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Abstract

Systemic autoimmune rheumatic disorders (SARD) represent important causes of morbidity
and mortality in humans. The mechanisms triggering autoimmune responses are complex
and involve a network of genetic factors. Mercury-induced autoimmunity (HglA) in mice is
an established model to study the mechanisms of the development of antinuclear antibodies
(ANA), which is a hallmark in the diagnosis of SARD. A.SW mice with HglA show a signifi-
cantly higher titer of antinucleolar antibodies (ANoA) than the B10.S mice, although both
share the same MHC class Il (H-2). We applied a genome-wide association study (GWAS)
to their Hg-exposed F2 offspring to investigate the non-MHC genes involved in the develop-
ment of ANoA. Quantitative trait locus (QTL) analysis showed a peak logarithm of odds ratio
(LOD) score of 3.05 on chromosome 3. Microsatellites were used for haplotyping, and fine
mapping was conducted with next generation sequencing. The candidate genes Bank1 (B-
cell scaffold protein with ankyrin repeats 1) and Nfkb1 (nuclear factor kappa B subunit 1)
were identified by additional QTL analysis. Expression of the Bank1 and Nfkb1 genes and
their downstream target genes involved in the intracellular pathway (TIr9, 116, Tnf) was inves-
tigated in mercury-exposed A.SW and B10.S mice by real-time PCR. Bank1 showed signifi-
cantly lower gene expression in the A.SW strain after Hg-exposure, whereas the B10.S
strain showed no significant difference. Nfkb1, Tir9, ll6 and Tnfhad significantly higher gene
expression in the A.SW strain after Hg-exposure, while the B10.S strain showed no differ-
ence. This study supports the roles of Bank1 (produced mainly in B-cells) and Nfkb1 (pro-
duced in most immune cells) as key regulators of ANoA development in HglA.

Introduction

Failure to recognize self with non-self-antigens results in a disorder of the innate and adaptive
immune systems, leading to the development of autoantibodies, but the details of this process
are still unclear [1]. Systemic autoimmune rheumatic disorder (SARD) is characterized by
autoantibodies reactive with nuclear or subcellular organelles. It includes systemic lupus ery-
thematosus (SLE), systemic sclerosis (SSc) and rheumatoid arthritis (RA). The prevalence and
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incidence of SARDs has increased during the last decade. Serum antinuclear antibodies

(ANA) are used as serological markers in clinical practice and as laboratory tools in diagnostics
of autoimmune diseases [2]. Systemic autoimmune disorders are triggered by genetic factors
(such as MHC class II) [3], immunodeficiency [4], and environmental factors [5-8], making
susceptible individuals more prone to developing the disease. Genome-wide association study
(GWAS) is a tool for investigating genetic associations with autoimmune traits, and it is used
to identify genetic risk factors for SARDs [9, 10].

Different animal models are used to study SARDs. Mercury-induced autoimmunity (HgIA)
in mice is an established and relevant model, which includes the development of antinucleolar
antibodies (ANoA), immune complex (IC) deposits, hypergammaglobulinemia and polyclonal
B-cell activation, and is controlled by multiple genes [11-16]. One of them resides in the I-A
region of the MHC class II locus (H-2). Mouse strains with haplotype H-2* have the highest
susceptibility for developing ANoA, while H-29 and H-2/ mice have intermediate susceptibil-
ity, and H-2% H-2", and H-2? mice are resistant to ANoA development [17].

However, knockout (KO) studies in mice have shown that non-H-2 genes also control the
susceptibility to the development of systemic autoimmune disease [18-20]. HgIA in IL-6"",
CD28", and IFN”" H-2° mice does not result in the development of ANoA [19, 20]. Addition-
ally, strains sharing the same H-2° show dissimilar severity of disease activity in HgIA. When
comparing the two susceptible H-2° strains, A.SW and B10.S, the A.SW strain shows a more
severe autoimmune manifestation by developing a higher serum ANOoA titer, higher IgG IC
titer, and higher serum IgG1 and IgG2a titers compared to the B10.S strain [17, 21-23].

Crossing two strains with the same H-2° (A.SW and B10.S) allowed us to investigate the
non-H-2 genes, involved in the development of ANoA, by using GWAS. Mapping the quanti-
tative trait loci (QTL) associated with an autoimmune trait was done with next generation
sequencing (NGS), which allowed us to detect variants within the associated haplotype and
identify the genes associated with the development of ANoA.

