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Abstract

Random forest (RF) modeling has emerged as an important statistical learning method in ecology 

due to its exceptional predictive performance. However, for large and complex ecological data sets 

there is limited guidance on variable selection methods for RF modeling. Typically, either a 

preselected set of predictor variables are used, or stepwise procedures are employed which 

iteratively remove variables according to their importance measures. This paper investigates the 

application of variable selection methods to RF models for predicting probable biological stream 

condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey 

sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of 

landscape features from the StreamCat data set as potential predictors. We compare two types of 

RF models: a full variable set model with all 212 predictors, and a reduced variable set model 

selected using a backwards elimination approach. We assess model accuracy using RF’s internal 

out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable 

selection process. We also assess the stability of the spatial predictions generated by the RF 

models to changes in the number of predictors, and argue that model selection needs to consider 

both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of 

many variables of moderate to low importance. We found no substantial improvement in cross-

validated accuracy as a result of variable reduction. Moreover, the backwards elimination 

procedure tended to select too few variables, and exhibited numerous issues such as upwardly 

biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use 

simulations to further support and generalize results from the analysis of real data. A main purpose 

of this work is to elucidate issues of model selection bias and instability to ecologists interested in 

using RF to develop predictive models with large environmental data sets.
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Introduction

Ecological processes are complex, and often involve high-order interactions and nonlinear 

relationships among a large collection of variables (De’ath and Fabricius, 2000; Cutler et al., 

2007; Evans et al., 2011). In traditional regression modeling, the relationships between the 

response and explanatory variables need to be pre-specified, and many assumptions are 

commonly made (e.g., normality, independence, and additivity) which are rarely satisfied in 

an ecological context (Prasad et al., 2006; Evans et al., 2011). When the number of 

explanatory variables is large, regression models can overfit the data unless information 

criteria such as the Akaiki information criterion or hypothesis testing are employed to reduce 

the number of parameters (Burnham and Anderson, 2002). Moreover, when there are as 

many parameters as data points, a multiple regression model will fit the data exactly, but fail 

to generalize well on new samples (Babyak, 2004; Faraway, 2005). Because of these 

limitations, more flexible nonparametric and algorithmic approaches are gaining traction 

amongst ecologists; random forest (RF) modeling (Breiman, 2001), in particular, has 

recently emerged as a compelling alternative to traditional methods.

Multiple studies have demonstrated that RF models often perform remarkably well in 

comparison to other methods for ecological prediction. In an application to predictive 

mapping of four different tree species in the eastern United States, Prasad et al. (2006) found 

that RF modeling outperformed three other statistical modeling approaches (regression tree 

analysis, bagging trees, and multivariate regression splines) in terms of the correlations 

between the actual and predicted species distributions. In their seminal article, Cutler et al. 

(2007) applied RF classifiers to a wide range of ecological data sets on invasive plant 

species, rare lichen species, and cavity nesting bird habitats. Using cross-validation, they 

demonstrated that the RF models outperformed other commonly used classification methods 

such as logistic regression, classification trees, and linear discriminant analysis. The RF 

models generally demonstrated the most substantial improvement over linear methods for 

data sets with strong interactions among variables (e.g., invasive species). In Freeman et al. 

(2015), RF was compared with stochastic gradient boosting for modeling tree canopy cover 

over diverse regions in the United States. They found that both models performed similarly 

in terms of independent test set error statistics (e.g., mean-squared error); although, there 

were advantages to the RF approach since it was less sensitive to tuning parameters and less 

prone to overfitting.

While RF modeling has shown exceptional performance on a variety of ecological data sets 

(Gislason et al., 2006; Prasad et al., 2006; Cutler et al., 2007), insights and guidance on 

variable selection techniques for RF models of ecological processes are limited. Typically, 

either a preselected set of predictor variables are used in the RF model (Prasad et al., 2006; 

Cutler et al., 2007; Carlisle et al., 2009), or a reduced set of variables is selected to improve 
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model interpretability and performance (Evans and Cushman, 2009; Evans et al., 2011; 

Rehfeldt et al., 2012; Hill et al., 2013). For instance, in Cutler et al. (2007) no variable 

selection was carried out; instead the authors claimed that one of the strengths of RF 

modeling is its ability to characterize high-dimensional data with many collinear variables. 

In other works, stepwise procedures have been proposed whereby a sequence of RF models 

are estimated by iteratively adding or removing variables according to their importance 

measures, and the model with optimal performance is selected. For instance, this type of 

approach has been implemented by Evans and Cushman (2009) to select RF models for 

predicting occurrence probabilities for conifer species in northern Idaho; Rehfeldt et al. 

(2012) to reduce the number of predictors for RF models of the geographic distribution of 

biomes under various climate change scenarios; and Hill et al. (2013) to select a RF model 

of reference condition stream temperature with a small set of optimally performing natural 

and anthropogenic predictor variables.

With the growing popularity of RF modeling among ecologists, and the availability and 

refinement of large environmental data sets, questions about model selection need to be 

more throughly addressed. Along these lines, we investigate the application of variable 

selection methods to RF models of stream condition with many landscape features generated 

from a Geographic Information System (GIS). Our motivating covariate data set is the 

StreamCat data set of Hill et al. (2016), which contains over 200 natural and anthropogenic 

landscape variables, readily available for predictive modeling of stream catchment attributes 

(e.g., estimating the probability of good stream condition for a particular catchment). Using 

these data, we seek to address the following questions:

• How can we reliably evaluate accuracy for RF modeling when performing 

variable selection? Is external validation necessary?

• How can we measure and assess the stability of RF models to changes in the 

number of predictor variables (i.e., landscape features)?

• What effect does variable selection have on the spatial predictions generated by 

RF models at new, unsampled locations?

For the stability analysis we focus on spatial patterns (i.e., prediction maps) and statistical 

summaries of the RF predictions of stream condition, in addition to commonly used 

measures of model performance. Lastly, a common incentive for using RF over other 

modeling techniques is that it can handle many noisy variables, and is ostensibly robust to 

overfitting (Breiman, 2001). Thus, another question which we posit is whether variable 

reduction necessarily improves the predictive accuracy of RF models with large ecological 

data sets such as StreamCat. While we focus on a particular applied data set for this study, 

we also use simulations to further generalize and support results.

