods, which use the phase of the complex-valued W(r, s) both to
characterize waves of unknown origin and to further isolate signals from weak waves, were
subsequently devised and applied to occultations observed by the VIMS instrument [4–6,24].

(a) Using wavelets to constrain the properties of unidentified waves
First, consider how wavelet phase information can be used to constrain the number of arms and
rotation rates of density waves. For waves generated by satellites, the location of the wave usually
provides secure information about both these parameters because the locations of any resonance
with a moon can be predicted with a high degree of accuracy. However, there are waves in
Saturn’s rings that do not fall near any known resonance with any of Saturn’s moons. These waves
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are likely generated by oscillations and asymmetries inside Saturn itself. The frequencies of these
oscillations cannot yet be predicted a priori, so we must use data from the waves themselves to
determine the appropriate values of m and Ωp in equation (2.5). It turns out that this can be done
using the phase information encoded in the wavelet transformations.

(i) Wave phase comparisons as a diagnostic

The utility of wave phases for constraining density wave properties can be illustrated by
examining some particularly informative occultations of the star RS Cancri. These were chord
occultations, in which the star cut obliquely through the rings. For such an occultation, the star
passes through the same radial range at two very different longitudes as the track enters and
then leaves the rings. Comparisons of the wave profiles derived from the ingress and egress parts
of these occultations thus provide useful examples of how occultation data can constrain wave
parameters. Indeed, even simple visual inspections of these wave profiles indicates that several
of the unidentified waves have very similar pattern speeds and likely the same m-numbers.

Figures 15 and 16 show the relevant occultation profiles from the RS Cancri occultations
observed during Revs4 80 and 85. Of particular interest are the three waves5 W82.00, W82.06
and W82.21, which are clustered within a region a couple of hundred kilometres wide around
82 100 km from Saturn’s centre. In the Rev 80 RS Cancri data, the ingress and egress profiles for

4Each orbit of the Cassini spacecraft around Saturn was given a ‘Rev’ designation, which is nearly (but not exactly) the same
as the ordinal number of the orbit.
5These alphanumeric designations follow the generic notation for ring features devised by Colwell et al. [44], with ‘W’ for
‘wave’ followed simply by the radial location of the wave in units of 1000s of kilometres.
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each of these waves are almost perfectly anti-correlated, with peaks in one profile corresponding
to dips in the other and vice versa. This indicates that the phase difference between these two
occultation cuts is close to 180◦ for all three of these waves. This finding alone might be interpreted
as a coincidence, but if we turn our attention to the Rev 85 data, we again find suspicious
similarities among these three waves. For all three of the waves, the sharp peaks in the egress
data occur about one-third of a cycle exterior to the sharp peaks in the ingress data. This again
suggests that the phase difference between the ingress and egress cuts (in this case approximately
240◦) is nearly the same for all three of these waves.

This result is significant because it implies that all three of these waves almost certainly have
the same m-number. The waves W82.00, W82.06 and W82.21 are close together in the rings. Hence,
for each of these occultations, the ingress cuts for these three waves occurred at nearly the same
longitude and time, and similarly the egress cuts are grouped closely in longitude and time. This
means the difference in the observed longitudes (δλ) and the observed times (δt) between ingress
and egress are almost identical for the three waves. Since the difference in the phase φ0 between
the waves is given by δφ = |m|(δλ−ΩPδt), the easiest way for all three waves to have the same
phase difference is for them to have the same m-number and nearly identical pattern speeds.

(ii) Using wavelets to compute phase differences

While simple inspection of the RS Cancri profiles suggests that several of the waves have
similar pattern speeds and identical m-numbers, we need quantitative measurements of the
phase differences between different occultation cuts to ascertain the actual values of m or Ωp for
these waves. Fortunately, wavelet transforms provide a means of estimating the phase difference
between any two occultation cuts through a given wave.

