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Abstract

Glycosylation is a major form of enzymatic modification of organic molecules responsible for 

multiple biological processes in an organism. The biosynthesis of glycans is controlled by a series 

of glycosyltransferases, glycosidases and glycan-modifying enzymes that collectively assemble 

and process monosaccharide moieties into a diverse array of structures. A number of studies have 

provided insight into various pathways of glycosylation at the ocular surface, such as those related 

to the biosynthesis of mucin-type O-glycans and N-glycans on proteins, but many others still 

remain largely unknown. This review provides an overview of the different classes of glycans 

described at the ocular surface focusing on their biosynthetic pathways and biological relevance. A 

precise understanding of these pathways under physiological and pathological conditions could 

help identify biomarkers and novel targets for therapeutic intervention.

Introduction

Glycosylation is a common and highly conserved cellular process that involves the 

modification of cellular and secreted macromolecules to ultimately influence mechanisms 

critical to the development and function of unicellular and multicellular organisms. 

Monosaccharides are the basic structural units of glycans and are unique in that they can be 

attached to each other in many more ways than amino acids or nucleotides, resulting in the 

generation of compounds with high degree of structural complexity [1]. In eukaryotes, 

glycosylation starts with the import of activated monosaccharides from either the cytoplasm 

or the nucleus into the lumen of the endoplasmic reticulum and the Golgi apparatus, a 

process that requires the assistance of nucleotide sugar transporters. Such transport provides 

a wide range of substrates required for the action of glycosyltransferases, a group of 

enzymes that assemble monosaccharide moieties into acceptor substrates such as 

oligosaccharides, monosaccharides, polypeptides, lipids and small organic molecules [2]. 

The glycosyltransferases act in conjunction with several other enzymes, such as 

glycosidases, sulfotransferases, and O-acetyl-transferases, responsible for the processing and 

turnover of glycans.

Correspondence: Pablo Argüeso (pablo_argueso@meei.harvard.edu). 

Author Contribution
M.C.R.B. and P.A. reviewed the literature and wrote the article.

Competing Interests
The Authors declare that there are no competing interests associated with the manuscript.

HHS Public Access
Author manuscript
Biochem Soc Trans. Author manuscript; available in PMC 2019 April 17.

Published in final edited form as:
Biochem Soc Trans. 2018 April 17; 46(2): 343–350. doi:10.1042/BST20170408.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The nature of the linkage between the glycan moiety and the backbone (or aglycone) defines 

how glycans are classified. As shown in Figure 1, the major classes of glycans found in 

eukaryotes include O-glycans, N-glycans, glycosaminoglycans, glycosphingolipids, and 

glycosylphosphatidylinositol (GPI) anchors [3,4]. O-glycans are commonly attached to the 

hydroxyl groups of serine (Ser) or threonine (Thr) via N-acetylgalactosamine (GalNAc) and 

have been extensively studied on mucins, a group of highly glycosylated proteins 

characterized by the presence of tandem repeat domains with abundant clustered O-glycans. 

There are other classes of O-glycans in eukaryotes, which include N-acetylglucosamine 

(GlcNAc) linked to serine or threonine on nuclear, mitochondrial, and cytoplasmic proteins. 

N-glycans consist of GlcNAc attached to the amide group of asparagine (Asn) in the 

consensus peptide sequence Asn-X-Ser/Thr, where X denotes any amino acid except proline. 

Glycosaminoglycan chains are large linear polysaccharides containing repeating 

disaccharide units that can be covalently attached to core proteins to form proteoglycans. 

Finally, glycosphingolipids and glycosylphosphatidylinositols are components of the plasma 

membrane and consist of a hydrophobic lipid tail attached to a glycan moiety. In the case of 

glycosylphosphatidylinositols, the highly conserved glycan moiety is covalently linked to 

the C-terminus of a variety of proteins. In this review we summarize progress made toward 

understanding the different glycosylation pathways at the ocular surface with a focus on 

their biological relevance and alteration in disease.