Methods

Random forest modeling of stream condition

RF modeling is a statistical learning method that builds many decision trees from bootstrap 

samples of a data set. Predictions are made by averaging over the predictions made by each 

tree in the forest. Since individual trees often overfit the training data and result in noisy 
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predictions, averaging is a way to reduce the variance of the model and improve prediction 

accuracy. Additionally, when building each tree, the RF algorithm selects a random subset of 

predictors as candidates for splitting at each node. This has the effect of decorrelating the 

trees since no single predictor variable is allowed to dominate the top splits of trees in the 

forest. As a special case, RF also includes bagging trees, which use all predictors as 

candidates for splitting (Breiman, 1996a). Many empirical and simulation studies have 

demonstrated that RF and bagging trees out-perform single tree models (Breiman, 1996a, 

2001; Lawrence et al., 2006; Strobl et al., 2009). RF can be used for both regression and 

classification problems, however in this paper we only focus on classification tasks. For a 

more in-depth introduction to RF and relevant theory please see Hastie et al. (2009).

For this study, we train a RF model using data from the U.S. Environmental Protection 

Agency’s 2008/2009 National Rivers and Stream Assessment (NRSA; U.S. Environmental 

Protection Agency, 2016a). NRSA uses a spatially balanced sampling design to provide an 

assessment of the ecological condition of rivers and streams in the conterminous United 

States (CONUS), and the extent to which they support healthy biological condition. The 

response data of interest for the RF model is the categorization of n = 1365 NRSA sites 

(Figure 1) as being in good or poor condition according to the benthic macroinvertebrate 

Multimetric Index (MMI). Macroinverabrate assemblages provide one of the most reliable 

indicators of a stream’s biological condition, and the MMI score is a standardized sum of 

metrics indicative of the health of the macroinvertebrate community (Stoddard et al., 2008; 

U.S. Environmental Protection Agency, 2016a). A detailed description of the development of 

the macroinvertebrate MMI for the 2008/2009 NRSA survey is provided in U.S. 

Environmental Protection Agency (2016b).

The predictor data for the RF model consist of p = 212 variables from the StreamCat data set 

(Hill et al., 2016). This data set contains natural and anthropogenic landscape features for 

approximately 2.6 million stream reaches within the CONUS. Variables are at the local 

catchment (i.e. local drainage area for an individual reach, excluding upstream drainage 

area) and full watershed (catchment plus upstream catchments) scales (Hill et al., 2016), and 

can be linked to the National Hydrography Dataset Plus Version 2 (NHDPlusV2; McKay et 

al., 2012).

Using the estimated RF model we can predict the probability that a stream at a new, 

unsampled location is in good (or conversely poor) condition. The predicted probability is 

computed as the proportion of trees in the forest that vote that the new stream site is in good 

condition. If the predicted probability is greater than 0.5 the stream is classified as being in 

good condition, and poor condition otherwise. Note, since the NRSA sample frame is 

limited to perennial streams, we can only make valid predictions on approximately 42% of 

the catchments in StreamCat (i.e., approximately 1.1 million stream reaches; Hill et al., 

2017, 2016).

Moreover, RF also provides an internal way to assess model performance. When building a 

RF model, a portion of the data (approximately 1/3) is not contained in the bootstrap sample 

used to form an individual tree; this is referred to as the out-of-bag (OOB) data for that tree. 

In the context of modeling stream condition, RF can predict the good/poor condition of site i 
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for each tree in the forest where i is OOB, and take the majority vote as the OOB predicted 

condition, and the proportion of good votes as the OOB predicted probability for that site. 

We can then repeat this procedure to obtain the OOB predicted condition for each of the i = 

1, ⋯, n stream sites. Measures of model performance can be computed using these OOB 

predictions. In this study, we focus on the following measures: percent of sites correctly 

classified (PCC; accuracy), percent of good sites correctly classified (PGCC; sensitivity), 

percent of poor sites correctly classified (PPCC; specificity), and the area under the receiver 

operating character curve (AUC; Hosmer and Lemeshow, 2000, pp. 160–164). Note that the 

AUC makes use of the OOB predicted probabilities, and is not dependent on selecting a 

probability threshold.

In this work, we implement RF in the R computing language (R Core Team, 2014) using the 

randomForest package of Liaw and Wiener (2002). The two main tuning parameters for 

estimating a RF model with this package, and in general, are: ntree, the number of trees used 

to build the model, and mtry, the number of variables randomly selected at each node. For 

classification tasks the defaults are ntree = 500 and mtry = p, where p is the number of 

predictor variables (Liaw and Wiener, 2002). RF models are relatively insensitive to choice 

of tuning parameters, and the defaults perform well on most data sets (Liaw and Wiener, 

2002; Cutler et al., 2007; Freeman et al., 2015). Ideally, ntree should be chosen so that 

multiple runs of RF produce consistent results, and it is suggested to use more trees than the 

default when the number of predictor variables is large (Strobl et al., 2009; Boulesteix et al., 

2012). Generally, when the number of noise variables far exceeds the number of informative 

variables mtry values larger than the default will perform better, since the informative 

predictors are more likely to get sampled at each split (Goldstein et al., 2011). However, 

when there are many informative variables of varying strengths, small values of mtry tend to 

perform well since moderately important predictors are given a chance of being selected for 

each split, thereby preventing the most important predictors from having too much influence 

in the forest (Boulesteix et al., 2012).

A sensitivity analysis demonstrated that the RF models of stream condition were insensitive 

to the selection of mtry (i.e., a wide range of candidate values performed similarly), and that 

values of ntree greater than the default produced more consistent results over multiple runs 

of RF (Supplement 1). Thus we adopt the default mtry = p and ntree = 3000 for this study.