Before applying the wavelet transform to the relevant occultation data, we first interpolate the
data onto a uniform array of radii with a radial spacing of 50 m. A small part of this re-sampled
profile centred on each wave is then fed into the publicly available IDL routine wavelet [14]. The
default Morlet mother wavelet with ω0 = 6 is used throughout this analysis. The resulting wavelet
is a two-dimensional array of complex numbers as a function of radius and radial wavenumber
W(r, k). (Note we use the wavenumber k here instead of the scale s.) Let us denote the real and
imaginary parts of the wavelet as WR and WI, respectively, so that the wavelet power is EW(r, k) =
W2

R + W2
I and the wavelet phase is φW(r, k) = tan−1(WI,WR).

Figure 17 illustrates how the wavelet phase and power vary with position and wavelength
across a representative wave. As in figure 6, there is a diagonal ridge in the wavelet power that
tracks the observed trends in the wave’s wavelength. Furthermore, we can observe that where the
wave is strong and the wavelet power is high, the contours of constant phase are nearly vertical,
so a well-defined phase can be ascribed to every radius in the wave. The values of the phase in
this region are also reasonable given the profile, being near ±180◦ at local minima and around 0
at local maxima. Thus, for such waves we can reduce the two-dimensional wavelet to estimates
of the wave power and phase as a function of radius by appropriately averaging over a range of
spatial wavenumbers.

In order to filter out large-scale background variations in the rings’ opacity while still capturing
most of the wave’s power, we include a limited range of wavenumbers in these averages.
Specifically, we exclude all wavenumbers less than k1 = 2π/(5 km) and all wavenumbers greater
than k2 = 2π/(0.1 km). The effective power of the wave at a given radius is, therefore, defined to be

Eeff(r) =N
k2∑

k=k1

EW(r, k), (6.1)

where N is a normalization constant. Note that since we are only interested in relative power for
this analysis, we choose N so that Eeff is equal to unity at its peak value. Also note that this sum
is done over a series of logarithmically spaced values of k.
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Figure 17. Plot showing the wavelet amplitude and phase derived from the W84.64 wave observed by the Rev 106 RCas
occultation. The top panel shows the occultation profile (in raw Data Numbers, which is proportional to transmission) as a
function of radius. The bottom panel shows the wavelet phase and power as functions of radius and spatial wavelength. The
wavelet phase is indicatedbygreyscale levels (black= −180◦,white= +180◦)while the overlaid green contours are levels of
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In order to derive an effective phase for the wave at each radius, we first compute an effective
average real part and imaginary part of the wavelet:

WR,I(r) =
∑WR,I(r, k)EW(r, k)∑

EW(r, k)
, (6.2)

where the sums are again over all values of k between k1 and k2. Note these averages are weighted
by the power, so that the regions with the strongest signals dominate the averages. From these
average wavelet components, we can compute the average phase at each radius:

φ(r) = tan−1(WI, WR). (6.3)

Note by computing the average of components WI and WR instead of averaging the wavelet
phases themselves, we avoid any difficulties involved in averaging a cyclic quantity. The phase
difference between two occultations should then simply be the difference in the two values
of φ(r).

Figures 18 and 19 show the results of these calculations for two of the waves seen in the
RS Cancri occultation from Rev 85. As expected, there is a peak in the wave power Eeff located
near the centre of the wave. Also, the difference in the wave phase between the egress and ingress
cuts is relatively constant in the region where the wave signal is evident, as desired. Furthermore,
the numerical values of these phase differences are consistent with the observed profiles. For the
W84.64 wave in figure 19, the phase difference is around 180◦, which is what one would expect
given that the peaks in the ingress profile occur at the same location as the dips in the egress
profile and vice versa. Similarly, the W82.21 data in figure 18 yield a phase difference of around
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240◦, which is consistent with the dips in the egress profile always lying about 1
3 of a cycle exterior

to those in the ingress profile.
For the purposes of this analysis, we require a single estimate of the average phase difference

for any pair of occultation cuts. We estimate this parameter as the weighted average of the phase
differences δφ(r), with each of the individual values weighted by the average of the two Eeff curves
in order to ensure that regions with high signal contribute most to the final estimate. In order to
further reduce the possibility of contamination in the phase difference estimate, we only consider
regions where the average power of the two waves is more than 0.9 (this threshold is indicated
by a dotted line in figures 18 and 19, and the averaging region is demarcated by vertical dashed
lines). Owing to the weighting, the resulting estimates of the phase differences are not particularly
sensitive to the exact value of this threshold. In addition to computing the weighted average
phase difference, δφ between the two cuts (which is shown as a dotted line in the bottom panels
of figures 18 and 19), we also compute the standard deviation of the phase difference values in the
selected region σφ , which quantifies the reliability of the phase estimate. Note, however, that σφ
will underestimate the uncertainty in the δφ because it does not include the effects of uncertainties
in the reconstructed geometry. Such geometric uncertainties are difficult to quantify a priori, and
will be considered in more detail below.

