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Abstract

Motivation: Protein–DNA interactions are essential for regulating many cellular processes, such as

transcription, replication, recombination and translation. Amino acid mutations occurring in DNA-

binding proteins have profound effects on protein–DNA binding and are linked with many diseases.

Hence, accurate and fast predictions of the effects of mutations on protein–DNA binding affinity are

essential for understanding disease-causing mechanisms and guiding plausible treatments.

Results: Here we report a new method Single Amino acid Mutation binding free energy change of

Protein–DNA Interaction (SAMPDI). The method utilizes modified Molecular Mechanics Poisson-

Boltzmann Surface Area (MM/PBSA) approach along with an additional set of knowledge-based

terms delivered from investigations of the physicochemical properties of protein–DNA complexes.

The method is benchmarked against experimentally determined binding free energy changes

caused by 105 mutations in 13 proteins (compiled ProNIT database and data from recent referen-

ces), and results in correlation coefficient of 0.72.

Availability and implementation: http://compbio.clemson.edu/SAMPDI

Contact: ealexov@clemson.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–DNA interactions are essential for functions of living cells

and are involved in many important cellular processes such as tran-

scription, replication and recombination. For example, the expres-

sion level of genes is regulated by a wide number of proteins named

transcription factors, which have DNA-binding domains recogniz-

ing a specific sequence of DNA (Orphanides and Reinberg, 2002;

Roeder, 1998). Protein–DNA binding is mediated by many factors

such as DNA sequence, hydrogen bonds, van der Waals contacts,

DNA shape, protonation states, flexibility and many others (Hogan

and Austin, 1987; Jones et al., 1999; Luscombe et al., 2001; Peng

and Alexov, 2017; Rohs et al., 2009; Slutsky and Mirny, 2004).

While DNA–backbone interactions are important for the stability of

protein–DNA complexes, proteins recognize specific DNA sequence

by forming hydrogen bonds between amino-acid side chains and

DNA bases (Luscombe et al., 2001; Rohs et al., 2009, 2010, 2010).

Therefore, mutations occurring in DNA binding proteins that alter

the physicochemical properties of the binding interfaces will affect

binding specificity and affinity (Luscombe and Thornton, 2002;

Trelsman et al., 1989). Such mutations are frequently involved in

many diseases like neurological disease, heart disease and cancer.

Hence, understanding their molecular effects is crucial for decipher-

ing disease origins and pursuing treatment (Chahrour et al., 2008;

Garg et al., 2005; Peng et al., 2015; Vousden and Lane, 2007).

Significant fractions of diseases are caused by the alteration of

native binding affinities, which can be quantitatively described by
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the binding free energy change (Peng and Alexov, 2016; Petukh

et al., 2015a,b). There are many experimental techniques capable of

measuring protein–DNA binding free energy such as isothermal

titration calorimetry (ITC) (Velazquez-Campoy et al., 2004), fluo-

rescence resonance energy transfer (FRET) (Hillisch et al., 2001),

nuclear magnetic resonance(NMR) (Campagne et al., 2011), surface

plasmon resonance(SPR) (Teh et al., 2007) and many others.

However, these experimental methods are usually time consuming

and non-applicable for large-scale studies. Recently, the available

experimental data of protein–DNA binding free energy changes

caused by amino acid substitutions was compiled and organized in a

database, the ProNIT database (Kumar, 2006).

Computational approaches can complement experimental tech-

niques and permit large-scale investigations. Among them, the free

energy perturbation (FEP) and the thermodynamic integrations (TI)

are the most rigorous, but require intensive calculations, which limit

their applicability for large-scale analysis. Alternatively to FEP and

TI, different physical models and optimized knowledge-based poten-

tials have been developed to carry out fast predictions of protein–

DNA binding affinities achieving a good correlation with experi-

mental measurements (Donald et al., 2007; Jones et al., 2003; Liu,

2005; Morozov, 2005; Zhang et al., 2005). A structured based

approach, the mCSM method, was developed (Pires and Ascher,

2017; Pires et al., 2014) and was shown that it achieves correlation

coefficient of 0.673 in benchmarking test against ProNIT database.