Overview of modeling decisions

Throughout this paper we adhere to the modeling decisions listed below. A comprehensive 

discussion of each of these decisions is provided in Hill et al. (2017).

• A separate RF model is built for each of the 9 aggregated ecoregions (Figure 1; 

Omernik, 1987). Separate models are used instead of one national model since 

the reference sites used to create the MMI are specific to each ecoregion (U.S. 

Environmental Protection Agency, 2016a,b).

• The 2008/2009 NRSA classified the condition of each sampled stream site as 

good, fair, or poor according to the MMI score. However, we build the RF 

models using only the good/poor sites with fair sites removed. To empirically 
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justify this decision we compared the predictive performance of a three-class 

(good/fair/poor) multinomial RF model with a two-class (good/poor) binomial 

RF model (Supplement 2). The fair sites were difficult to discriminate with a 

multinomial RF model (percent of fair sites correctly classified < 25%), and the 

binomial model had substantially better predictive performance in terms of the 

various accuracy rates (PCC, PGCC, and PPCC). The multinomial RF modeling 

results suggest that the fair sites do not stand out as a true intermediate (medium-

level) class, but rather as an indeterminate class with a great deal of uncertainty 

associated with sampled MMI scores.

• RF modeling is known to be sensitive to class imbalances (Chen et al., 2004; 

Khoshgoftaar et al., 2007; Evans and Cushman, 2009; Khalilia et al., 2011; 

Freeman et al., 2012). The response data considered in the study is moderately 

imbalanced: 60% of sampled sites are in poor condition, and 40% are in good 

condition. In certain ecoregions class imbalances are more severe (e.g., in the 

Coastal Plains only 16% of sites are in good condition). To deal with this issue 

we use a down-sampling approach (Chen et al., 2004; Evans and Cushman, 

2009): each tree in the ensemble is built by drawing a bootstrap sample with the 

same number of cases from the majority and minority classes; in practice, the 

number of cases drawn from each class is set to the size of the minority class. 

Without balancing, the RF model had much lower predictive accuracy on the less 

prevalent good class than the more prevalent poor class. Balancing the RF model 

with the down-sampling approach improved predictive accuracy on the good 

class, without substantially affecting overall model performance (Supplement 2).

Variable importance

RF provides measures of variable importance (VI) which can be used to rank the 212 

predictors in our model of stream condition. In this paper, we use the permutation VI 

measure, which is computed as follows: For each tree b in the RF model keep the 

misclassification error rate using the OOB data (i.e., percentage of sites in the OOB data 

incorrectly classified by tree b). Then randomly permute the values for predictor variable j in 

the OOB data and recompute the misclassification rate for each tree. The difference in 

classification rates, averaged over all trees in the RF model, is the permutation VI measure 

(Hastie et al., 2009).

Formally, using the notation of Genuer et al. (2010), we can define the importance of each 

variable j as:

VI(X j) = 1
ntree ∑

b = 1

ntree
(errOOBb − errOOB

∼
b, j), (1)

where errOOBb is the OOB misclassification rate for tree b, and errOOB
∼

b, j is the OOB 

misclassification rate for tree b when the values for predictor Xj are randomly permuted in 

the OOB data. While other measures of VI are provided by RF (e.g., the Gini VI measure 
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gives the total decrease in the Gini index due to splits of a given predictor, averaged over all 

trees), we focus on the permutation VI since it is directly based on the change in the 

predictive accuracy. Moreover, the permutation VI measure has been used in the context of 

variable selection (Díaz-Uriarte and De Andres, 2006; Evans and Cushman, 2009; Genuer et 

al., 2010). Note, since a separate RF model is estimated for each of the 9 ecoregions, the VI 

measures for the p = 212 StreamCat predictor variables are also region specific (i.e., a 

separate VI ranking is computed for each ecoregion). Descriptive statistics on the regional 

VI measures for the StreamCat predictors can be found in Supplement 3.

Stepwise model selection

The VI measure (Equation 1) for RF can be used for the purpose of model selection. In this 

paper, we use the following stepwise selection procedure, which we refer to as backwards 

variable elimination (BVE):

1. Rank predictors according to their VI from the RF model fit to the full set of p 
predictor variables. Average VI scores over multiple runs of RF to get a stable 

ranking.

2. Build a stepwise sequence of p RF models by discarding, at each step, the least 

important remaining variable according to the initial VI ranking. That is, start 

with a RF model with all p predictors, then remove the least important predictor 

and estimate a RF model with p − 1 predictors; continue this process until a 

sequence of RF models with p, p − 1, …, 1 predictors is constructed. Use a 

standard metric to evaluate the OOB performance of the RF model at each step.

3. Select the model which performs best according to the metric (e.g., model with 

highest accuracy).

In practice, we average the VI scores over 10 runs of RF to get an initial ranking, and use the 

PCC (accuracy) as the performance metric for selection. Additionally, since we fit a separate 

RF model to each of the 9 ecoregions, we apply this model selection procedure separately to 

each ecoregion. This results in 9 different variable reduced RF models, each containing a 

different set of variables. Note that for the remainder of this article RF models selected by 

BVE will be referred to as ‘reduced’ set models, while RF models that use all predictor 

variables will be referred to as ‘full’ set models. We will also refer to the 9 ecoregions by 

their acronyms defined in Figure 1.

This type of iterative approach for selecting variables using the VI rankings has been 

discussed previously in Díaz-Uriarte and De Andres (2006) and Goldstein et al. (2010) for 

applications to gene selection problems; Evans and Cushman (2009) for species distribution 

modeling; and Genuer et al. (2010) for more general applications to high-dimensional data 

sets. Note that in some of these works variables are removed in batches (instead of one at a 

time), and VI measures are standardized.

Cross-validation

Multiple studies have emphasized the necessity for external validation when applying a 

variable selection method to a predictive model (Ambroise and McLachlan, 2002; Svetnik et 
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al., 2003; Hastie et al., 2009, pp. 245–247). Ambroise and McLachlan (2002) describe how a 

‘selection bias’ can be introduced when the data used to select variables for a model is not 

independent of the data used to assess the performance of that model. Using two well known 

genomic data sets, Ambroise and McLachlan (2002) demonstrate that an over-optimistic 

error rate is obtained when the validation data is not external to the variable selection 

procedure.