To recap this procedure, the steps are: (i) compute the wavelet transform, W(r, k), for each
observation and the corresponding power spectrum, EW(r, k); (ii) compute weighted averages for
WR(r) and WI(r), and thence the average phase φ(r); (iii) compute the average radial power profile,
Eeff(r); and (iv) compute the average phase difference between two wave profiles δφ, weighted by
the average of the two power profiles.
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Figure 19. Results of the wavelet calculations of the phase difference in wave W84.64 between the ingress and egress cuts
from the Rev 85 RS Cancri occultation, following the same layout as in figure 18. In this case, the average phase difference is near
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(iii) Using phase differences to constrainm-numbers and pattern speeds

For any given wave, we can compute the expected pattern speed ΩP for any given value of
m at any relevant resonant radii using the known properties of Saturn’s gravitational field.
Furthermore, for a particular pair of occultation cuts, the difference in the observed ring
longitudes δλ and the difference in observation times δt is known. We can, therefore, calculate
the expected phase difference between any two occultation cuts, δφ(predicted) = |m|(δλ−Ωpδt)
for each value of m. We can compare these predicted phase differences with the observed phase
differences δφ(observed) and thereby determine which values of m are most consistent with
the observations.

For example, consider the phase differences between the various RS Cancri ingress and egress
profiles. Figures 20 and 21 show the differences between the observed and predicted values of
δφ for the waves W82.21 and W84.64 as a function of m. For each observation, the difference
δφ(observed) − δφ(predicted) cycles repeatedly through 360◦ with increasing or decreasing m.
Hence there are multiple possible m-values that could be consistent with the single observed
phase difference. However, different observations have different values of δt and δλ and thus
show different trends in these plots. Hence there are relatively few m-values that could be
consistent with the two or three observations illustrated in figures 20 and 21. If we conservatively
assume a ±30◦ uncertainty in the phase determinations (which is consistent with the results of
the global analysis described below), then m = −3, −2 and +6 are consistent with the RS Cancri
observations of the W82.21 wave, and m = −2, +5 and +6 are consistent with the observations
of the W84.64. The small number of m-values that are consistent with this limited number of δφ
estimates demonstrates that our measurements of δφ can constrain the symmetry properties and
pattern speeds of these waves. However, it is also clear that we cannot uniquely determine the
m-value for any of these waves with just two or three phase differences.
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Fortunately, VIMS observed dozens of occultations over the course of the Cassini mission,
so in principle hundreds of phase differences could be computed. In practice, some occultation
pairs do not yield reliable phase difference estimates. Specifically, in some cases, the average
wavelet power for the two cuts never exceeds 0.9 of the peak power in each cut. This implies
that the peak wave signal in the two cuts is coming from different parts of the wave (perhaps,
because they have different intrinsic resolutions), and so we do not consider such pairs. We also
exclude any occultation pairs which yield a RMS phase-difference scatter σφ greater than 20◦
because large values of σφ indicate that the wavelet was unable to identify a consistent phase
difference (perhaps due to small gaps or cosmic rays in one of the profiles). Finally, we only
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consider pairs of occultations where the time difference is less than 300 days. This prevents any
aliasing that might occur due to the limited number of observations with larger time separations.
After applying these selection criteria, we often have between 100 and 300 δφ estimates for each
of the waves.