The ocular surface

Understanding the mechanisms that lead to an effective epithelial barrier on mucosal 

surfaces is the subject of intense scientific study given its extraordinary relevance to health 

and disease. The maintenance and protection of the mucosal surface of the eye is ascribed to 

numerous structures. These are primarily formed by the surface and glandular epithelia of 

the cornea, conjunctiva, lacrimal gland, accessory lacrimal glands, and meibomian gland, all 

of which contribute to the production of tear fluid (Figure 2). All the epithelia of the ocular 

surface are continuous and are linked functionally to preserve corneal transparency and 

refractive power and to protect the eye against desiccation, injury and infection. The 

functions of the various regions of the ocular surface are supported by connective tissue and 

are integrated by the nervous, endocrine, circulatory and immune systems in what is known 

collectively as the ocular surface system [5].

Mucin-type O-glycosylation

Similarly to the lining of other mucosal tissues, the ocular surface epithelia produce 

abundant amounts of high molecular weight, heavily glycosylated mucins. Apical cells on 

the stratified epithelia of the cornea and conjunctiva produce the transmembrane mucins 

MUC1, MUC4 and MUC16, whereas secretory goblet cells intercalated within the 

conjunctival epithelium produce primarily the gel-forming mucin MUC5AC [6]. 

Interestingly, the transmembrane mucin MUC16 has also been localized to mucin granules 

within the goblet cells [7,8] and, together with MUC1, MUC4 and MUC5AC, can be found 

in the tear fluid [9]. MUC20 is one of the most highly expressed mucins at the ocular surface 

and is predominantly present along the plasma membranes of intermediate cell layers but not 
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in tears [10]. The mucins MUC1, MUC5AC, MUC5B, MUC7 and MUC16 have been 

detected in the lacrimal gland [11].

The biosynthesis of mucin-type O-glycans is initiated in the Golgi apparatus by a large 

family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-

transferases (GalNAc-Ts) [12]. Studies at the ocular surface have demonstrated the 

expression of multiple GalNAc-Ts in cornea, conjunctiva and lacrimal gland [13,14]. 

Immunohistochemical analyses have revealed that these enzymes are distributed within the 

epithelia in a cell-layer- and cell-type-specific manner, with GalNAc-T4 and GalNAc-T2 

present in the apical and basal cell layers, respectively, and GalNAc-T6 being restricted 

exclusively to conjunctival goblet cells [14]. Structural analyses have further demonstrated 

that mucin-type O-glycans at the ocular surface are relatively small compared to O-glycans 

found in other mucosal secretions, consisting predominantly of mono-sialylated core 1 

structures [15–17]. These structural analyses have provided the basis for delineating the 

potential biosynthetic pathways of mucin-type O-glycosylation at the ocular surface 

(reviewed in [18]). In this context, the use of glycogene microarrays has demonstrated 

expression of core1 β1,3-galactosyltransferase (T-synthase) responsible for the biosynthesis 

of core 1 and a number of α2-3 and α2-6-sialyltransferases that could potentially catalyze 

the addition of sialic acid to core 1 [15,19].

Multiple functions have been ascribed to mucin-type O-glycans at the ocular surface. 

Biosynthesis of T-synthase promotes the binding of transmembrane mucins to galectin-3 and 

the establishment of barrier function in corneal epithelial cells [20–22]. In addition, mucin-

type O-glycan biosynthesis has been shown to promote boundary lubrication at the apical 

portion of the ocular surface [23] and to reduce the risk of ocular infection by limiting 

Staphylococcus aureus adherence to human epithelial cells [24]. Interestingly, recent 

findings indicate that Pseudomonas aeruginosa preferentially binds mouse corneal 

epithelium containing chemically modified mucin-type O-glycans [25], suggesting that the 

protective effect of these glycans is pathogen/species-specific or, alternatively, influenced by 

the diverse experimental conditions. There is evidence indicating that the local cellular 

distribution of mucin-type O-glycan epitopes within the ocular surface epithelia, other than 

secretion into the tear film [15], is an early hallmark of dry eye, an ocular surface disease 

affecting millions of people worldwide. Research has shown that the distribution of O-acetyl 

sialic acids present on MUC16, as determined by H185 antibody binding, is significantly 

altered in the apical conjunctival epithelium of patients with dry eye and decreases in 

keratinized cells from patients with superior limbic keratoconjunctivitis [26–28]. This 

concept is further supported by evidence indicating that GalNAc-T localization, but not 

overall expression, is altered at early stages in ocular cicatricial pemphigoid and decreases as 

the disease progresses and the epithelium becomes keratinized [13,14]. Interestingly, the 

number of sulfated O-glycans appears to increase in the tear fluid of patients with rosacea, a 

chronic skin disorder frequently associated with inflammation of the ocular surface and 

eyelids [29,30]. Other glycoproteins carrying mucin-type O-glycans at the ocular surface 

include Deleted In Malignant Brain Tumors 1 [31], which has been recently found to protect 

against Pseudomonas aeruginosa infection by suppressing twitching motility and virulence 

[32].
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N-Glycosylation

N-glycan biosynthesis in eukaryotic cells starts with the transfer of a dolichol phosphate 

oligosaccharide precursor into secretory and membrane proteins during their translocation 

into the endoplasmic reticulum. Glycosidases and glycosyltransferases subsequently modify 

this precursor in the lumen of the endoplasmic reticulum and Golgi to generate three 

different types of N-glycans based on the content of mannose and the presence of antennae 

with GlcNAc, i.e., oligomannose, complex, and hybrid. The early N-glycosylation steps in 

the endoplasmic reticulum ensure proper protein folding via interaction with chaperones, 

whereas N-glycan number and degree of branching in mature glycoproteins regulate 

biological activities such as those mediated by the interaction with glycan-binding proteins 

[33].

Most efforts to characterize N-glycan structures at the ocular surface have been performed 

using tear fluid since it is easily accessible and the sampling procedure is non-invasive. Use 

of mass spectrometry has allowed the identification of at least 43 proteins carrying N-

glycans in human tears, which included lacritin, galectin-3 binding protein, clusterin, and 

lactoferrin—glycoproteins known to play important roles in maintaining corneal 

homeostasis [34]. Glycomic analysis of the carbohydrate composition of tear fluid has also 

revealed the presence of 50 major N-glycans [17]. The vast majority of these were complex 

N-glycans, and half of them contained a bisecting GlcNAc residue. Consistent with these 

results, glycogene microarray analysis has indicated that one of the most highly expressed 

glycogenes in the human conjunctival epithelium is B4GALT5 [19], a galactosyltransferase 

responsible for the synthesis of complex N-glycans [35]. An additional and highly expressed 

gene identified by microarray analysis in human conjunctiva included MGAT4B, which has 

also been detected in corneal epithelial cells along with other N-

acetylglucosaminyltransferases involved in the formation of antennary branching structures 

in the medial Golgi compartment [36].

N-glycosylation is essential for the many functions ascribed to the cornea. Treatment of 

wounded corneas with tunicamycin, an inhibitor of N-glycosylation in the endoplasmic 

reticulum, impairs the continued migration of epithelial sheets during healing [37]. More 

recently, it has been shown that MGAT5-modified complex N-glycans play a key role in 

promoting corneal epithelial cell migration by regulating the interaction between α3β1 

integrin and galectin-3 [38]. Structural analysis of transmembrane mucins has also revealed 

an important role for N-glycans in the formation of a protective glycocalyx in corneal 

epithelial cells. Most of the N-glycans on corneal mucins have compositions consistent with 

complex multi-antennary structures and, contrary to findings in tear fluid, contain limited 

bisecting GlcNAc structures [36]. In these experiments, MGAT1 was found to be involved in 

maintaining the stability and barrier function of the MUC16 mucin and in retaining 