As a correction for selection bias we apply the following K-fold cross-validation (CV) 

method described in Ambroise and McLachlan (2002) to the BVE procedure for selecting a 

RF model:

1. Divide the data into K disjoint sets (folds), with roughly the same number of 

observations in each fold; in practice take K = 10.

2. For each fold k = 1, ⋯, K:

a. Take out fold k as an independent test set.

b. Using the remaining K − 1 folds, select a RF model using the BVE 

procedure.

c. Use the selected model to make predictions on the withheld fold k (i.e., 

for each stream site in fold k evaluate the predicted probability of good 

condition using the RF model selected in (b)).

3. Accumulate the predictions made over the withheld folds k = 1, ⋯, K at each 

iteration; call these the CV predictions.

4. Use the CV predictions to compute performance measures (e.g., accuracy, 

sensitivity, specificity, and AUC).

An important point to emphasize about the above CV procedure is that, at each iteration in 

step 2, all variable selection and estimation is performed using the training data (K − 1 

folds), while all predictions are made on data on the external validation fold k. In contrast, 

when relying on RF’s OOB predictions to assess model performance, the same data used to 

rank predictor variables, according to their VI measures, is also used to estimate the 

accuracies of the RF models in the BVE procedure. Hence, the CV predictions provide a 

more honest assessment of model performance than the OOB predictions.

Note that in step 2(b), the OOB accuracy is still used as the criterion to select a model on the 

K − 1 folds. Thus, we only use CV to evaluate the performance of the BVE procedure, and 

to detect whether the OOB accuracy of the selected model is biased.

As an additional level of model validation, 71 NRSA sites (approximately 5% of the data) 

were withheld, prior to any model fitting and selection, as an independent test set. We use 

this test data by first selecting a model with BVE using all the training data (1365 NRSA 

sites; Figure 1); then we evaluate the performance of the selected RF model on the 71 

withheld sites. Due to the small size of the test set, the performance metrics are aggregated 

nationally; that is, performance metrics (PCC, AUC, etc.) are computed with all 71 test set 

predictions, and not reported for each ecoregion separately. Note that we only withheld a 
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small portion of the data so that most of the data could be used for estimation. A larger 

withheld set would compromise model performance for validation purposes. We also use 10-

fold CV to avoid just relying on one test/training split to externally validate the RF models.

Stability of predictions

To illustrate the stability of the predictions generated by RF, we examine the coefficient of 

determination (R2) and root-mean-square deviation (RMSD) between the predicted 

probabilities from the full 212 predictor RF model and each of the k = 1, ⋯, 211 predictor 

RF models estimated during the BVE procedure. The RMSD and R2 values are computed 

with the predictions made on the population of approximately 1.1 million catchments in the 

2008/2009 NRSA sampling frame.

Let ui for i = 1, ⋯, N be the predicted probabilities from the full set RF model with all 212 

predictors, where N is the number of catchments. Let υi,k for i = 1, ⋯, N be the predicted 

probabilities from the RF model with k ∈ {1, ⋯, 211} predictor variables from the BVE 

algorithm. The Pearson correlation is then given by

∑i = 1
N (ui − u)(υi, k − υk)

∑i = 1
N (ui − u)2∑i = 1

N (υi, k − υk)2 , (2)

where u = 1
N ∑i = 1

N ui and υk = 1
N ∑i = 1

N υi, k. The coefficient of determination (R2) is defined 

as the Pearson correlation (Equation 2) squared. In this context, R2 can be interpreted as a 

standardized measure (between 0 and 1) of linear association between the probabilities from 

the full and k variable RF models, with values close to 1 indicating strong association and 

values close to 0 indicating weak association. Geometrically, the R2 value can be thought of 

as measuring deviation from the least-squares regression line in the scatter plot between the 

predicted probabilities from the full and k variable RF models.

The root-mean-square deviation is given by

1
N ∑

i = 1

N
(υi, k − ui)

2 . (3)

Since ui and υi,k are probabilities, the RMSD is between 0 and 1; an RMSD value close to 0 

indicates close agreement between the predictions made by the two RF models. 

Geometrically, the RMSD can be thought of as measuring deviation from the 1-1 line in the 

scatter plot between the predicted probabilities from the full and k variable RF models. Note, 

since the RF models are fit separately to each ecoregion, the R2 and RMSD values are also 

evaluated regionally.
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Simulation study

We use simulated data to further generalize properties of RF modeling investigated in the 

real data analysis. Specifically, we use simulations to: (1) evaluate the robustness of RF 

modeling to including a large number of predictor variables which are unrelated to the 

response; and (2) compare the performance of reduced variable RF models, selected using 

the BVE procedure, with RF models which use a full set of predictor variables. In the 

simulations we emulate the dimensions of large environmental data sets such as StreamCat.

For this study we use a standard simulated data set named threenorm which was proposed in 

Breiman (1998) and used in several articles on RF modeling (e.g., Breiman, 2001; Segal, 

2004). This simulated data consist of a 2-class (binary) response and d relevant predictors. 

The response data is balanced: half of the points are labeled class 1, and the other half are 

labeled class 2. Predictor values for each class are generated from d-dimensional 

multivariate normal distributions with unit covariance matrix. Specifically, predictor values 

for class 1 are generated with equal probability from a multivariate normal distribution with 

mean (a, a, …, a) and from a multivariate normal distribution with mean (−a, −a, …, −a); 

predictor values for class 2 are generated from a multivariate normal distribution with mean 

(a, −a, a, −a…, a); and a = 2/ d. We implement this simulation using the function 

mlbench.threenorm from the R package mlbench (Leisch and Dimitriadou, 2010).

For the first simulation design we evaluate the robustness of RF modeling to including a 

large number of irrelevant features by adding noise predictor variables to simulated 

threenorm data sets with d = 20 relevant predictors. We use d = 20 since this was the 

dimension used in Breiman (1998, 2001). The noise predictors are generated from 

independent normal distributions with mean 0 and variance 1. Seven simulation cases are 

considered by setting the number of noise predictors k to 0, 50, 100, 150, 200, 250, and 300. 

This gives p = 20 + k total predictors for each case. The dimensions of the StreamCat data 

set are emulated by generating training sets of size 1000 for each simulation case. Test sets 

of size 1000 are also generated for each case, and the performance of the RF models are 

quantified using the same metrics as the stream condition models (PCC, sensitivity, 

Specificity, and AUC). All performance metrics are averaged over 20 repeated simulation 

runs.

The second simulation design considers two cases where we generate threenorm data sets 

and vary the proportion of relevant predictors. For the first case, there are d = 50 relevant 

predictors and k = 150 noise predictors (i.e., 25% of predictors are relevant). For the second 

case, there are d = 150 relevant predictors and k = 50 noise predictors (i.e., 75% of 

predictors are relevant). For each case we compare the performance of full RF models which 

use all 200 predictors with reduced RF models selected using the BVE procedure. Again, we 

generate training and test sets of size 1000, and average the performance metrics (PCC, 

sensitivity, Specificity, and AUC) over 20 repeated simulations runs. For all simulations we 

also use ntree = 1000 and the default mtry = p.
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Results

Stepwise model selection

The accuracy curves for the BVE procedure applied to each ecoregion show that the OOB 

accuracy of the RF models remains steady until a small portion of predictor variables remain 

(Figure 2). For example, the OOB accuracy for the NAP ecoregion fluctuates steadily 

between 76–80% until about 25 variables remain, at which point there is an increase in 

accuracy followed by a sharp decline as additional variables are removed. This general 

pattern, i.e., a bump in OOB accuracy once a large portion of variables are removed, is 

present in the accuracy curves for most other ecoregions as well. Moreover, the OOB 

accuracies of the RF models tend to degrade rapidly near the optimums (vertical lines in 

Figure 2, which indicate the reduced variable model selected by BVE). The only exceptions 

are the UMW ecoregion, which shows a sudden increase in OOB accuracy for the univariate 

RF model, and the SAP ecoregion, which shows a gradual decline in OOB accuracy once 

less than 75 variables remain. Since RF is generally known to perform well with a large 

number of predictor variables many of the effects in the OOB accuracy curves produced by 

BVE are unexpected.

Table 1 further quantifies the results by displaying the OOB performance metrics for the full 

and reduced variable set RF models. For all ecoregions the selection procedure substantially 

reduces the number of variables. Variable reduction also leads to sizable increases in OOB 

accuracy (up to about 10 percentage points) and AUC for some ecoregions (e.g., SPL, WMT, 

and XER). Although for other ecoregions, such as NPL and SAP, the full and reduced 

models perform similarly in terms of the OOB performance metrics. Again, the UMW 

ecoregion is unusual since the reduced model contains only one variable, watershed area in 

square kilometers, and has much higher accuracy than any of the other models estimated 

during the stepwise procedure.

Table 1 suggests choosing the reduced models since they have higher OOB accuracy. 

However, Figure 2 also shows that the reduced set RF models, selected to optimize OOB 

accuracy, generally occur in places on the accuracy curves that are unstable. That is, small 

changes in the number of predictors around the reduced set models (either by decreasing or 

increasing) results in models that have very different OOB accuracies. The full set RF 

models, on the other hand, occur on much more stable places on the accuracy curves. 

Moreover, in the next section we show that when data external to the variable selection 

process are used to assess accuracy, there is no significant difference in performance 

between the full and reduced set models.

Cross-validation

The full and reduced set RF models perform similarly in terms of the 10-fold CV 

performance metrics (Table 2). For instance, the full RF models perform as well or better 

than the reduced models in terms of CV accuracy and AUC for most ecoregions (NAP, NPL, 

SAP, SPL, TPL, and XER). For the other ecoregions (CPL, UMW, and WMT), the 

difference in CV accuracy between the reduced and full RF models is marginal (maximum 

difference is approximately 4%). In contrast, when using RF’s internal OOB data to measure 
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model performance (Table 1), the difference in accuracy and AUC between the reduced and 

full models can be substantial (over 10%). Hence, the OOB accuracy estimates are upwardly 

biased, and give an over-optimistic impression of how well the reduced RF models are 

performing.

To further illustrate this issue of selection bias, Figure 3 shows the difference in the OOB 

accuracies (Table 1; PCC) and CV accuracies (Table 2; PCC) for the full and reduced RF 

models for each ecoregion. For the reduced set models, a clear bias is apparent as the OOB 

accuracy is between 4%–10% higher than the CV accuracy for each ecoregion RF model. 

For the full set models, on the other hand, no such bias is apparent since the difference in 

accuracies fluctuates around 0%.

The nationally aggregated performance metrics also provide evidence of selection bias (i.e., 

the aggregated OOB metrics are over-optimistic for the RF models selected using BVE). 

Table 3 shows the performance results for the full and reduced RF models on the test data 

(71 withheld NRSA sites); nationally aggregated OOB and 10-fold CV performance metrics 

are also shown for comparison (PCC, PGCC, PPCC, and AUC are calculated on the 

combined set of 1365 OOB and CV predictions generated from the 9 regional models). The 

full and reduced RF models perform similarly on the withheld test data, and in terms of 

aggregated CV metrics; only the aggregated OOB metrics show a gain in performance due to 

variable reduction. While the test set is small, this perhaps suggests that the OOB accuracy 

estimates for the reduced model will fail to generalize to new locations.