We identified a region on chromosome 3 in which the two genes, BankI (B-cell scaffold
protein with ankyrin repeats 1, produced mainly in B-cells [24]) and Nfkb1 (nuclear factor
kappa B subunit 1, produced in almost all cell types [25]) are potential key regulators of the
development of ANoA. Discovering genetic risk factors associated with ANoA will provide the
ability to make predictions of who is at an increased risk, investigate the underlying biological
mechanisms of autoantibody production and support the knowledge-based development of
new prevention and treatment strategies.

Results and discussion
Antinucleolar antibody formation is both H-2 and non-H-2 related

To achieve DNA recombination in F2 mice, we crossed two susceptible strains (A.SW and
B10.S) sharing the same H-2 haplotype. The phenotypic trait and DNA recombination in F2
offspring were used as a tool for GWAS. The phenotypic trait ANoA corresponds to staining
of the nucleoli with clumpy nucleolar pattern, with 2-6 brightly staining dots in the nucleo-
plasm (Fig 1A). The Hg-exposed F2 generation (n = 129) showed significantly higher ANoA
titer (p = 0.0001) compared to control F2 mice (n = 14) (Fig 1B). We found a large inter-indi-
vidual variation in exposed F2 mice indicating a genetic variation, consistent with non-H-2
genes regulating the development of ANoA [21].

High ANOoA titer is of an autosomal recessive inheritance

Logarithm of the odds (LOD) scores exceeding 3.82, determined by permutation testing, rep-
resent approximate thresholds for significant QTLs based on the normal distribution with a p-
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Fig 1. Serum antinucleolar antibodies (ANoA). Serum IgG ANoA in F2 mice control (n = 14) and F2 mice exposed
to 4 mg HgCL,/L (n = 129) after 6-week exposure. A) ANoA assessed by indirect immunofluorescence using HEp2
cells. Arrows show strong clumpy staining of the nucleoli. B) Y-axis represents the ANoA titer (0-20,480). Graph is
presented as the median + interquartile range, ****p = < 0.0001 (Mann-Whitney test).

https://doi.org/10.1371/journal.pone.0199979.9001

value of 0.05 [26]. We found a QTL with the highest LOD score of 3.05 located at position
128292534 (rs3670168) on chromosome 3 (Fig 2A). The LOD score value showed a 99.9%
linkage between the ANoA development and the position on chromosome 3. The inheritance
outside H-2 suggests an autosomal recessive inheritance. Hanley and colleagues reported that
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Fig 2. Genome-wide scan and effect plot. A) A genome-wide scan (n = 129) on autosomes was performed to identify
quantitative trait loci associated with anti-nucleolar antibodies (ANo0A) in mice exposed to mercury. Logarithm of
odds (LOD) scores (y-axis) demonstrate curves over the murine autosomal chromosomes. X-axis demonstrates SNP
markers on 19 autosomes. Lines represents association between genetic position and phenotype, serum antinucleolar
antibodies. Arrow indicates the top peak on chromosome 3. B) Effect of different alleles in F2 offspring at peak marker
rs3670168 on chromosome 3. Allele effects in the F2 offspring (X-axis), homozygous for A.SW (AA) or B10.S (BB) or
heterozygous (AB) for ANOA titer (y-axis). The plot displays the mean + SEM. **p < 0.01 (Mann-Whitney test).

https://doi.org/10.1371/journal.pone.0199979.9002

crossing two strains, one resistant (H-2%) and one susceptible (H-2°) to developing ANoA,
results in resistant F1 mice, suggesting a resistant dominant inheritance of the I-A region on
H-2 [27]. We tested whether the ANoA phenotype was linked to the high or low autoantibody
development by performing an effect plot. We found that F2 mice homozygous for the A.SW
allele (AA) on the highest QTL (rs3670168) had a significantly higher ANoA titer than hetero-
zygous mice (p < 0.01), or the mice homozygous for the B10.S allele (p < 0.01) (Fig 2B). F1
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mice (A.SW x B10.S) had the same pattern of spreading between low and high serum ANoA
titer (data not shown). Taken together, the inheritance requires the susceptible homozygote
H-2°loci, and the susceptibility for high ANoOA titer is recessive.

ANoA development is associated with Bankl and Nfkb1

We narrowed down the QTL region with haplotype analysis by selecting Hg-exposed F2 mice
homozygous for the A.SW allele on rs3670168. Selected F2 mice (n = 30) were genotyped with
9 additional microsatellite markers spaced between 54.48-61.32 cM. We found a haplotype
block between D3Mit247 (128 110 214 bp) and rs3676039 (136 217 610 bp) (Fig 3A). We fine-
mapped by sequencing the haplotype of the selected F2 mice, in eleven genes that contain
SNPs between background strains A (for A.SW) and C57BL/6 (for B10.S). Unexposed A.SW
and B10.S mice (n = 1 each) were also added as control mice for the analysis. Variants between
B10.S and A.SW samples were extracted and compared with F2 variants, and we discovered
136 SNPs in total. To identify genes associated with the ANoA development, we performed
additional QTL analysis by using the data on 136 SNPs and the phenotype data for 30 F2 mice.
QTL association analysis of ANoA revealed 3 peaks, one in the NfkbI gene (LOD 2.44) and
two in the BankI gene (LOD 2.46 and 2.47) (Fig 3B).