Very recently, mCSM was upgraded (mCSM-NA) and reported to

achieve correlation coefficient of 0.72 (Pires and Ascher, 2017).

Even so, the existing approaches for fast prediction of protein–DNA

binding affinity changes upon mutations are still very limited, com-

paring with approaches developed for protein–protein interactions.

The Molecular Mechanics/Poisson Boltzmann Surface Area (MM/

PBSA) approach is a widely applied method to calculate binding free

energies of macromolecules by combining molecular mechanics calcu-

lations and continuum solvation models (Hou et al., 2011a,b; Lee

et al., 2000). The MM/PBSA method computes a linear combination

of energy terms for molecular mechanics, polar and non-polar solva-

tion energy and shows high computational efficiency comparing with

the rigorous methods such as FEP and TI methods. In this work, we

developed a new approach termed SAMPDI (Single Amino acid

Mutation binding free energy change of Protein–DNA Interaction) to

perform fast predictions of binding free energy changes of protein–

DNA complexes caused by single mutations on the proteins. Our

approach combines modified MM/PBSA based energy terms with

additional knowledge based terms. The method is implemented in a

webserver (http://compbio.clemson.edu/SAMPDI/), which allows the

users to upload the corresponding protein–DNA structural file, to

specify the mutations and to obtain the predicted binding free energy

change.

2 Materials and methods

2.1 Dataset preparation
We constructed a dataset, containing experimentally measured bind-

ing free energy change upon missense mutations and corresponding

PDB structures, by combining the ProNIT database (Kumar, 2006)

and data from recent references. We applied three criteria in con-

structing the dataset: (i) Mutations affecting protein DNA binding,

but not the quaternary structure of the corresponding protein, like

dimerization. (ii) The binding site of DNA (DNA sequence of the

interface) used in the experiment is exactly identical to the DNA

sequence of the corresponding PDB structure. (iii) The structures

with modified DNA, like methylation were removed and not consid-

ered in this study. Finally, the constructed dataset for this study

included 105 missense mutations from 13 proteins (The constructed

dataset used in this study is shown in the Supplementary Material

and can be downloaded from URL: http://compbio.clemson.edu/

downloads).

2.2 NAMD simulation protocols
The structures of protein–DNA complexes were downloaded from

RCSB Protein Data Bank (PDB) (Rose et al., 2015). The biological

units were retained and ligands, except ions, were removed from the

initial structures. The missing heavy atoms were fixed using the

default parameters of the profix module in Jackal package (https://

honiglab.c2b2.columbia.edu/software/Jackal/Jackalmanual.htm).

The mutant (MT) structures were generated by the VMD Mutator

plugin (Humphrey et al., 1996) using the topology files from

CHARMM36 force field (Best et al., 2012; Denning et al., 2011).

The energy minimization was performed with the NAMD program,

version 2.11b (Phillips et al., 2005) using the conjugate gradient

algorithm. The default minimization steps were set to 5000 steps

but longer minimization was applied if the variation of the total

energy was more than 0.5 kcal/mol. In the minimization, the

Generalized Born implicit solvent (GBIS) model and CHARMM36

force field (Best et al., 2012; Denning et al., 2011) were used. The

dielectric constant of the implicit solvent was set to 80 and the vari-

ous values of the protein–DNA dielectric constant were tested (see

Results section). Finally, the minimized structures were used to cal-

culate the relevant energies.