Model comparisons and stability assessment

Several important distinctions stand out between the maps of the predicted probability of 

good stream condition for the full and reduced variable set RF models (Supplement 4). First, 

while the overall patterns are similar, the predicted probabilities appear more intense in the 

map for the reduced set model. That is, when compared to the full set model, sites predicted 

to be in good condition (blue) appear to have higher probabilities (closer to 1), and sites 

predicted to be in poor condition (red) appear to have lower probabilities (closer to 0). The 

histogram densities of predicted probabilities (Figure 4) support this comparison, since the 

probabilities from the reduced set models are more uniformly distributed and have greater 

density around 0 and 1 than the full set model. Second, the predictions for UMW are 

unusual in the map for the reduced set model, since this model only has one predictor 

variable (watershed area), and the spatial patterns in the predicted probabilities are very 

different than the full set model. Note that the prediction sites in both maps are only made 

for perennial streams (as designated in NHDPlusV2) since the 2008/2009 NRSA sample 

frame is limited to these types of streams.

While the intensity of the probability scales between the two models are different, many of 

the overall spatial trends are still similar for most ecoregions. One explanation for the 

different intensity scales is that the reduced set RF models focus on only the most important 

variables, and therefore tend to predict probabilities that are closer to 1 or 0 than would be 

when other, less important, variables are taken into account.
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Even though the overall spatial trends appear similar, the (binned) scatter plots (Figure 5) 

reveal substantial differences in the values for the predicted probabilities for the full versus 

reduced set RF models. In particular, the predicted probabilities for the reduced set UMW 

model shows almost no association with the full set model. Only the SAP ecoregion shows 

strong correspondence between the two models; not surprisingly, the reduced SAP model 

has 86 predictors, which is substantially more than any other reduced ecoregion model 

(Table 1).

To illustrate the stability of the models, we examine the coefficient of determination (R2) 

and RMSD between the predicted probabilities from the full set model and each RF model 

estimated during the BVE procedure (Figures 6 and 7, respectively). The R2 curves (Figure 

6) reveal that models with less than 25 predictor are, generally, substantially different than 

the full set model in terms of R2. Interestingly, models with more than 50 predictors are, 

generally, very similar to the full set model in terms of R2 values. This is consistent with the 

claim that RF is robust to adding many noisy variables (Breiman, 2001), since the 75 

variable RF models, for example, are similar to the full 212 predictor variable models in 

terms of the associations between the predicted probabilities. The R2 plots also suggest that 

the models selected by BVE (vertical lines) generally occur in places on the R2 curves that 

are unstable. That is, although these model optimize OOB accuracy, small changes in the 

number of predictors around the selected model tend to result in substantial changes in the 

predicted probabilities as quantified by R2. The RMSD curves (Figure 7) reveal similar 

patterns in the RF predictions as the R2 curves (Figures 6). That is, RF models with more 

than 50 variables have small RMSDs (< 0.08), and are thus similar to the full set model, 

while RF models with less than 25 variables have substantially larger RMSD values and 

show instabilities.

Simulation study

The performances of RF on the simulated threenorm data sets were robust to inclusion of 

many irrelevant features (Table 4). That is, the RF models which contained k = 50, ⋯, 300 

noise predictors retained test set performance comparable to the baseline case with just the 

20 relevant predictors and no noise (k = 0). Inclusion of up to 300 noise predictors resulted 

in test set performance rates (PCC, sensitivity, Specificity, and AUC) which were within 1–

3% of the baseline case (k = 0). Moreover, performance rates computed with the OOB data 

were generally within 1% of those computed with independently generated test data. Thus, 

for all simulation cases, RF’s internal OOB metrics closely approximated the true test set 

performance metrics.

Simulation results comparing the full and reduced variable RF models are presented in Table 

5. There was not a substantial difference between the test set performances (PCC, sensitivity, 

Specificity, and AUC) of the full and reduced models. However, when 25% of the variables 

were relevant (d = 50, k = 150), the reduced model performed slightly better on the test data; 

and when 75% of the variables were relevant (d = 150, k = 50), the full model performed 

slightly better on the test data. The OOB performance metrics for the reduced RF models, 

selected using BVE, were over-optimistic for both cases (i.e., the OOB performance metrics 

were higher than those computed with independent test data). This bias in the OOB 
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performance metrics was more severe for the case when 75% of the variables were relevant 

(e.g., there was a 4% difference in the PCC computed using the OOB and test data). The 

OOB metrics for the full RF model, on the other hand, were slightly conservative and more 

closely approximated the true test set performance metrics.

Discussion

Comparison with other studies

A major result of this work is that the RF models of stream condition showed no significant 

improvement in predictive performance as a result of variable selection using the backwards 

elimination approach. Studies with other data sets have also suggested that robustness to 

overfitting, and the ability to handle many noise variables without the need for variable 

selection, are more general properties of RF modeling. Below we list several examples:

• Svetnik et al. (2003) applied RF modeling to classify 186 drug compounds (as P-

gp substrates or non-substrates) with a set of 1522 atom pair descriptors. Using 

an extensive cross-validation approach, they found no improvement in the 

performance of the RF classifier as a result of variable selection. However, the 

results suggested that the number of variables could be cut down to about 190 

without degradation of performance.

• Díaz-Uriarte and De Andres (2006) applied RF modeling to multiple high-

dimensional genetic data sets, each with thousands of genes (predictor variables) 

and typically less than 100 patients (observations). On all data sets, the 

performance of RF when performing variable selection was comparable to RF 

without variable selection. Moreover, RF with no variable selection and minimal 

tuning also performed comparably with alternative classifiers (e.g., support 

vector machines, k-nearest neighbors, etc.).

• Biau (2012) provided analytic and simulation results suggesting that with a 

sufficiently large sample size the performance of RF does not depend on the 

number of pure noise variables.

Note that the performance metrics in these studies are reliable since selection bias was 

accounted for by running the variable selection process separately from the data used to 

validate the model. Thus, empirical results on a variety of data sets suggest that variable 

selection procedures for RF models generally do not improve predictive performance, and 

that RF has built in mechanisms which allow it to perform well with high-dimensional data 

sets (e.g., by probing the predictor space at each split and averaging over many trees).

