Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Jun 30;25(3):763–770. doi: 10.1007/s10068-016-0130-7

A new biotechnological process to enhance the soymilk bioactivity

Lívia Dias de Queirós 2, Juliana Alves Macedo 1, Gabriela Alves Macedo 1,
PMCID: PMC6049152  PMID: 30263334

Abstract

Equol, a daidzein metabolite produced exclusively by intestinal bacteria in some, but not all, humans, exhibits a wide range of beneficial health effects owing to its superior nutraceutical effect compared with isoflavones of soy. The aim of this work was to develop bioprocesses capable of increasing the bioactive properties of soymilk and, most importantly, increase the equol content by a biotechnological process in vitro. Biotransformation processes based on soymilk fermentation by probiotic lactic bacteria and application of the enzyme tannase caused an increase in the bioactive isoflavones and antioxidant capacity of soymilk. Furthermore, these processes approximately resulted in a 10-fold increase in the equol content of the soymilk. This is the first study to produce a significant equol concentration in soymilk using enzymatic processing only. The results suggest a new and effective biotechnological process, with major commercial potential, capable of producing a bioactive soy extract that intends to be “functional for everyone.”

Keywords: isoflavones, equol, tannase, biotransformation, antioxidant capacity

References

  • 1.Messina M. A brief historical overview of the past two decades of soy and isoavone research. J. Nutr. 2010;140:1350–1354. doi: 10.3945/jn.109.118315. [DOI] [PubMed] [Google Scholar]
  • 2.Schmitt E, Dekant W, Stopper H. Assaying the estrogenicity of phytoestrogens in cells of different estrogen sensitive tissues. Toxicol. In Vitro. 2001;15:433–439. doi: 10.1016/S0887-2333(01)00048-0. [DOI] [PubMed] [Google Scholar]
  • 3.Coward L, Smith M, Kirk M, Barnes S. Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 1998;68:1486S–1491S. doi: 10.1093/ajcn/68.6.1486S. [DOI] [PubMed] [Google Scholar]
  • 4.Barnes S, Prasain J, D’Alessandro T, Arabshahi A, Botting N, Lila MA, Jackson G, Janleb EM, Weaverb CM. The metabolism and analysis of isoflavones and other dietary polyphenolsin foods and biological systems. Food Funct. 2011;2:235–244. doi: 10.1039/c1fo10025d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Chien HL, Huang HY, Chou CC. Transformation of isoavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bidobacteria. Food Microbiol. 2006;23:772–778. doi: 10.1016/j.fm.2006.01.002. [DOI] [PubMed] [Google Scholar]
  • 6.Cho KM, Hong SY, Math RK, Lee JH, Kambiranda DM, Kim JM, Islam SMA, Yun MG, Cho JJ, Lim WJ, Yun HD. Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 2009;114:413–419. doi: 10.1016/j.foodchem.2008.09.056. [DOI] [Google Scholar]
  • 7.Nielsen IL, Williamson G. Review of the factors affecting bioavailability of soy isoflavones in humans. Nutr. Cancer. 2007;57:1–10. doi: 10.1080/01635580701267677. [DOI] [PubMed] [Google Scholar]
  • 8.Ghafoor K, Al-Juhami FY, Park J. Isoflavones: Chemistry, Analysis, Function and Effects. Cambridge, UK: RSC Publishing; 2012. pp. 49–60. [Google Scholar]
  • 9.Shu XO, Zheng Y, Cai H, Gu K, Chen Z, Zheng W, Lu W. Soy food intake and breast cancer survival. JAMA-J. Am. Med. Assoc. 2009;302:2437–2443. doi: 10.1001/jama.2009.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Tousen Y, Ezaki J, Fujii Y, Ueno T, Nishimuta M, Ishimi Y. Natural S-equol decreases bone resorption in postmenopausal, non-equol-producing Japanese women: A pilot randomized, placebo-controlled trial. Menopause. 2011;18:563–574. doi: 10.1097/gme.0b013e3181f85aa7. [DOI] [PubMed] [Google Scholar]
  • 11.Yuan JP, Wang JH, Liu X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora-implications for health. Mol. Nutr. Food Res. 2007;51:765–781. doi: 10.1002/mnfr.200600262. [DOI] [PubMed] [Google Scholar]
  • 12.Setchell KDR, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J. Nutr. 2002;132:3577–3584. doi: 10.1093/jn/132.12.3577. [DOI] [PubMed] [Google Scholar]
  • 13.Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA. Interindividual variation in metabolism of soy isoflavones and lignans: Influence of habitual diet on equol production by the gut microflora. Nutr. Cancer. 2000;36:27–32. doi: 10.1207/S15327914NC3601_5. [DOI] [PubMed] [Google Scholar]
  • 14.Setchell KDR, Clerici C. Equol: History, chemistry and formation. J. Nutr. 2010;140:1355–1362. doi: 10.3945/jn.109.119776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Di Cagno R, Mazzacane F, Rizello CG, Vincentini O, Silano M, Guilani G D, Angelis M, Gobbetti M. Synthesis of isoavone aglycones and equol in soy milks fermented by food-related lactic acid bacteria and their effect on human intestinal Caco-2 cells. J. Agr. Food Chem. 2010;58:10338–10446. doi: 10.1021/jf101513r. [DOI] [PubMed] [Google Scholar]
