Skip to main content
. 2018 Jul 3;9(51):29665–29679. doi: 10.18632/oncotarget.25667

Figure 3. Decreased GST expression, reduced ROS, increased GSH/GSSG ratio and dysregulated metabolome in Klf5Δ/Δ leukemic B-cell precursors.

Figure 3

(A) Heat map of normalized RNA-seq data showed 140 upregulated genes and 489 downregulated genes in Klf5Δ/Δ (n = 3) compared with WT (n = 3) leukemic B-cell precursors (cut-off > 2.0 fold changes, P < 0.05). (B) Pathway analysis of the comparative transcriptome of leukemic WT and Klf5Δ/Δ B-cell precursors. Metabolic pathways are highlighted in bold. n = 3 replicates, cut off > 2.0 fold changes, P < 0.05. (C) Gene ontology (GO) analysis of the comparative transcriptome of leukemic WT and Klf5Δ/Δ B-cell precursors. The glutathione transferase pathway is highlighted in bold (6 genes, validated in Figure 4A). n = 3 replicates, cut off > 2.0 fold changes, P < 0.05. (D) Reactive oxygen species levels in leukemic B-cell precursors from Mx1-Cre; WT (WT) and Mx1-Cre; Klf5flox/flox (Klf5Δ/Δ) BM. Each sample was measured in triplicate. (E) GSH/GSSG ratios of leukemic B-cell precursors from Mx1-Cre; WT (WT) and Mx1-Cre; Klf5flox/flox (Klf5Δ/Δ) BM. Each sample was measured in triplicate. (F) Heat map of comparative metabolome of B-cell precursors with significant differences between p190-BCR-ABL+ leukemic Mx1-Cre; WT (WT, n = 2) and Mx1-Cre; Klf5flox/flox (Klf5Δ/Δ, n = 3) B-cell precursors. Each sample was measured in triplicate for each mouse derived specimen. (G) Fold change in metabolite concentrations of Klf5Δ/Δ B-cell precursors with significant differences (p < 0.05) compared to WT B-cell precursors. Blue bars denote increased levels and orange bars denote decreased levels in Klf5Δ/Δ B-cell precursors. *P < 0.05.