galectin-3 on the epithelial glycocalyx. Lastly, evidence has emerged indicating that N-

glycans on tear glycoproteins bind Pseudomonas aeruginosa to facilitate its removal from 

the ocular surface epithelia [39]. Indeed, two of the major components in tears, secretory 

immunoglobulin A and lactoferrin, contain N-glycan epitopes that can be recognized by 

bacteria [39,40].
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Both N-glycosylation gene expression and N-glycan structure can be altered in ocular 

surface disease. The expression of ALG11, a mannosyltransferase involved in the 

biosynthesis of the dolichol phosphate precursor in the endoplasmic reticulum, is 

significantly reduced in the conjunctival epithelium of patients with dry eye [19]. Mass 

spectrometry analyses have also revealed that the amount of fucosylated N-glycans is 

reduced in the tear fluid of rosacea patients [29], and that lacritin N-glycosylation decreases 

in tears of patients with climatic droplet keratopathy, a degenerative corneal disease [34]. 

Finally, changes to the N-linked profile have been observed in tears of diabetic patients, 

although only among the relatively low abundance glycans [17].

Glycosaminoglycans

Early investigations into the distribution of proteoglycans in human corneas using 

immunogold electron microscopy revealed that heparan sulfate and chondroitin sulfate, but 

not keratan sulfate, are the major glycosaminoglycans found in epithelium [41]. The 

biosynthesis of heparan sulfate or chondroitin sulfate involves copolymerization of 

glucuronic acid with GlcNAc or GalNAc respectively, followed by a series of modification 

reactions. Both polysaccharide chains are linked to serine residues in core proteins although, 

compared to O- and N-glycans, relatively few proteins carry glycosaminoglycans—

approximately 17 contain heparan sulfate and approximately 20 contain chondroitin sulfate 

[42].

Several studies on the role of glycosaminoglycans at the ocular surface have been carried out 

in the context of infection. The stratified epithelium of the cornea is continuously exposed to 

pathogens and adhesion of microorganisms to the most apical epithelial cell layer is 

regarded as an essential first step in infectious disease. Staphylococcus aureus, a common 

bacterial pathogen causing keratitis, has the ability to exploit the cell surface syndecan-1 

proteoglycan to infect the cornea in a heparan sulfate-dependent manner [43]. Moreover, 

recent evidence indicates that when bacterial pathogens adhere, it appears to occur 

preferentially through sulfated residues along the chains, particularly to those containing 

glucosamine residues [44]. Additional studies have also implicated heparan sulfate and 

syndecan-1 in the pathogenesis of herpes simplex virus type-1 infection in corneal 

epithelium [45,46].

The net biological effects of glycosaminoglycan biosynthesis in corneal epithelium include 

those related to wound healing and cell differentiation. Lumican, a keratan sulfate 

proteoglycan, is expressed by stromal keratocytes in normal unwounded cornea, but can be 

upregulated by corneal epithelium during the early phase of wound healing to modulate cell 

adhesion and migration [47,48]. Similarly, biosynthesis of corneal epithelial heparan sulfate 

is of paramount importance to maintaining corneal homeostasis, and both wound healing 

and corneal cell stratification can be impaired following abrogation of the enzymes 

responsible for its elongation and modification [49]. The pattern of heparan sulfation also 

appears to play an important role in the migration of corneal epithelial cells during wound 

repair [50]. Deficiency in perlecan, a basement membrane-specific heparan sulfate 

proteoglycan, has been linked to a thinner corneal epithelium and the decreased expression 

of epithelial differentiation markers [51]. Finally, recent evidence has demonstrated 
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alterations in the morphology of intraepithelial nerve terminals in corneas lacking 

syndecan-1 [52].

Decreased expression of EXTL2, a glycosyltransferase required for the biosynthesis of 

heparan sulfate, and reduced levels of heparan sulfotransferases HS2ST1 and HS3ST6, have 

been reported in dry eye disease [19]. Interestingly, administration of lubricin in these 

patients appears to improve both signs and symptoms of dry eye [53]. Lubricin is a 

proteoglycan with a chondroitin sulfate-attachment site and mucin-like repeats [54]. It is 

synthesized by the ocular surface epithelia, where it functions as a boundary lubricant and 

appears to play a protective role in preventing corneal epithelial damage [55].

Glycosphingolipids

Nearly all glycolipids in vertebrates are glycosphingolipids, a subclass of glycolipids with 

ceramide as the lipid core structure. The ceramide moiety can be attached to multiple 

glycans to produce a vast array of structures, being the ganglio, globo, and neolacto 

tetrasaccharides the most common cores in vertebrates. Glycosphingolipids are expressed in 

a tissue-specific manner and constitute <5% to >20% of the total membrane lipids in plasma 

membranes [56]. At the ocular surface epithelia, the few studies evaluating 

glycosphingolipids have focused primarily on their role in mediating infection. The available 

data indicates that Ad37, an adenovirus causing epidemic keratoconjunctivitis, uses a 

sialylated GD1a ganglioside as a cellular receptor [57], whereas the asialo-GM1 ganglioside 

serves as a receptor for Pseudomonas aeruginosa and Staphylococcus aureus in cornea 

[58,59].

A recent mass spectrometric analysis has demonstrated that glucosylceramide and the GM3 

ganglioside are present in tears, where they correlate positively with the amount of fluid 

[60], but the cellular origin of these glycolipids, however, remains unknown [61]. Glycogene 

microarray analysis has further evidenced that hexosaminidase B, a lysosomal glycosidase 

involved in the degradation of the GM2 ganglioside, is highly expressed in the human 

conjunctiva [19]. In this study, the ceramide glucosyltransferase UGCGL2 and the 

galactosylceramidase GALC were found to be downregulated in patients with dry eye.

Conclusion and future prospects

Glycosylation has long been considered an important factor in regulating ocular surface 

homeostasis. However, we currently only have a superficial understanding of the multiple 

mechanisms regulating glycosylation at the ocular surface. Pathways that remain 

understudied include those related to the biosynthesis of glycosylphosphatidylinositol, 

which can prove relevant to the proper differentiation of the corneal epithelium [62], and the 

O-GlcNAc modification, which appears to be altered in dry eye and diabetic corneas [19,63]. 

Some findings remain observational and are in need of subsequent interventional studies to 

determine biological relevance. For instance, the role of carbohydrate modifications such as 

acetylation and sulfation, which occur on mucins and glycosaminoglycans [64,65], are not 

completely understood. Nevertheless, the introduction of new technologies in glycomics and 
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the development of novel chemical and genetic approaches to alter the different 

glycosylation pathways will likely prove rewarding in the field of ocular surface research.
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Abbreviations

Asn asparagine

Fuc fucose

Gal galactose

GalNAc N-acetylgalactosamine

Glc glucose

GlcA glucuronic acid

GlcNAc N-acetylglucosamine

GlcNH2 glucosamine

T-synthase core1 β1,3-galactosyltransferase

GalNAc-Ts UDP-GalNAc-polypeptide GalNAc-transferases

Man mannose

Ser serine

Sia sialic acid

Thr threonine

Xyl xylose
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Figure 1. 
Schematic diagram of common glycans found in eukaryotes (adapted from [1]: Varki A, 

Kornfeld S. Historical background and overview. In: Varki A, Cummings RD, Esko JD, 

Stanley P, Hart GW, et al., editors. Essentials of glycobiology. Cold Spring Harbor (NY) 

2015. p. 1–18). Examples of structures found at the ocular surface are shown in parenthesis.

Rodriguez Benavente and Argüeso Page 12

Biochem Soc Trans. Author manuscript; available in PMC 2019 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Schematic diagram of the ocular surface (adapted from [66]: Gipson IK, Argueso P. Role of 

mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol. 2003;231:1–

49).
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