2.3 Electrostatic energy calculations
Delphi with the Gaussian-based smooth dielectric function (Jia et al.,

2017; Li et al., 2013, 2014) was used to calculate the electrostatic

component of the binding free energy in the Protein–DNA binding

interaction using the following parameters: scale¼2 grid/Å; percent-

age of filling for the protein–DNA complex structures¼70%; dielec-

tric constant¼80 for the solvent; salt concentration¼0.15mol/L;

Gaussian with sigma¼0.93, srfcut¼20 and non-linear Poisson-

Boltzmann equation (PBE) (non-linear PBE was used because of the

high charge of the DNA). Grid box for protein and DNA monomers

were set exactly identical as for their complex by specifying the grid

box size and center.

2.4 Binding free energy calculations
This study combines a modified MM/PBSA approach and knowl-

edge based energy terms to calculate the protein–DNA binding free

energy change upon single amino acid substitution. MM/PBSA is a

widely used approach to calculate the receptor–ligand binding free

energy and the thermodynamic cycle of computing the binding free

energy change upon single amino acid change is shown in Figure 1.

In our approach, the unbound monomer structures are taken from

the corresponding complex, thus assuming no structural changes

upon the binding (called rigid body approach). In addition, a set of

knowledge based energy terms, which are derived from analysis of

physicochemical properties of the corresponding protein–DNA

structures, are combined with the MM/PBSA approach [more details

are provided in refs (Getov et al., 2016; Petukh et al., 2015a,b)]. All

individual energy terms are combined via weighted linear scoring

function and optimal weighted coefficients are determined via multi-

ple linear regression against experimental data. Below, we will

describe the protocols of computing each energy terms, including

the MM/PBSA and knowledge based ones.
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2.4.1 The MM/PBSA-based energy terms

The MM/PBSA components of the change of the binding free energy

are in a linear combination of the five components shown in the fol-

lowing equation:

DDGMM=PBSA ¼ w0 þw1 � DDIEþw2 � DDCE

þw3 � DDPSþw4 � DDVEþw5 � DDNS;
(1)

where IE is the internal energy, CE is the Coulombic energy, PS is

the polar component of the solvation energy, VE is the van der

Waals energy, NS is the non-polar component of the solvation

energy and wi are weight coefficients. The energy difference for each

energy term is computed using the following equation:

DDE ¼ ðEMT
complex � EMT

protein � EMT
DNAÞ � ðEWT

complex � EWT
protein � EWT

DNAÞ;
(2)

where MT and WT represent the mutant and wild-type structures.

The structures of unbound protein and DNA are taken from the

complex structures. Below we describe each energy component

[more details can be found in Petukh et al. (2015a,b)].

IE and VE energies were calculated using the NAMD program.

Since the rigid body approach was applied and no structural changes

are considered in the binding, DDIE calculated by equation (2) will

result in zero. In our methodology development, we have tried to

minimize the complex structure and unbound monomer structure

separately to take into account the structural changes induced by the

binding. However, the results showed weaker correlation between

the predicted value and experimental data comparing with applying

the rigid body approach, thus w1 was set to zero. VE energy was

obtained with NAMD by subjecting the corresponding minimized

structure to an one step equilibration.

CE and PS were calculated using the Delphi program with

Gaussian-based smooth dielectric function, an accurate and fast

Poisson-Boltzmann Equation (PBE) solver (Li et al., 2013, 2014). In

Gaussian Delphi, the solute and water phase are treated as an inho-

mogeneous dielectric medium by using a smooth Gaussian-based

dielectric function, which showed better performance comparing

with the traditional two-dielectric model (the traditional two

dielectric model treats biomolecule and water as two distinctive

media with two different dielectric constants with a sharp dielectric

border between the two media). The performance of the traditional

two-dielectric model and the smooth Gaussian-based model were

tested and the Gaussian-based model showed better results as bench-

marked against experimental data.

NS was calculated via the solvent accessible surface area (SASA)

using the equation (3). The SASA was computed using the

NACCESS software with default atom radius parameters (Hubbard,

1993). The constants a and b in equation (3) were incorporated into

to the weight coefficient in equation (1).

NS ¼ aSASAþ b (3)

2.4.2 Knowledge-based energy terms

Many knowledge-based energy terms were tested in this study among

which entropy (S) and hydrogen bond (HB) showed highest impact.

The impact was evaluated based on the P-test indicating that S and

HB are the terms showing highest correlation with experimental

measured binding free energy changes (see Supplementary Material).

Finally, the knowledge-based energy terms (DDGKW) are a linear

combination of the two components shown in the following equation:

DDGKW ¼ w1 � DDSþw2 � DDHB; (4)

where S is the entropy, and HB is the number of hydrogen bonds.

The energy differences for each term are also computed using equa-

tion (2).

The entropy of protein’s residue is calculated using the following

empirical formula originally developed in our previous work

(Petukh et al., 2015a,b).

S ¼ ln½rSASAðiÞ � ðRðiÞ � 1Þ þ 1�; (5)

where rSASA(i) represents the relative solvent accessibility of resi-

due i [calculated by the NACCESS software (Hubbard, 1993)].

Small rSASA(i) values (close to 0) indicate that the residue is buried

and only a few side chain rotamers can be sampled resulting in a

small entropy contribution. R(i) is the maximum number of the

rotamers for residue i [R(i) for all types of residues are shown in

the Table 1]. The entropy change upon mutation is calculated by

subtraction of the entropy for the wild-type residue and mutant

residue.

The number of hydrogen bonds (HBs) is calculated using the

VMD plugin with a cut-off distance 3.0 Å and a cut-off angle of

30 degrees. We tried two protocols to compute the number of

HB: (i) compute the total number of the HBs for the entire struc-

tures (including intra and inter HBs); (ii) only compute the num-

ber of HBs near the mutation site and choose to count the HBs

within 6 Å of the mutation site (different cut-off values were

tested and 6 Å showed the best correlation). The second protocol

was applied in our calculation since it showed much better

Fig. 1. Thermodynamic cycle for binding free energy change calculations.

The side chain of wild type and mutant residues are show in green and red

color, respectively

Table 1. Max number of the rotamers for all types of amino acids

taken from (Shapovalov and Dunbrack, 2011)

Residue A C D E F G H I K L

Rotamer 1 3 18 54 18 1 36 9 81 9

Residue M N P Q R S T V W Y

Rotamer 27 36 2 108 81 3 3 3 36 18
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correlation with the experimental DDG in the P-test (see

Supplementary Material).

3 Results

3.1 Finding optimal value of dielectric constant
In our protocol we used an implicit model to minimize protein–

DNA structures and to calculate the MM/PBSA energy terms.

Different dielectric constant values affect the energy minimization

and the energy terms calculated with both Delphi and NAMD pro-

grams. Our previous works showed that selecting an optimal

dielectric constant value for proteins results in improved correla-

tion coefficient for binding/folding free energy calculation (Getov

et al., 2016; Petukh et al., 2015a,b). Here, we tested various

dielectric constants for the protein–DNA complex to identify the

optimal value corresponding to the highest correlation coefficient

against experimental data. Figure 2 shows the dependence of cor-

relation coefficient on the value of the dielectric constant of

the protein–DNA complex. We varied the dielectric constant of

protein–DNA from 1 to 5 for NAMD program (this was done for

testing purposes, while understanding that dielectric constant

value of 1 is physically sound) and 1 to 20 for Delphi program

with a step of 1. Multiple linear regression was performed for

each set of values of dielectric constants using VDW energy,

Coulomb energy and the polar component of the solvation energy

to obtain the correlation coefficient (Fig. 2). The results indicate

the dielectric constant value used in NAMD modeling highly

affects the correlation coefficient (Fig. 2). Summarizing, the corre-

lation coefficient reaches the highest value with a dielectric

constant for NAMD¼1 and for Delphi¼14 and these values will

be used in our protocol.