Our study has also provided several unique methodological contributions not addressed in 

the previously mentioned works. First, we assessed variable selection for RF modeling using 

a large environmental data set, which has dimensions and properties different than the high-

dimensional data sets analyzed in Svetnik et al. (2003) and Díaz-Uriarte and De Andres 

(2006). Second, since the StreamCat predictors are spatially referenced, we had the 

opportunity to produce maps of the predicted probabilities. Assessment of the prediction 

maps revealed instabilities in the variable selection procedure which previous works had not 

addressed; for instance, we found that in certain ecoregions (e.g., UMW), the predictions 
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maps were surprisingly different between the full and reduced RF models, even though CV 

accuracy was similar. Third, we demonstrated that RF’s OOB metrics can be misleading 

when applying a stepwise variable selection procedure, and we provided empirical evidence 

supporting the need for external validation for reduced variable RF models.

We also believe that our study is the first to demonstrate that there is actually a cost to 

variable selection in RF models, at least when using the OOB accuracy as a selection 

criterion. Specifically, predictions from the selected models are unstable, that is, small 

changes in the number of predictor variables have substantial effects on the predicted 

probabilities once variables have been reduced to a small proportion of the original set. 

Further, the R2 and RMSD curves (Figures 6 and 7) reveal that larger sets of predictor 

variables are necessary to obtain predicted probabilities which have values similar to the full 

set RF model, and most other RF models estimated in the sequence. The 10-fold CV and test 

set results also indicate that the predictor variables selected by optimizing OOB accuracy are 

biased towards the sample; thus the selection routine may fail to retain many predictors 

which are important to retain when making predictions at unsampled locations.

Preselection of predictor variables

While StreamCat is large for an environmental data set, predictors were selected to be 

indicative of stream condition based on two criteria: First, a literature review of natural and 

anthropogenic watershed characteristics that had been linked to instream biological and 

habitat condition (e.g., soils, lithology, runoff, topography, roads, dams, mines, urban and 

agricultural land use, and imperviousness of man-made surfaces; Hill et al., 2016, p. 123). 

Second, a search for publicly available landscape layers hypothesized to also characterize 

watersheds (e.g., air temperature and precipitation, N and P sources, and forest cover 

change; Hill et al., 2016, p. 123). Many of these explanatory variables are correlated with 

each other; for instance, StreamCat contains eight temperature variables with pairwise 

correlations exceeding 0.77. Each of the eight temperature variables provide slightly 

different information covering different spatial scales (watershed versus catchment) and time 

durations (30 year average versus 2008/2009 NRSA sampling period). For traditional 

regression modeling, including many collinear predictors can cause serious issues in 

parameter estimation and statistical inferences (Faraway, 2005). However, since RF averages 

over many trees and randomly selects variables for each split, the influence of groups of 

correlated variables gets spread out over the forest (Cutler et al., 2007). Including all 212 

StreamCat variables thus provides the RF algorithm with an opportunity to comprehensively 

explore the predictor space and model complex interactions between variables that simpler 

models, with fewer variables, would not be able to exploit.

Model validation and computational considerations

One appealing feature of RF modeling is that the OOB data provide a convenient way to 

assess model performance, without the need for external validation (either by K-fold CV or 

a withheld test set). However, the results of this study demonstrated that external validation 

is necessary when applying variable selection for RF models with the VI rankings. The OOB 

performance metrics gave the misleading impression that variable reduction significantly 

improved the RF models; whereas, the 10-fold CV performance metrics, which used 
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validation data (folds) completely external to the variable selection process, showed no such 

improvements as a result of variable reduction (Figure 3). Nevertheless, for the full set 

model, the OOB and CV performance metrics agreed closely, suggesting that the OOB 

performance metrics are reasonable as long as no variable reduction is performed using the 

VI rankings.

The CV procedure of Ambroise and McLachlan (2002), which corrects for selection bias 

when assessing model performance, is also computationally expensive since it requires 

completely embedding variable selection within the model validation procedure. For our 

implementation, we estimated p = 212 RF models for each of the 10 training folds (i.e, 

19080 RF models total for the 9 ecoregions). With parallelization over 5 cores this task took 

1.7 hours. The 9 ecoregion RF models without variable selection, on the other hand, took 

only 1.3 minutes to estimate without any parallelization. Hence, variable selection imposed 

additional computational costs on RF modeling that limited reproducibility and resulted in 

negligible changes in performance.

Robustness of random forests to overfitting

Simulations provided empirical evidence suggesting that RF models are robust to overfitting 

when using data sets with similar dimensions as StreamCat. A statistical model which 

overfits will adapt too closely to random characteristics in a sample, and fail to generalize to 

new samples from the population (Babyak, 2004; Strobl et al., 2009). That is, overfit models 

have low error on the training set, but high error on test sets (Breiman, 1996b). Simulations 

are ideal for investigating this issue since models can be validated using large, independently 

generated test sets. The simulations demonstrated that the test set performance of the full RF 

model was not substantially affected by including many random noise variables (Table 4). 

There was also no substantial difference between the test set performance of the full and 

reduced RF models (Table 5). Furthermore, in all simulations, the OOB performance metrics 

for the full RF model closely approximated performance metrics computed using the test 

data. This distinguishes RF from other modeling approaches such as linear regression where 

in-sample performance measures such as the coefficient of determination (R2) can be 

misleading for models with a large number of parameters, and other measures (e.g., 

adjusted-R2, AIC) are needed to correct for model complexity.

Conclusions

In this paper we compared two types of RF models for good/poor biological stream 

condition in each ecoregion: a full set model, which used all 212 landscape predictors from 

the StreamCat data set; and a reduced set model, which was selected to optimize OOB 

accuracy by removing variables stepwise according to their importance measures. We 

validated RF models using a 10-fold CV procedure with validation folds external to the 

variable selection process. According to standard metrics (e.g., PCC and AUC), we found no 

substantial difference between the CV performance of the full and reduced RF models. In 

fact, in most ecoregions, the CV performance of the full RF model was equivalent to or 

slightly better than the reduced model. For the stability assessment, we investigated how 

variable reduction affected the maps of the RF predicted probabilities on the population of 
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approximately 1.1 million perennial stream reaches within the CONUS. With various 

statistics (R2, RMSE) we evaluated deviations between the predicted probabilities from the 

full RF model, and each RF model estimated during the stepwise variable reduction 

procedure. According to these diagnostics, we found that the RF models with no variable 

reduction and minimal tuning were surprisingly robust. The results suggested that many 

noisy predictors (i.e., predictors with moderate to low VI measures) could be included in a 

RF model without substantially affecting the predicted probabilities (e.g., the 75 variable and 

212 variable RF models produced similar predictions). The reduced RF models, on the other 

hand, which were selected to optimize OOB accuracy, tended to contain too few variables; 

hence, adding or removing a small number of variables around the selected model often 

resulted in substantial fluctuations in the predicted probabilities.

The assessment of both the StreamCat and simulated data sets demonstrated that a stepwise 

variable selection procedure for RF models can cause over-optimistic OOB performance 

metrics. In the analysis of the StreamCat data set, we found that the OOB metrics for the 

reduced models were substantially higher than those computed using 10-fold CV, with 

validation folds external to the variable selection procedure. In the analysis of large 

simulated data sets, we also found that the OOB metrics for the reduced RF models were 

higher than those computed using independently generated test sets. Thus, if a stepwise 

algorithm is used to select variables for a RF model, we recommend externally validating 

that RF model (e.g., by withholding an independent validation set, or using the K-fold CV 

procedure discussed in this study).

While variable selection is often an essential part of developing a statistical model in a 

traditional linear regression framework, in this study we found the application of variable 

selection methods for RF models unnecessary. However, while the full set RF model 

performed well with our data set, we do not advocate including as many variables as 

possible as a general strategy for RF modeling. The preselection of variables of 

hypothesized relevance to the ecological process at hand may be a very important step in 

developing an adequate RF model. Indeed, the results of this study demonstrate that the 

application of a variable selection method to a RF model needs to be carefully examined, as 

we found numerous issues when evaluating the accuracy and stability of the RF models 

selected with the backwards elimination approach. When considering this, however, 

accuracy alone should not be the sole criterion; rather, trade-offs between accuracy and 

stability need to be considered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Locations of 1365 stream sites from the 2008/2009 National Rivers and Stream Assessment 

and their good/poor condition class according to the benthic macroinvertebrate Multimetric 

Index (MMI)
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Fig. 2. 
Percent of sites correctly classified (PCC) versus number of predictor variables at each step 

of the backwards elimination procedure. PCC is computed on the out-of-bag data for each 

random forest model. The vertical line in each panel denotes the random forest model with 

optimal PCC. Ecoregion codes: Coastal Plains (CPL), Northern Appalachians (NAP), 

Northern Plains (NPL), Southern Appalachians (SAP), Southern Plains (SPL), Temperate 

Plains (TPL), Upper Midwest (UMW), Western Mountains (WMT), and Xeric (XER)
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Fig. 3. 
Difference between out-of-bag (OOB) and 10-fold cross-validation (CV) accuracies (percent 

of sites correctly classified) for the full and reduced variable random forest models for each 

ecoregion. Ecoregion codes: Coastal Plains (CPL), Northern Appalachians (NAP), Northern 

Plains (NPL), Southern Appalachians (SAP), Southern Plains (SPL), Temperate Plains 

(TPL), Upper Midwest (UMW), Western Mountains (WMT), and Xeric (XER)
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Fig. 4. 
Histogram density plots of the random forest predicted probabilities of good stream 

condition from the full and reduced variable set models. The predicted probabilities in each 

density plot are on the population of 1.1 million catchments within the sampling frame for 

the 2008/2009 National Rivers and Streams Assessment
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Fig. 5. 
Scatter plots of the predicted probabilities of good stream condition from random forest RF) 

models with full versus reduced variable sets. Since there are a very large number of 

prediction sites within each ecoregion, points are binned in the scatter plots. The black line 

in each panel is the 1-1 line. The prediction sites for the RF models are all 1.1 million 

catchments within the sampling frame for the 2008/2009 National Rivers and Streams 

Assessment. Ecoregion codes: Coastal Plains CPL), Northern Appalachians (NAP), 

Northern Plains (NPL), Southern Appalachians (SAP), Southern Plains (SPL), Temperate 

Plains (TPL), Upper Midwest (UMW), Western Mountains WMT), and Xeric (XER)
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Fig. 6. 
Coefficient of determination (R2; Equation 2) versus number of predictor variables from the 

backwards elimination procedure. The R2 values in each panel are between the predicted 

probabilities from the random forest model with the full set of predictor variables, and the 

predicted probabilities generated by the random forest models as variables are removed 

stepwise. The predicted probabilities used to compute the R2 values are on the population of 

1.1 million catchments within the sampling frame for the 2008/2009 National Rivers and 

Streams Assessment. The vertical line in each panel denotes the random forest model 

selected to optimize out-of-bag accuracy (Figure 2). Ecoregion codes: Coastal Plains (CPL), 
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Northern Appalachians (NAP), Northern Plains (NPL), Southern Appalachians (SAP), 

Southern Plains (SPL), Temperate Plains (TPL), Upper Midwest (UMW), Western 

Mountains (WMT), and Xeric (XER)
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Fig. 7. 
Root-mean-square deviation (RMSD; Equation 3) versus number of predictor variables from 

the backwards elimination procedure. The RMSD values in each panel are between the 

predicted probabilities from the random forest model with the full set of predictor variables, 

and the predicted probabilities generated by the random forest models as variables are 

removed stepwise. The predicted probabilities used to compute the RMSD values are on the 

population of 1.1 million catchments within the sampling frame for the 2008/2009 National 

Rivers and Streams Assessment. The vertical line in each panel denotes the random forest 

model selected to optimize out-of-bag accuracy (Figure 2). Ecoregion codes: Coastal Plains 
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(CPL), Northern Appalachians (NAP), Northern Plains (NPL), Southern Appalachians 

(SAP), Southern Plains (SPL), Temperate Plains (TPL), Upper Midwest (UMW), Western 

Mountains (WMT), and Xeric (XER)
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