As with the RS Cancri data described above, the symmetry properties and pattern speeds of
each wave are constrained by computing expected values of δφ for different combinations of m
and Ωp and comparing these numbers with the observed δφ values. Specifically, we seek values
of m and Ωp that minimize the RMS residuals of δφ(observed) − δφ(predicted). In principle,
we could just compute these RMS variations for each m assuming Ωp is given by the standard
expressions for the appropriate resonance. However, given the uncertainties in the planet’s
gravitational field and the precise locations of the resonant radii for these waves, it is better
practice to instead compute the RMS phase difference residuals over a finite range of pattern
speeds surrounding the expected Ωp corresponding to each m.

It is important to realize that we are studying patterns that rotate around the planet at
hundreds of degrees per day, and we are using occultations separated in time by up to 300
days. Hence one could reasonably ask whether our δφ calculations are sufficiently accurate to
yield meaningful constraints on m and Ωp. This is most easily done by first testing our methods
on waves with known pattern speeds, and so we applied the above algorithms to occultation
profiles of the Prometheus 8:7 density wave in the outer A ring. Figure 22 shows the RMS phase
difference residuals (observed–predicted) for this wave, assuming the pattern has the expected
m = 8. These residuals have the sharp dip at 587.30◦d−1, which corresponds almost exactly to
Prometheus’ mean motion and the expected pattern speed for this wave. Thus the pattern speed
with the minimum variance in the phase residuals matches the expected perturbation frequency,
as desired. Furthermore, no similar dip is seen when other values of m are tried. These results
demonstrate that the above procedures can indeed yield reliable estimates for the pattern speeds
and m-numbers of even tightly wound density waves.

Figure 22a shows the phase difference residuals as a function of time separation δt. These
points are randomly scattered about zero, as desired, but with a ±20◦ scatter which probably
reflects not only statistical uncertainties in the phase estimates themselves but also uncorrected
systematic errors in the occultation geometries. As noted above, the latter can shift wave profiles
relative to each other, which will produce errors in the phase differences that are hard to model.
However, these data demonstrate that these systematic errors do not prevent us from determining
the pattern speeds of spiral waves.

Figure 23 shows the same sort of analysis for six waves that could not be attributed to any
resonances with any of Saturn’s moons. For each of these waves, there was only a single m that
yielded a clear minimum in the RMS phase difference residuals that was located close to the
expected pattern speed. Note that W82.00, W82.06 and W82.21 all showed this minimum with the
same m = −3, which is consistent with their common phase shifts in figures 18 and 19. Thus far,
these techniques have revealed the m-numbers and pattern speeds of about a dozen previously
unidentified waves [4–6], yielding precise rotation rates for a variety of structures in Saturn. These
measurements are forcing re-evaluations of Saturn’s interior [45].

(b) Multi-profile wavelet analysis to isolate specific waves
The phase information encoded in wavelet transformations not only permits the m-number and
pattern speeds of unidentified waves to be determined, it can also be used to isolate density wave
signals from other ring structures. For example, the B ring is the most opaque part of Saturn’s
rings and was long assumed to contain most of the rings’ mass. However, accurately estimating
the mass of this ring was challenging because the density waves found in other parts of the rings
were difficult to find. While several strong satellite resonances exist in the B ring, the resulting
waves were not obvious in individual occultation profiles. This was not only because the ring
blocked most of the starlight, but also because this ring contains abundant fine-scale structure
that varies stochastically from occultation to occultation. These variations obscure any coherent
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Figure 22. A test of our pattern-speed determination algorithms using the Prometheus 8:7 wave in the inner A ring. (a) The
RMS phase difference residuals as a function of pattern speed assuming the pattern has anm= 8, as expected for this wave.
The dashed line marks the predicted pattern speed for this pattern, while the dotted line marks the pattern speed that gives
the minimum variance (in this case, these two lines are almost on top of each other). (b) The residuals in the phase differences
from this best-fit solution as a function of time difference between the pairs of observations. The scatter in these data likely
represents residual geometrical uncertainties in the various profiles. Figure from Hedman & Nicholson [4].

signal from the relevant density waves. While co-adding the wavelet powers as was done with
the UVIS occultations [21,22] does improve the signal to noise for weak waves, this method does
not clearly reveal the density wave signals in the central and outer B ring. Fortunately, the waves
of interest here have known pattern speeds, enabling us to use a method that is even better at
isolating the signatures of density waves.