3.2 Determination of optimal values of the weight

coefficients
As discussed in the Materials and methods section, the linear func-

tion of binding free energy changes contains 6 terms and 7 weight

coefficients:

DDG ¼ w0 þw1 � DDCEþw2 � DDPSþw3 � DDVEþw4 � DDSASA
þw5 � DDSþw6 � DDHB

(6)

Then, the weighted coefficients are determined from the multiple

linear regression (MLR) between experimentally measured DDG and

calculated binding free energy changes. The resulting optimized

weight coefficients are shown in Table 2. The correlation coefficient

from MLR is 0.72 over 105 cases. The plot of experimentally meas-

ured binding free energy changes and predicted binding free energy

changes is shown in Figure 3.

3.3 Performance and validation
3.3.1 Five-fold cross validation

In our study the datasets used for training and testing are relatively

small due to limited available experimental data. To address the

problem of overfitting, we further performed 5-fold cross validation

by randomly partitioning the dataset into five subgroups of approxi-

mately equal sizes. For each round, four subgroups are used for

training and the rest one is used for testing. The results are shown in

the Table 3 and Figure 4A. The Root Mean Square of the Error

(RMSE) in each fold varies a little and the resulting average is

Fig 2. The correlation coefficient calculated with various dielectric constants

used in Delphi and NAMD. The left panel shows the dependence of correla-

tion coefficient when dielectric constant was varied from 1 to 5 in NAMD and

1 to 10 in Delphi, while the right panel shows the same for dielectric constant

varied from 1 to 5 in NAMD and 11 to 20 in Delphi. The size of the circles are

proportional to the magnitude of the correlation coefficient which is also indi-

cated by the corresponding color (see the color scheme of the right)

Table 2. The weight coefficients of the linear function for binding free energy changes determined from MLR

CE PS VE NS S HB Y-intercept

Coefficient 0.078 0.048 0.088 �0.0012 0.14 �0.043 0.445

P-value 2E�05 1E�05 7.13E�08 0.4 0.041 0.10 8.92E�08

Correlation coefficient 0.72 Number of cases 105

Note: The corresponding P-values are shown as well.

Fig. 3. A plot of experimentally measured binding free energy changes and

predicted binding free energy changes. The corresponding linear fit and cor-

relation coefficient are shown as well
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0.54 kcal/mol. At the same time, Pearson correlation coefficient

(CC) varies significantly probably due to the limited number of data

points (20 data points for each fold and the corresponding CC

shows significant variation even if with roughly same RMSE). We

also analyzed the variation of the weighting coefficients for each

energy terms in 5-fold cross validation and the results are shown in

Supplementary Table S3. The standard deviations of the weighting

coefficients are relative small and indicate that the variations are not

significant across each fold. We further compared the average

weighting coefficients in 5-fold cross validation with the weighting

coefficients from MLR and the results show that the differences for

all the energy terms are very small (Supplementary Table S3).

Overall, the testing indicates that overfitting is not significant.

3.3.2 Receiver operating characteristic (ROC)

To evaluate the performance of SAMPDI, we further performed

ROC analysis to distinguish large and small effects on binding free

energy changes. Here, we classify the large effects as jDDGj>1 kcal/

mol and small effects as jDDGj<1 kcal/mol. Figure 4B shows the

ROC curve of SAMPDI for 105 experimentally measured binding

free energy changes. The area under the curve is 0.76, indicating the

capability of SAMPDI to distinguish different types of mutations.

3.3.3 Multicollinearlity analysis

It may be anticipated that some energy terms may reflect similar

phenomena. To address such a possibility, we performed multicolli-

nearlity analysis to study the correlation across each term and the

variance inflation factors (VIF) from MLR. The results shown in

Table 4 indicate a strong correlation between CE and PS. This is due

to the well know fact that the PS originates from the CE. In addition,

SASA has relative high correlation with VDW, CE and PS. The rest,

the VIFs of SASA, VDW, S and HB are within relative low multicol-

linearlity (VIF<4). Removing highly correlated terms from eq. (5)

results in decrease of prediction accuracy, but the change is not

large. For example, removing the CE in the MLR leads to the

decrease of correlation coefficient from 0.72 to 0.65. Thus, these

highly conserved terms were kept in our final protocol to achieve

optimal accuracy.

3.3.4 Case studies: consistent and inconsistent predictions

comparing with experimental data

To further investigate the factors affecting the predictions, represen-

tative examples of consistent and inconsistent predictions will

be discussed below. The results of six single mutations shown in

Table 5 will be discussed.

• Predictions consistent with experimental data. Epstein-Barr

nuclear antigen 1 (EBNA1) binds to the recognition site of the mini-

mal origin of latent DNA replication of Epstein-Barr virus and

results in activation of the latent-phase replication of the viral

genome (Bochkarev et al., 1998). Here, we outline two single muta-

tions (R469A and Y518A) of a permanganate-sensitive DNA site

bound by EBNA1. Both mutations occur on the binding interface

(PDB: 1B3T, Fig. 5A) and dramatically destabilize the protein–DNA

binding according to the experimental measurement (3.4 and

2.6 kcal/mol, respectively). The wild type residue R469 interacts

with the DNA backbone and forms strong electrostatic interactions

upon binding. Our calculations predict that a substitution to ALA

will result in dramatic energy change of 61.44 kcal/mol of CE and

16.02 kcal/mol of VE upon binding along with a large effect on the

SASA, HB and S (Table 5). Taking all together we predicted that

R469A would cause decrease of 2.6 kcal/mol of binding free energy,

which is very close to experiment. Another mutation, Y518A is also

located at the binding interface, which leads to a large change of VE

along with decrease of HB and S. For both mutations, the experi-

mental measured free energy changes are dramatic and destabilize

DNA binding, which is reproduced by the SAMPDI. Another repre-

sentative example are two single mutations (C130I and E141A) in

the structure of a specific DNA complex of the Myb DNA-binding

domain with cooperative recognition helices (PDB: 1MSE, Fig. 5B)

(Ogata et al., 1994). Both mutations are not in the binding interface

and experimental measurement indicates minimal effects on the

binding affinity. As shown in our energy calculations (Table 5), no

large changes were computed for all energy terms resulting in mini-

mal binding free energy change predictions, which is consistent with

experiment.

Fig. 4. (A) Plot of predicted DDG and experimental DDG in 5-fold cross valida-

tion (see Table 3 for details). (B) Receiver operating characteristic curve of

classification of large effects (jDDGj> 1 kcal/mol) and small effects

(jDDGj<1 kcal/mol)

Table 3. 5-fold cross validation for the dataset used for the SAMPDI

approach

Root Mean Square

of the Error (kcal/mol)

Pearson correlation

coefficient

Fold 1 0.53 0.33

Fold 2 0.57 0.7

Fold 3 0.48 0.76

Fold 4 0.64 0.6

Fold 5 0.49 0.52

Average 0.54 0.58

Table 4. Correlation matrixes and variance inflation factors (VIF) for

the energy terms in SAMPDI

Correlation matrixes calculated with Pearson correlation

SASA VDW CE PS S HB

SASA 1

VDW 0.7 1

CE 0.64 0.29 1

PS 0.61 0.26 0.99 1

S 0.32 0.41 0.2 0.2 1

HB 0.31 0.44 0.17 0.15 0.44 1

Variance inflation factors (VIF)