  • 16.Lekha PK, Lonsane BK. Production and application of tannin acyl hydrolase: state of the art. Adv. Appl. Microbiol. 1997;44:215–260. doi: 10.1016/S0065-2164(08)70463-5. [DOI] [PubMed] [Google Scholar]
  • 17.Garcia-Conesa MT, Ostergaard P, Kauppinen S, Williamson G. Hydrolysis of diethyl diferulates by tannase from Aspergillus oryzae. Carbohyd. Polym. 2001;44:319–324. doi: 10.1016/S0144-8617(00)00248-4. [DOI] [Google Scholar]
  • 18.Ferreira LR, Macedo JA, Ribeiro ML, Macedo GA. Improving the chemopreventive potential of orange juice by enzymatic biotransformation. Food Res. Int. 2013;51:526–535. doi: 10.1016/j.foodres.2013.01.018. [DOI] [Google Scholar]
  • 19.Macedo JA, Battestin V, Ribeiro ML, Macedo GA. Increasing the antioxidant power of tea extracts by biotransformation of polyphenols. Food Chem. 2011;126:491–497. doi: 10.1016/j.foodchem.2010.11.026. [DOI] [Google Scholar]
  • 20.Madeira JV, Macedo JA, Macedo GA. A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace. Bioproc. Biosyst. Eng. 2012;35:477–482. doi: 10.1007/s00449-011-0587-y. [DOI] [PubMed] [Google Scholar]
  • 21.Mandarino JMG, Carrão-Panizzi MC. A soja na cozinha. Londrina, SP, Brazil: Embrapa Soja.; 1999. p. 59. [Google Scholar]
  • 22.Battestin V, Macedo GA. Tannase production by Paecilomyces variotii. Bioresoure Technol. 2007;98:1832–1837. doi: 10.1016/j.biortech.2006.06.031. [DOI] [PubMed] [Google Scholar]
  • 23.Sharma S, Bhat TK, Dawra RK. A spectrophotometric method for assay of tannase using rhodanine. Anal. Biochem. 2000;279:85–89. doi: 10.1006/abio.1999.4405. [DOI] [PubMed] [Google Scholar]
  • 24.Cruz AG, Guerreiro L, Nogueira LC, Sant’Ana AS, Faria JAF, Oliveira CAF, Deliza R, Cunha RL, Faria JAF, Bolini HMA. Developing a prebiotic yogurt: Rheological, physico-chemical and microbiological aspects and adequacy of survival analysis methodology. Food Eng. 2013;114:323–330. doi: 10.1016/j.jfoodeng.2012.08.018. [DOI] [Google Scholar]
  • 25.Chandler SF, Dodds JH. The effect of phosphate, nitrogen, and sucrose on the production of phenolics and socosidine in callus cultures of Solanum tuberosum. Plant Cell Rep. 1983;2:105–108. doi: 10.1007/BF00270178. [DOI] [PubMed] [Google Scholar]
  • 26.Aguiar CL, Suzuki CN, Paredes JG, Alencar SM, Park YK. Transformation of beta-glucoside isoflavones on solid-state fermentation of the soy flour with Aspergillus oryzae. Cienc. Tecnol. Aliment. 2003;4:115–121. doi: 10.1080/11358120309487752. [DOI] [Google Scholar]
  • 27.Park YK, Alencar SM, Nery IA, Aguiar CL, Pacheco TARC. Enrichment of isoflavone aglycones in extracted soybean isoflavones by heat and fungal ß-glucosidase. Food Sci. Ind. 2001;34:14–19. [Google Scholar]
  • 28.McCue PP, Shetty K. Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochem. 2005;40:1791–1797. doi: 10.1016/j.procbio.2004.06.067. [DOI] [Google Scholar]
  • 29.Nam DH, Kim HJ, Lim JS, Kim KH, Park C, Kim JH, Lim J, Young DK, Kim IH, Kim JS. Simultaneous enhancement of free isoavone content and potential of soybean by fermentation with Aspergillus oryzae. J. Food Sci. 2011;76:194–200. doi: 10.1111/j.1750-3841.2011.02350.x. [DOI] [PubMed] [Google Scholar]
  • 30.Tyug TS, Prasad KN, Ismail A. Antioxidant capacity, phenolics and isoflavones in soybean by-products. Food Chem. 2010;123:583–589. doi: 10.1016/j.foodchem.2010.04.074. [DOI] [Google Scholar]
  • 31.Wardhani DH, Vázquez JA, Pandiellaa SS. Optimisation of antioxidants extraction from soybeans fermented by Aspergillus oryzae. Food Chem. 2010;118:731–739. doi: 10.1016/j.foodchem.2009.05.057. [DOI] [Google Scholar]
  • 32.Shon MY, Lee J, Choi JH, Nam SY, Seo K, Lee SW, Sung N, Park SK. Antioxidant and free radical scavenging activity of methanol extract of chungkukjang. J. Food Compos. Anal. 2007;20:113–118. doi: 10.1016/j.jfca.2006.08.003. [DOI] [Google Scholar]
  • 33.Dueñas M, Hernández T, Robredo S, Lamparski G, Estrella I M R. Bioactive phenolic compounds of soybean (Glycine max cv. Merit): Modifications by different microbiological fermentations. Pol. J. Food. Nutr. Sci. 2012;62:241–250. [Google Scholar]
  • 34.Rekha CR, Vijayalakshmi G. Isoflavone phytoestrogens in soymilk fermented with beta-glucosidase producing probiotic lactic acid bacteria. Int. J. Food Sci. Tech. 2011;62:111–120. doi: 10.3109/09637486.2010.513680. [DOI] [PubMed] [Google Scholar]
  • 35.Tsangalis D, Ashton JF, Mcgill AEJ, Shah NP. Enzymic transformation of isoflavone phytoestrogens in soymilk by beta-glucosidase-producing bifidobacteria. J. Food Sci. 2002;6:3104–3113. doi: 10.1111/j.1365-2621.2002.tb08866.x. [DOI] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES