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Detection of Somatic Structural 
Variants Enables Quantification 
and Characterization of Circulating 
Tumor DNA in Children With Solid 
Tumors

INTRODUCTION

Cancer remains one of the most common child-
hood causes of disease-related death in devel-
oped countries.1 Patients with pediatric solid 
tumor malignancies are commonly treated with 
regimens that combine intensive chemotherapy, 
surgery, and radiation therapy.2 This approach 
has led to tremendous improvements in out-
come, with overall cure rates for pediatric solid 
tumors now > 80%.3 However, these cures come 
at the cost of exposing patients to a high risk of 

long-term toxicities resulting in significant mor-
bidity.4 In some diseases, such as Wilms tumor, 
efforts to de-escalate therapy have resulted in 
stable cure rates for low-risk patients accompa-
nied by reduced treatment toxicity.5,6 In other 
diseases, such as Ewing sarcoma, a lack of prog-
nostic biomarkers limit the ability to risk strat-
ify therapy.7,8 In both cases, the development 
of new and more precise assays for risk strati-
fication could improve outcomes by facilitating 
patient-specific treatment modifications.

Objective Liquid biopsies are being rapidly used in adult cancers as new biomarkers of 
disease. Circulating tumor DNA (ctDNA) levels have been reported to be proportional 
to disease burden, correlate with treatment response, and predict relapse. However, lit-
tle is known about how frequently ctDNA is detectable in pediatric patients with solid 
tumors. Therefore, we developed a next-generation sequencing approach to detect and 
quantify ctDNA in the blood of patients with the most common pediatric solid tumors.
Methods Detection of ctDNA requires assays sensitive to somatic events typically ob-
served in the cancer type being studied. In pediatric solid tumors, structural variants 
are more common than recurrent point mutations. We adapted an ultralow passage 
whole-genome sequencing approach to capture copy number variants and a hybrid cap-
ture sequencing assay to detect translocations in liquid biopsy samples from pediatric 
patients.
Results Copy number changes seen by ultralow passage whole-genome sequencing  
enabled detection of ctDNA in patients with osteosarcoma, neuroblastoma, alveolar 
rhabdomyosarcoma, and Wilms tumor. In Ewing sarcoma, detection of the EWSR1 
translocation was a more sensitive approach. For patients with samples collected at mul-
tiple time points, changes in ctDNA levels corresponded to treatment response. We also 
found that disease-specific genomic biomarkers of prognosis were detectable in ctDNA.
Conclusion This study demonstrates that liquid biopsy approaches that detect somatic 
structural variants are well suited to pediatric solid tumors. We show that children with 
the most common solid tumor malignancies have detectable levels of ctDNA, which may 
be used to track disease response and identify genomic subclassifiers of disease. Efforts 
to profile larger collections of clinically annotated specimens are under way to validate 
the clinical use of these assays.
JCO Precis Oncol. © 2018 by American Society of Clinical Oncology 
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Advances in the development of liquid biopsy 
assays provide a new opportunity for prognos-
tication in cancer. Numerous studies have now 
demonstrated that circulating tumor DNA 
(ctDNA) levels in adults with cancer correlate 
with disease burden and track with treatment 
responses over time.9-14 The development of 
ctDNA assays rely on identification and quan-
tification of somatic mutations.9,15 Many ctDNA 
assays have been developed to detect highly  
recurrent hot-spot mutations that frequently 
drive adult malignancies.9,12,13,16-18 However, 
recent comprehensive sequencing efforts in 
pediatric cancers show that pediatric solid 
tumors are rarely driven by highly recurrent 
single-nucleotide variants.19 Instead, structural 
variants, including chromosomal copy number 
changes and DNA translocations, are com-
mon somatic events in these tumor types.20-26 
To determine whether patients with childhood 
solid tumor malignancies express detectable lev-
els of ctDNA, we adapted two next-generation 
sequencing strategies to detect and quantify 
structural variants in the plasma of these patients. 
We applied these assays to five of the most com-
mon types of pediatric solid tumors, excluding 
CNS tumors, to quantify ctDNA levels, identify 
genomic subtypes, and confirm the feasibility of 
using ctDNA assays to track disease response to 
therapy.