SASA VDW CE PS S HB

VIF 3.31 2.43 47.72 45.03 1.35 1.38

Note: Terms with high correlation and VIF values (CC> 0.5 and VIF> 4)

are underlined.
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• Predictions inconsistent with experimental data. The first case is

the mutation K54A in the structure of the Tn916 integrase-DNA

complex (PDB: 1TN9, Fig. 5C) (Wojciak et al., 1999). Experimental

measurement indicated destabilization of binding and our calcula-

tion underestimated the binding free energy change by 0.72 kcal/mol

(Table 5). In the wild-type structure, K54 is located in a flexible

loop and does not directly form H-bond with nearby residue. It is

feasible that K54 forms H-bonds in unbound protein or other spe-

cific interactions, which would not be captured in our rigid-body

protocol and this could be the reason for discrepancy between

experiment and modeling. Another case is the single mutation

E187A in the complex structure of F Factor TraI Relaxase Domain

bound to F oriT Single-stranded DNA (PDB: 2A0I, Fig. 5D). The

experimental data indicates that the mutation destabilizes the bind-

ing by 2.12 kcal/mol while the effect is underestimated by SAMPDI.

The corresponding reference (Larkin et al., 2005) reporting the

structure of protein–DNA complex indicates that there is significant

uncertainty for the position of the Glu187 side chain. It is indicated

that such a large free energy change is unexpected as the Glu187

side chain appears to only contact with Thy1 5-methyl with its

carboxylate (Larkin et al., 2005). The SAMPDI is a structure-based

approach and thus strongly depends on the accuracy of the experi-

mental structures.

The reasons that in some cases SAMPDI predictions are good

or bad, as compared with experimental data stem from various

sources. It should be reiterated that the SAMPDI protocol is a

structure-based rigid-body approach and the accuracy is expected to

be sensitive to the conformational changes upon binding and the res-

olution of experimental structures. Thus, mutations that do not

induce large conformation changes are expected to be predicted

with higher accuracy compared with mutations causing significant

conformational changes. Another reason could be that the protocol

does not take into account some non-specified experimental condi-

tions, as non-reported specific ion binding, proton release/uptake

and many others.

4 Implementation

4.1 SAMPDI webserver architecture
The design of SAMPDI webserver consists of three components: the

user interface, the local server and the job backend (The flowchart is

shown in Fig. 6A). The user interface is implemented using the

HTML (http://compbio.clemson.edu/SAMPDI/), which provides

users with a webpage interface to upload all required input files and

fill in parameters for the free energy calculations. In the webpage,

users are firstly asked to upload an input PDB file from a local com-

puter. In addition, the job parameters including chain ID, mutation

position, original amino acid and mutated amino acid are provided

by the users. Detailed descriptions of all the input parameters are

provided as tooltips. Once the job is submitted, users are provided

with an URL link to the result page, which will automatically refresh

itself every 30 s to return the latest results from the backend. The

local server part is run on a light-duty computer server, which

obtains the PDB files and parameters from the user interface. All the

Table 5. Cases of consistent and inconsistent predictions

Protein PDB (Mutation) DDG (EXP) DDG (PRED) DDSASA DDVE DDCE DDPS DDS DDHB

1B3T (R469A) 3.4 2.6 260.7 16.0 �61.4 106.9 1.8 �11.0

1B3T (Y518A) 2.6 2.2 72.6 14.3 1.3 �0.9 1.2 �9.0

1MSE (C130I) 0.3 0.2 3.6 �2.0 �2.3 3.8 0.0 0.0

1MSE E141A �0.1 �0.1 0.8 �1.8 7.6 �19.4 0.0 0.0

1TN9 K54A 1.3 0.6 �18.0 �3.5 �20.5 38.4 0.9 �2.0

2A0I E187A 2.1 1.2 24.3 7.4 7.1 �11.5 0.5 0.0

Note: Mutations in protein 1B3T and 1MSE are the cases of consistent predictions (underlined), while the rest are inconsistent prediction cases. The DDGs are

in kcal/mol and positive value indicates destabilization (lowering protein–DNA affinity) while negative indicates stabilization. The DDE for each terms is shown

as MT-WT.