Again, since the desired density wave patterns have wavelengths that should vary with radius
across the ring (see equation (2.6)), these waves are most easily identified using wavelets. For
this investigation, we again compute the wavelet transform for each re-sampled profile with the
standard wavelet routine in the IDL language [14], using a Morlet mother wavelet with ω0 = 6.
This yields a wavelet transform Wi(r, k) for each profile i as a function of radius r and wavenumber
k. Note that this is a complex function, and so, in general, can be written as Wi =Ai eiΦi , where
Ai(r, k) and Φi(r, k) are the (real) wavelet amplitude and phase. Note that if we have a pure
sinusoidal signal at a given wavevector k0, then Φi(r, k0) is the phase of the wave as a function
of position. With this nomenclature, the wavelet power Ei(r, k) =A2

i .
For each occultation cut, the SDW should produce a quasi-sinusoidal opacity variation

described by equation (2.1). Depending on the observed longitude and time, each profile will have
a different value for the phase parameter φ0. The crests and troughs of the wave will therefore
appear at different locations in different profiles, and the wavelet phases associated with these
patterns will vary from occultation to occultation. Fortunately, the waves considered here are all
generated by resonances with known satellites, and so we can compute the expected φ0 for each
occultation profile and use this information to isolate the desired signal from those specific waves.

Let us denote the calculated value of φ0 for the ith occultation profile as φi. If the track of the
star behind the ring was in the radial direction and the star’s apparent radial motion across the
ring feature were fast compared with the perturbing moon’s orbital motion, then φi would have a
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Figure 23. Plots showing the RMS phase difference residuals as a function of pattern speed for each of the six waves, assuming
the pattern has the indicated m-numbers. The dashed line marks the predicted pattern speed for this pattern at the resonant
locationprovidedby [22],while thedotted line is thepattern speed that gives theminimumvariance in the residuals. Figure from
Hedman & Nicholson [4].

constant value for the entire profile. However, in reality both the observation time and observed
longitude vary slightly as the star passes behind the wave, so that φi is a function of radius, albeit
a very weak one. In any case, we can use φi to compute the phase-corrected wavelet for each
profile

Wφ,i(r, k) =Wi(r, k) e−iφi(r) =Ai(r, k) ei(Φi(r,k)−φi(r)). (6.4)

Recall that Φi is the observed wavelet phase, while φi is the expected longitude/time-dependent
part of the wavelet phase for a SDW with the selected m-number and pattern speed. Hence for
any signal in the wavelet due to the desired density wave, the corrected phase parameter Φi − φi
will equal ξ2/2 + π/4 (see equation (2.7)). This phase is a function only of radius, and so should
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have the same value for all occultations. Thus, any signal from such a pattern should persist in
the average phase-corrected wavelet

〈Wφ(r, k)〉 = 1
N

N∑
i=1

Wφ,i(r, k), (6.5)

where N is the number of occultations. By contrast, any pattern that does not have the selectedΩp

should have different phases in the phase-corrected wavelet and thus should average to zero in
〈Wφ〉 in the limit of large N. The signal to noise for the selected waves should therefore be much
better in the average phase-corrected wavelet than it is in wavelets from individual profiles. In
fact, we find that the average phase-corrected wavelet can yield a clearer detection of weak waves
than even the averaged wavelet powers.

In order to illustrate the utility of the average phase-corrected wavelet, it is useful to consider
two distinct wavelet powers. First, we define the average wavelet power

Ē(r, k) = 〈|Wφ |2〉 = 1
N

N∑
i=1

|Wφ,i|2. (6.6)

This is independent of the individual wavelet phases and so is equivalent to the average value of
wavelet powers from the individual profiles Ei:

Ē(r, k) = 〈|Wi|2〉 = 1
N

N∑
i=1

|Wi|2 (6.7)

and is, therefore, similar to the statistics used in [21,22]. Second, we define the power of the
average phase-corrected wavelet as:

Eφ(r, k) = |〈Wφ〉|2 =
∣∣∣∣∣ 1
N

N∑
i=1

Wφ,i

∣∣∣∣∣
2

. (6.8)