METHODS

Patients and Tissue Samples

Patients at the Dana-Farber Cancer Institute 
and Boston Children’s Hospital were consented 
to an institutional review board–approved pro-
tocol. Patients were included if an initial periph-
eral blood, pleural effusion, or bone marrow 
sample was collected within 3 days from the 
start of chemotherapy and before a surgical 
resection. A confirmed pathologic diagnosis of 
Ewing sarcoma, alveolar rhabdomyosarcoma, 
osteosarcoma, Wilms tumor, or neuroblastoma 
was required. Additional details are available in 
the Data Supplement.

Sequencing Library Preparation, 
Sequencing Alignment, and Ultralow 
Passage Whole-Genome Sequencing 
Coverage

For all experiments, sequencing library prepa-
ration and sequencing data alignment were 

performed using standard techniques. For 
ultralow passage whole-genome sequencing 
(ULP-WGS), whole-genome libraries were 
pooled and sequenced (without selection) to 
achieve an anticipated average coverage between 
0.2× and 1×. Additional details are available in 
the Data Supplement.

Translocation-Specific Sarcoma Sequencing 
Assay Development and Sequencing

To detect pediatric sarcoma-specific transloca-
tions in cell-free DNA, we developed a unique 
hybrid capture sequencing assay. First, we 
reviewed the literature to identify the genomic 
introns involved in oncogenic translocations in 
the EWSR1, FUS, CIC, CCNB3, PAX3, PAX7, 
and TP53 genes.20,21,25-33 Second, we used the 
SureSelect Advanced Design Wizard (Agilent 
Technologies, Santa Clara, CA) to create capture 
probes targeting these regions and the coding 
regions of TP53 and STAG2 with the following 
design options: sense strand, 3× tiling density, 
least stringent masking, balanced boosting, and 
region extensions of 10 bases from the 3′ and 5′ 
ends (Data Supplement). The resulting hybrid 
capture bait set was named Translocation- 
Specific Sarcoma Sequencing assay (TranSS-Seq). 
Normalized and pooled barcoded sequencing 
libraries were enriched using the SureSelectXT 
Fast Target Enrichment System (Agilent Tech-
nologies) and the TranSS-Seq bait set. Posten-
richment captures were sequenced with an 
intended coverage at target regions of 500×. The 
average measured coverage at enrichment sites 
for all samples tested by TranSS-Seq was 655× 
(range, 31× to 1,464×).

Sequencing Analysis

ULP-WGS analysis was performed using the 
ichorCNA algorithm (https://github.com/broa-
dinstitute/ichorCNA), with manual curation 
of results.34 In brief, ULP-WGS uses relative 
sequencing coverage of whole-genome data 
and computational correction of sequencing 
bias to detect segmental copy number changes. 
Percentage of ctDNA was determined using 
established probabilistic modeling algorithms 
for estimating tumor allelic fractions.

Identification of targeted translocations by 
TranSS-Seq was performed using BreaKmer.35 
To quantify the number of translocations and 
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wild-type reads detected in each sample, we devel-
oped a custom algorithm designed to realign all 
sequencing reads to either the reference human 
genome or the patient-specific translocation- 
positive reference sequence (https://github.com/
vanallenlab/peds_ctDNA). The algorithm then 
reported the number of reads aligned at the 
patient-specific translocation breakpoint and 
the number of wild-type reads at the equivalent 
genomic base-pair location within the human 
reference genome. Because each cancer genome 
contains one translocated and one wild-type 
allele, whereas germline genomes contain two 
wild-type alleles, we used the following formula 
to calculate the percentage of ctDNA, where 
T equals the number of translocation reads  
and W equals the number of wild-type reads:  
% ctDNA = T/{[(W-T)/2]+T}.

Cell Lines and Digital Droplet Polymerase 
Chain Reaction

The EW8 Ewing sarcoma cell line dilution 
experiments, digital droplet polymerase chain 
reaction (ddPCR) methods, and ddPCR primers 
are listed in the Data Supplement.

RESULTS

Patients and Samples

A liquid biopsy sample was collected before the 
initiation of therapy from 45 pediatric patients 
with cancer with a confirmed diagnosis of Ewing 
sarcoma (n = 11), osteosarcoma (n = 10), neu-
roblastoma (n = 10), Wilms tumor (n = 8), or 
alveolar rhabdomyosarcoma (n = 7). Clinical 
characteristics were collected for each enrolled 
patient (Data Supplement). DNA from a tumor 
biopsy sample was available for eight of 11 Ewing 
sarcomas, four of 10 osteosarcomas, and six of 
seven rhabdomyosarcomas. DNA from tumor 
biopsy material from patients with neuroblastoma 
and Wilms tumor were not readily available.