Fig. 5. Case study of consistent and inconsistent predictions. The backbone of

DNA is marked as orange while protein is shown as brown. Mutation site is

labeled as red along with the side chain of the wild-type residue. (A) The

estrogen receptor DNA-binding domain bound to DNA (PDB: 1HCQ). (B) DNA

complex of the Myb DNA-binding domain (PDB: 1MSE). (C) TN916 integrase

n-terminal domain/DNA complex (PDB: 1TN9). (D) F Factor TraI Relaxase

Domain bound to F oriT Single-stranded DNA (PDB: 2A0I)

Fig. 6. (A) Work flowchart of SAMPDI webserver. (B) Performance of SAMPDI

webserver showing the execution time for different size proteins
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jobs in the backend are executed on the Clemson University

Palmetto Cluster. The jobs are executed using multiple nodes with

MPI parallel runs to attain the capability for large-scale analysis.

Large arrays of independent jobs are permitted to be submitted to

the server and are sequentially executed on the Palmetto cluster

according to the order of submission.

4.2 Webserver performance
To verify the capability of the SAMPDI server for large-scale analy-

sis, we tested the execution time for different sizes of the proteins

ranging from tens of residues up to more than 1000. The execution

time linearly increases with the size of proteins (Fig. 6B). For pro-

teins with less than 200 residues, the results are returned to users

within ten minutes. Execution time for middle size proteins is about

20 to 30 minutes and reaches maximum of an hour for large proteins

with about and more than 1300 residues.

5 Discussion

Development of computational approaches for large-scale predic-

tions of effect of mutations on macromolecular binding is not a triv-

ial problem (Petukh et al., 2015a,b; Pires et al., 2014). There are

multiple available tools and servers for predicting protein–protein

binding affinity changes upon single mutations (Brender et al., 2015;

Dehouck et al., 2013; Li et al., 2016; Petukh et al., 2015a,b; Pires

et al., 2014; Schymkowitz et al., 2005). However, there is still lack

of resources for predicting affinity changes of protein–DNA com-

plexes. Currently, the only available method capable of quantita-

tively predicting binding affinity changes upon single mutation of

protein–DNA binding, is the mCSM method (Pires et al., 2014) and

its recent improved version mCSM-NA (Pires and Ascher, 2017).

The mCSM was benchmarked against the ProNIT database (Kumar,

2006) and was reported to result in a correlation coefficient of

0.673/072. However, the benchmarking was done on the entire

ProNIT database without taking into consideration that in ProNIT

database (i) some proteins interact with DNA as dimers and muta-

tions could indirectly affect the binding by altering the quaternary

structure of the corresponding protein dimer instead of altering the

binding; (ii) in some cases, the binding affinity energy change upon

mutations was experimentally measured using DNA which does not

match the sequence of DNA in ProNIT database. This may indicate

that mCSM is not very sensitive to the DNA sequence and may be

over fitted, and thus alternative resources are needed. In this work,

we developed a new approach named SAMPDI, and benchmarked it

against purged experimental data from the latest verison of ProNIT

database and data from recent references. Comparing with existing

mCSM and mCSM-NA approaches, SAMPDI provides additional

structural information, the relative contribution of various energy

terms and achieves correlation coefficient similar to mCSM-NA, but

obtained on consistent experimental data (see Method section). The

SAMPDI method was implemented in a user-friendly webserver,

which is fast and allows for large-scale analysis.

The SAMPDI applies the so-called rigid body approach, which is

based on the assumption that the structures do not undergo confor-

mational changes upon binding. It should be mentioned that in the

development of the SAMPDI method we also tested a scenario such

that, complex protein–DNA structure and unbound monomeric

structures were separately minimized to take into account plausible

structural changes induced by the binding. However, the results

were worse and thus the rigid body approach was applied. In the

standard MM/PBSA approach, long time-consuming MD

simulations are required to explore the conformational space and

intensive sampling of the entire conformation space is still very chal-

lenging. The SAMPDI approach is a trade-off between extensive

conformational sampling and execution time since one of the main

goals of the SAMPDI method is to allow for large-scale analysis.

Future expansion of the method could include fast conformation

sampling method for protein and DNA to improve the accuracy of

prediction.
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