Note that in this case we perform the averaging prior to taking the absolute square, while the
opposite is true for Ē. Recall that for any real variable x the difference 〈x2〉 − 〈x〉2 is positive
definite and equivalent to the variance of x. The difference between these two quantities Ē − Eφ
is similarly a positive quantity determined by the variance in the real and imaginary components
of the wavelet among the various occultations. Hence Eφ must have a value between 0 and Ē.
In fact, Eφ can only equal Ē when Φi − φi is the same for all occultations, as would be the case
if the opacity variations are entirely due to a single wave with the specified pattern speed and
m-number. For any other signal, Eφ will be less than Ē because of the finite scatter in Φi − φi.
Indeed, as N approaches infinity, Eφ should approach zero for these signals (provided we can
sample all possible values of Φi − φi). The ratio between these two powers

R(r, k) = Eφ(r, k)

Ē(r, k)
, (6.9)

should, therefore, vary between 1 and 0 depending on how well the phase shifts of the observed
data match those derived for the selected m-number and pattern speed.

The utility of these parameters is illustrated in figure 24, which shows the results of this sort of
analysis for a region of Saturn’s A ring occupied by two relatively strong density waves due
to the Pandora 6:5 and Prometheus 7:6 resonances. Both of these waves are apparent in the
sample profile and can also be seen in the average wavelet power Ē. However, if we consider
the power of the average phase-corrected wavelet Eφ , then we obtain a different picture. This
wavelet power was computed assuming that m = 7 and Ωp = 587.29◦ d−1, appropriate for the
Prometheus 7:6 Lindblad resonance that produces the right-hand wave. As desired, the power of
this average phase-corrected wavelet shows a stronger signal from this wave than it does for the
wave generated by Pandora. Furthermore, if we consider the power ratio R, only the signal from
the desired Prometheus wave is visible.
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assumed m = 7, rres = 12 5891.2 km, Wp = 587.29° d–1
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Figure 24. Sample analysis of the Prometheus 7:6 wave in the A ring. The top panel shows the transmission through the A ring
as a function of radius from the Rev 89 occultation byγ Crucis. The two density waves clearly visible in this profile are due to the
Pandora 6:5 and Prometheus 7:6 resonances. The second panel shows the averagewavelet power Ē for theγ Crucis occultations,
with clear diagonal bands associatedwith bothwaves. The third panel shows the power of the average phase-correctedwavelet
Eφ , assumingm= 7 and a pattern speed appropriate for the Prometheus 7:6 resonance (the exact resonance location ismarked
by the vertical dotted line). Note that this highlights the right-handwave. The fourth panel shows the ratio of the above powers
R, and shows only the signal from that wave. Finally, the bottom panel shows the peak value ofR as a function of radius and
assumed pattern speed, parametrized as a displacementδr from the expected Prometheus 7:6 resonance location (markedwith
a horizontal dotted line). Note that the maps of Ē and Eφ use a common logarithmic stretch, while the maps ofR use a linear
stretch. Figure from Hedman & Nicholson [24].
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To further validate that this particular wave has the expected pattern speed, we can compute
the average phase-corrected wavelet for a range of different pattern speeds Ωp. In practice, we
express these pattern speeds in terms of radial displacement δr in the assumed resonance location
in the rings. For each assumed δr, we compute the power in the average phase-corrected wavelet
and extract the peak power ratio R at each radius (i.e. the maximum value of R across all
wavenumbers). The bottom panel in figure 24 displays this peak R as a function of both radial
location in the ring and assumed resonant location. The highest ratios occur along the δr = 0
line within the radial range occupied by the Prometheus 7:6 wave, thus demonstrating that the
desired signal only appears in R when the assumed pattern speed matches the expected value for
this wave.

These same procedures were able to reveal previously unseen waves in the B ring. For example,
figure 25 shows an analysis of a region around the Enceladus 3:1 resonance that should contain a
density wave. However, the profile shows no hint of the quasi-periodic optical depth variations
typical of such a wave. Even the average wavelet power generated using multiple occultation
profiles fails to show any hint of the diagonal ridge seen in previous plots. By contrast, the power
of the average phase-corrected wavelet, and especially the power ratio do show a weak diagonal
ridge consistent with a density wave. Furthermore, this structure is only seen when the pattern
speed is close to the expected value for the appropriate density wave. These techniques therefore
do appear to be able to isolate signals from weak density waves.

In addition to isolating signals associated with a particular pattern speed, the average phase-
corrected wavelet can be used to quantify the wavelength trends in these signals and thereby
obtain estimates of the ring’s surface mass density. While in principle the wavelength of the
pattern can be determined from the location of the peak power in wavenumber space, in practice
the wavenumber can be more robustly determined from the radius-dependent phase of the
periodic signal ξ2/2 [11,46]. In this situation, the best estimator of this phase can be derived
from the average phase-corrected wavelet 〈Wφ(r, k)〉 (equation (6.5)). As mentioned above, for
any wave signature with the correct pattern speed, the complex phase of this averaged wavelet
should equal ξ2/2. Hence, we may estimate the phase of the wave at a given radius by computing
the appropriately weighted average wavelet phase at that location over a range of wavenumbers
that encapsulates the desired signal.

In practice, computing the average phase directly is challenging because the phase parameter
is a cyclic quantity. Hence we instead compute the average real and imaginary parts of the wavelet
at each radius, and then use these quantities to determine the average phase. More specifically,
we compute the (complex) profile D, whose value at each radius r is given by the following
expression:

D(r) = 1
C

∫ 2π/kmax

2π/kmin

〈Wφ(r, k)〉R(r, k)
d(2π/k)

(2π/k)3/2 , (6.10)

where C is a normalization constant. The value of C and the factors of (2π/k) in the integral are
chosen so that in the limit where R= 1 for all wavenumbers, this expression corresponds to the
inverse wavelet transform of 〈Wφ(r, k)〉 [11,14]. Weighting this integral by the power ratio further
filters the profiles and thus isolates the desired signal better. This profile D is a complex quantity,
with real and imaginary parts DR and DI, respectively. We, therefore, define our estimator of the
radius-dependent phase of the profile to be φD(r) = tan−1(DI/DR). For a density wave with the
relevant pattern speed and m-number, φD(r) = 〈Φi − φi〉 = ξ2/2 + π/4. Since ξ2/2 cycles through
2π for every cycle of the wave pattern, the radius-dependent wavenumber of the pattern is simply
the radial derivative of this phase, kD(r) = dφD/dr. This estimate of the wavenumber depends
only on the local trends in the phase parameter, so it can be used to estimate the ring’s local
surface mass density via equation (2.6). These mass estimates are shown in figure 11. Note that
the total mass of Saturn’s rings are an important consideration in the debate about the age of both
the rings, and at least the inner portion of its system of moons (for review, see [47]), so these mass
estimates are an important consideration in that discussion.
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assumed m = 2, rres = 115 207.0 km, Wp = 393.89° d–1
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Figure 25. Wavelet analysis on the Enceladus 3:1 wave in the same format as figure 24. Unlike the test case shown in figure 24,
the wave shown here was expected but has never been clearly perceived or measured before. A weak wave-like signature can
be observed as a diagonal band in the ratio plot (fourth panel) that extends between 115 300 and 115 650 km in radius and
between 0.5 and 1.0 km−1 in wavenumber. The bottom panel demonstrates that this signal only occurs when the assumed
pattern speed is fairly close to the expected pattern speed of the density wave (i.e. where δr is close to zero). Figure from
Hedman & Nicholson [24].

7. Conclusion
As shown above, Morlet wavelet analysis has been an extremely useful tool in planetary ring
studies, enabling waves to be discovered, identified and characterized. The wave properties
extracted from wavelet analysis have provided important information about both the rings
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themselves and the planet they surround. However, there are still many fine-scale structures in
the rings (including some waves) whose properties and origins remain to be explained. Further
developments and refinements of wavelet-based techniques may clarify additional aspects of
these still-mysterious ring features and thus further improve our understanding of Saturn’s rings
and their environment.
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