Circulating Tumor DNA Is Detectable 
in Patients With Pediatric Solid Tumor 
Malignancies

Total cell-free DNA levels ranged from 2 ng to 
3.5 µg of DNA per 1 mL of plasma, with the 

highest values originating from patients with 
neuroblastoma (Fig 1A). ULP-WGS was per-
formed for each sample to detect and quantify 
ctDNA by measuring segmental copy num-
ber changes as recently described.34 ctDNA 
was detected in ≥ 50% of pretreatment plasma 
samples from patients with osteosarcoma, neu-
roblastoma, Wilms tumor, and alveolar rhabdo-
myosarcoma. ctDNA was detected in only four 
of 11 samples from patients with Ewing sarcoma 
(Fig 1B; Data Supplement). ULP-WGS was 
performed for all patients with available DNA 
from tumor biopsies (n = 18). In patients with 
detectable ctDNA, the pattern of segmental 
chromosomal copy number changes in cell-
free DNA matched the copy number pattern 
observed in the tumor biopsy from the same 
patient (Figs 1C and 1D; Data Supplement). In 
four of the seven patients with Ewing sarcoma 
with no detectable ctDNA, ULP-WGS analy-
sis of tumor biopsy DNA material demonstrated 
no discernable segmental copy number changes 
(Fig 2). This finding is consistent with previous 
reports that Ewing sarcoma tumors have few 
highly recurrent somatic events other than the 
EWSR1/ETS translocations and suggests that 
an alternative method for detection of ctDNA is 
necessary for this disease.21,26

Translocation Detection Outperforms Copy 
Number Detection for Ewing Sarcoma

To detect ctDNA in translocation-positive 
tumors, we developed a novel hybrid-capture 
assay, termed TranSS-Seq, designed to sequence 
intronic regions involved in genomic rearrange-
ments in pediatric sarcomas. Coding regions of 
the TP53 and STAG2 genes were also targeted 
by this assay (Table 1; Data Supplement). First, 
we confirmed that the assay could detect the 
expected translocations in a panel of Ewing and 
Ewing-like sarcomas and alveolar rhabdomyo-
sarcomas (Data Supplement). Second, DNA was 
extracted from the EW8 Ewing sarcoma cell line 
and mixed in decreasing concentrations with 
normal human cell line CEPH-1347-2. ddPCR 
in these samples confirmed the ability to detect 
and quantify the EW8-specific EWSR1/FLI 
translocation across the range of dilutions (Fig 
3A; Data Supplement). Sequencing of the same 
DNA libraries with TranSS-Seq demonstrated 
a high correlation for this method with both 
the experimental dilution and ddPCR results 
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and detected EW8 DNA at a concentration of 
1.56% (Figs 3B and 3C; Data Supplement).

TranSS-Seq was then applied to cell-free DNA 
samples from patients with Ewing sarcoma 
and alveolar rhabdomyosarcoma. ctDNA was 
detected by this method in 10 of 11 Ewing 
sarcoma samples and five of seven alveolar 
rhabdomyosarcoma samples (Fig 3D). For five 
patients with Ewing sarcoma and three patients 
with alveolar rhabdomyosarcoma, DNA from 
tumor biopsy samples was also profiled by 
TranSS-Seq (Data Supplement). In all cases, the 
unique genomic breakpoint in the ctDNA was 

identical to the breakpoint observed from the 
tumor biopsy sample.

Previous studies in Ewing sarcoma have used 
ddPCR assays that amplify patient-specific EWS/
ETS translocations to measure ctDNA levels 
in patients.36-38 To compare TranSS-Seq with 
this previously validated approach, patient- 
specific polymerase chain reaction primers 
were developed for a subset of Ewing sarcoma 
and alveolar rhabdomyosarcoma samples (Data 
Supplement). The percentage of ctDNA levels 
identified by TranSS-Seq correlated with the 
percentage of ctDNA detected by ddPCR (Fig 
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Fig 1. Circulating tumor DNA (ctDNA) is detectable in pediatric solid tumors. (A) Quantity of cell-free DNA extracted per mL of plasma or 
body fluid in patients with osteosarcoma (OST), alveolar rhabdomyosarcoma (aRMS), Ewing sarcoma (EWS), Wilms tumor (Wilms), and neuro-
blastoma (NB). (B) Percentage of ctDNA levels in cell-free DNA samples from panel A as determined by ultralow passage whole-genome sequenc-
ing. (C-D) Genome-wide plots represent the log2 ratio copy number for each data point determined by ultralow passage whole-genome sequenc-
ing. The color for each data point corresponds to the relative copy number change from baseline, with blue equal to two copies of the genomic 
location, green equal to copy number loss, and red equal to copy number gains. Chromosomal segmental medians are also plotted as horizontal 
lines, with gold lines representing likely subclonal events. The same pattern of copy number changes is observed in DNA sequenced from a tumor 
biopsy (top) and a pretreatment blood sample (bottom) in (C) a patient with osteosarcoma and (D) alveolar rhabdomyosarcoma.
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3E). In three of the four patients with Ewing 
sarcoma for which no copy number change 
could be detected by ULP-WGS in the tumor 
(MRD0006, MRD0041, MRD0047), TranSS-
Seq was able to detect an EWSR1-fusion  
in the tumor and cell-free DNA (Data Sup-
plement). In the fourth patient (MRD0007), 

TranSS-Seq detected an EWSR1/FLI fusion in 
the tumor but not in cell-free DNA (Data Sup-
plement). ddPCR could not be attempted on 
this plasma sample because there was no remain-
ing cell-free DNA after sequencing. Finally, in 
all three patients with Ewing sarcoma for which 
the tumor biopsy specimen detected a segmental 
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Fig 2. Ewing sarcoma tumors have few segmental copy number changes. Genome-wide copy number plots from seven Ewing sarcoma tumor 
biopsy samples detected by ultralow passage whole-genome sequencing in patients for which circulating tumor DNA could not be detected from 
peripheral blood. (A-D) Four Ewing sarcoma tumors that show no discernable segmental copy number changes. (E-G) Three Ewing sarcoma 
tumors with segmental copy number changes.
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copy number change but ULP-WGS was 
unable to detect ctDNA from the same patient 
(MRD0019, MRD0023, MRD0046), TranSS-
Seq detected low levels of ctDNA, suggesting 
that TranSS-Seq may have greater sensitivity 
for ctDNA than ULP-WGS in Ewing sarcoma 
(Data Supplement).

ctDNA Levels Track With Disease Burden 
in Pediatric Solid Tumors

When comparing ctDNA levels across cancer 
types, neuroblastoma demonstrated a signifi-
cantly higher percentage of ctDNA (median, 
55%; range, 13% to 98%) than other cancer 
types (Data Supplement). This may reflect the 
high disease burden typically present in patients 
with metastatic neuroblastoma. For a subset of 
patients, liquid biopsy samples were collected 
at multiple time points during clinical care 
(Data Supplement). ULP-WGS was applied to 
all serial samples, and TranSS-Seq was applied  
to Ewing sarcoma and alveolar rhabdomyosar-
coma samples. Changes in ctDNA levels over 
time corresponded to response to therapy (Fig 4;  
Data Supplement). In patients with newly diag-
nosed Ewing sarcoma and alveolar rhabdomyo-
sarcoma, ctDNA levels declined rapidly after 
initiation of chemotherapy, often becoming 
undetectable by the start of the second cycle 
(Figs 4A and 4B; Data Supplement). In osteosar-
coma, studies have shown that a high percent-
age of tumor necrosis observed in the primary 
tumor after neoadjuvant chemotherapy is asso-
ciated with a better prognosis.39,40 In five patients 
with newly diagnosed osteosarcoma, the per-
centage of tumor necrosis was available. Inter-
estingly, for one patient with tumor necrosis 

of 90% (MRD0061) and one patient with 80% 
(MRD0053), ctDNA levels were undetectable 
after initiation of chemotherapy (Fig 4C; Data 
Supplement). However, four patients with 
tumor necrosis < 70% (MRD0031, MRD0036, 
MRD0040, MRD0054) had detectable ctDNA 
in at least one sample collected after initiation 
of chemotherapy (Fig 4D; Data Supplement). 
Finally, in patients whose ctDNA levels became 
undetectable with therapy but then experienced 
a clinical relapse or progression, ctDNA was 
again detectable before the initiation of relapsed 
therapy (Fig 4B; Data Supplement).

Genomic Markers of Poor Outcome Are 
Detectable in ctDNA

We also examined whether disease-specific 
genomic markers of prognosis could be detected 
in ctDNA. Recent studies demonstrate that 
mutations in STAG2 and TP53 may be associ-
ated with a worse outcome in Ewing sarcoma.21,26 
A frame-shift mutation in STAG2 was detected 
by ctDNA from one patient (MRD0023), and 
a mutation in TP53 was detected in another 
patient (MRD0003; Data Supplement). In alve-
olar rhabdomyosarcoma, studies have demon-
strated that patients with PAX3/FOXO1 have 
a worse prognosis than patients with PAX7/
FOXO1 translocation.41 The FOXO1 fluorescent 
in situ hybridization probe, which is used in the 
diagnostic work-up of alveolar rhabdomyosar-
coma, confirms a FOXO1 rearrangement but not 
the fusion partner. The TranSS-Seq assay distin-
guishes PAX3 from PAX7 translocations (Table 1).  
In our study, all patients with ctDNA were 
found to have a PAX3/FOXO1 translocation (Data 
Supplement). In osteosarcoma, copy number 
gains of chromosome arm 8q are associated with 
a poor outcome.42-44 ULP-WGS detected copy 
number gains in 8q in seven of nine osteosar-
coma samples with detectable ctDNA (Fig 1C; 
Data Supplement). Amplification of MYCN is 
a well-established marker of poor prognosis  
in neuroblastoma.45,46 MYCN amplification was 
detectable in the ctDNA of two patients by 
ULP-WGS (Fig 5A; Data Supplement). These 
were the only two patients with neuroblastoma 
with fluorescent in situ hybridization–confirmed 
MYCN amplification in our cohort. Finally, in 
Wilms tumor, copy number gains of 1q were 
associated with poor prognosis in favorable his-
tology tumors.47 ULP-WGS detected 1q gain in 
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Table 1. Gene Regions Targeted by Hybrid Capture Sequencing in the TranSS-Seq 
Assay

Genes Sequenced Regions Sequenced Targeted Mutations

EWSR1 Introns EWSR1/ETS and EWSR1/other

FUS Introns FUS/ETS

CIC Introns CIC/DUX4

CCNB3 Introns BCOR/CCNB3

PAX3 Introns PAX3/FOXO1

PAX7 Introns PAX7/FOXO1

STAG2 Exons Loss of function

TP53 Exons and intron 1 Loss of function, dominant 
negative, and intron 1 

rearrangements

http://ascopubs.org/journal/po


two of four Wilms tumor samples with detect-
able ctDNA (Figs 5B and 5C; Data Supplement).

DISCUSSION

Liquid biopsy technologies are currently being 
adapted for prognostic purposes in many adult 
malignancies.11,48-50 It is critical that liquid 
biopsy strategies are also developed for child-
hood cancer. Because of the relative rarity of 
pediatric solid tumors, large prospective trials 
frequently rely on multi-institutional consor-
tiums to reach adequate patient enrollment. In 
this setting, availability of tumor biopsy samples 

for correlative biology studies is inconsistent. In 
addition, it is preferable to have a liquid biopsy 
approach that can provide information about 
disease burden and prognosis before availability 
of molecular results from tumor. Therefore, we 
adapted liquid biopsy methods that could detect 
somatic structural variants without requiring 
access to tumor biopsy samples. In this article, 
we report our results from profiling cell-free 
DNA samples from 45 patients diagnosed with 
a wide range of pediatric solid tumors.

We first applied ULP-WGS to detect copy num-
ber changes in cell-free DNA and found that the 
majority of patients with pediatric solid tumors 
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had detectable levels of ctDNA. Patients with 
neuroblastoma had the highest levels of ctDNA, 
including two patients with > 1 µg of cell-free 
DNA per mL of plasma, which was nearly 100% 
composed of tumor DNA. However, one obvi-
ous limitation to the use of ULP-WGS was 
in tumor types with low rates of copy number 
alterations, such as Ewing sarcoma.

Recent liquid biopsy studies in Ewing sarcoma 
have used the development of patient-specific 
ddPCR assays.36-38 Although this approach has 
proven to be highly sensitive and quantita-
tive, the development of each assay requires 
genomic profiling of large amounts of tumor 
biopsy material to establish the patient-specific 
oncogenic translocation. One recent study used 
a combination of ddPCR and hybrid capture 
sequencing to detect EWSR1 translocations in 
Ewing sarcoma and desmoplastic small round-
cell tumors.38 Results showed that it is feasible to 
detect EWSR1 translocations directly from the 
plasma of these patients without first sequencing 
the tumor sample. In our study, we developed 
a unique hybrid capture sequencing assay that 
targets a wider range of oncogenic transloca-
tions observed in pediatric sarcomas. Despite 
the larger genomic region targeted for hybrid 

capture, the TranSS-Seq assay detected ctDNA 
in 10 of 11 pretreatment samples obtained from 
Ewing sarcoma, similar to rates observed by 
other groups. Serial dilution studies demon-
strated that our assay was sufficiently sensitive to 
detect oncogenic translocations diluted in germ-
line DNA to as little as 1.56%. We also demon-
strated that quantification of ctDNA levels was 
similar using either TranSS-Seq or ddPCR.

In this study, changes in ctDNA levels were 
observed during a patient’s clinical course and 
corresponded to changes in disease burden. 
This suggests that next-generation sequencing 
approaches could be used as a measure of dis-
ease burden in patients before the start of ther-
apy and to track treatment response. Monitoring 
changes in ctDNA levels during therapy may 
facilitate new response-based risk-stratification 
approaches that allow refinement of treatment 
intensity for patients undergoing therapy. With 
next-generation sequencing becoming increas-
ingly available for clinical decision making, we 
anticipate that our ctDNA assays could also be 
adapted to clinical laboratory testing if they 
demonstrate significant improvements to risk 
stratification for pediatric solid tumors. A similar 
approach to risk-stratified treatment by minimal 
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Fig 4. Changes in circu-
lating tumor DNA (ctDNA) 
levels over time in patients 
with pediatric solid tumors. 
Percentage of ctDNA 
levels from serial cell-free 
DNA samples collected 
from four patients with (A) 
Ewing sarcoma, (B) alveolar 
rhabdomyosarcoma, (C-D) 
osteosarcoma. Background 
shading indicates the rele-
vant treatment course and 
clinical events (x-axis scale is 
arbitrary). Blue dots indicate 
peripheral blood samples, 
and the red dot (B) indicates 
a bone marrow sample col-
lected simultaneously with a 
blood sample.
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residual disease testing in children with acute 
lymphoblastic leukemia has led to significant 
improvements in outcome.51 We believe that this 
study demonstrates the feasibility of measuring 
and tracking ctDNA across a wide range of 
pediatric solid tumors and justifies prospective 
efforts within each disease type to validate the 
use of ctDNA in prognostication. Importantly, 
our study was not optimized to determine which 
time points during a patient’s treatment course 
may be the most useful in measuring response to 
therapy. Therefore, prospective studies should be 
designed to obtain frequent samples throughout 
treatment so that the time points most predictive 
of outcome can be appropriately identified.

Finally, our study demonstrates that next- 
generation sequencing of ctDNA can detect 
existing genomic biomarkers of outcome and may 
provide another modality for genomic profiling 
of tumors in patients. Furthermore, it remains 
unclear whether these genomic biomarkers are 
primarily clonal or heterogeneous events within a 
tumor or across tumors and whether the clonality 
of these genomic events changes in patients who 
relapse after therapy. Recent studies demonstrate 
that ctDNA can detect intratumor and multitu-
mor heterogeneity and detect complex patterns 
of treatment resistance.52-55 With the emergence 
of new sequencing modifications that improve 
sensitivity and decrease sequencing errors, we 

believe that ctDNA profiling by next-generation 
sequencing approaches will improve our under-
standing of tumor heterogeneity and patterns of 
somatic evolution in pediatric solid tumors.12,16 In 
addition, the assays described in this study could 
facilitate broader profiling of ctDNA, such as 
deep whole-exome sequencing, by providing a 
mechanism to screen samples for the presence of 
sufficiently abundant ctDNA, allowing selection 
of samples most likely to yield informative data.

In summary, our study demonstrates that patients 
with pediatric solid tumors have detectable lev-
els of ctDNA, which can be measured with next- 
generation sequencing approaches that do not 
require profiling of tumor biopsy material or 
patient-specific assays. Disease-specific genomic 
hallmarks of pediatric solid tumors can also be 
identified in liquid biopsy samples, and ctDNA 
levels correlate with disease burden and response 
to therapy over time. Larger studies are needed to 
confirm the prognostic value of ctDNA detection 
and quantification in these patients. As more sen-
sitive and less error-prone sequencing technol-
ogies become available, we believe that ctDNA 
studies may provide insight into tumor evolution 
and treatment resistance in pediatric solid tumors.
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