BankI mutations are missense variants and may alter protein structure

Bank1 is an adaptor/scaffolding protein expressed in most subpopulations of peripheral B-
cells and has lower expression in plasmacytoid dendritic and myeloid cells but no expression
in T-cells [24, 28]. Our next step was to investigate SNPs in Bankl between our two strains, A.
SW and B10.S, by comparing them with the background strains (A and C57BL/6) using the
Ensembl database [29]. We found 3 SNPs (rs30260564, rs50828248, and rs47442962) between
background strains in which all SNPs are missense variants. rs30260564 resides in exon 2 and
both rs50828248 and rs47442962 reside in exon 7 (Table 1). Amino acid changes may alter the
structure, function, regulation and expression of a protein. We studied the secondary structure
changes due to the missense variants. In the A.SW strain, CFFSP predicted [30] a B-sheet in
the missense variants in exon 7 (rs50828248 and rs47442962, A375M), and this was not
observed in the B10.S strain (S1 Fig). However, two other prediction algorithms did not show
any changes in the secondary structure (data not shown). We believe that the structural differ-
ence between the two strains could affect the regulatory role that Bank1 has in ANoA develop-
ment, but the prediction of secondary structures is limited using current mathematical models
[31].

Nfkb1 is also associated with ANoA development, and we found 5 SNPs (rs13477428,
rs30771025, rs13472038, rs31054249, and rs13472037) between background strains (A and
C57BL/6), all with synonymous variants. There are different outcomes of silent mutations
that, depending on their positions, may affect mRNA splicing, transcription and translation
[32]. The SNPs in NfkbI may have an impact on NF-kappaB gene/protein expression and
function that may cause the ANoA titer differences.

Bank1 SNP rs30260564 is conserved in the more susceptible strain

We investigated the conservation of the SNPs in Bank1 at the nucleotide and amino acid levels
(see S2 Fig and S3 Fig). Two of the three SNPs in Bank1 (rs30260564 and rs50828248) are in a
conserved region in the A strain but not in the C57BL/6 strain. rs30260564 corresponds to the
codon TTA (leucine) in the A strain and to the codon TTC (phenylalanine) in the B10.S strain.
All mammalian species code for the amino acid leucine, as observed in the A strain. The
amino acid in the C57BL/6 strain is not conserved. The two SNPs rs50828248 and rs47442962
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Fig 3. Fine mapping and QTL. A) Haplotypes associated with ANoA in the range 128 110 214-136 217 610 bp on
chromosome 3, with 11 genes containing differences in SNPs between background strains A (for A.SW) and C57BL/6
(for B10.S). B) Fine mapping exons in 11 genes within the haplotype region performed with NGS to identify QTL
associated with ANoA in 30 F2 mice homozygous for A.SW on rs3670168. LOD scores of 2.44 for Nfkb1 and 2.46 and
2.47 for Bank]I.

https://doi.org/10.1371/journal.pone.0199979.g003
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Table 1. Variants on BankI gene.

ID (Ensembl) Variant Chr: bp Exon Transcript codon/amino acid Transcript codon/amino acid C57BL/6
A

rs30260564 Missense variant 3:136284103 2 TTA (Leu) TTC (Phe)

rs50828248 Missense variant 3:136213910 7 ATG (Met) GCG (Ala)

1547442962 Missense variant 3:136213909 7 ATG (Met) GCG (Ala)

https://doi.org/10.1371/journal.pone.0199979.t001

code for the same codon, ATG (methionine), in the A strain and GCG (alanine) in the C57BL/
6 strain. Neither of these two mouse strains have their amino acids conserved. rs30260564 may
be critical for vital organism function, and the substitution of phenylalanine for leucine
(Phe75Leu) in exon 2 may be responsible for the high ANoA titer.

Intracellular pathway in B-cells favors high ANoA titer

Since Bankl is a B-cell specific protein (no expression in T-cells) [24, 28] and BankI and
Nfkb1 genes are associated with the development of higher ANoA titer, we investigated the
intracellular pathway by studying gene expression in spleen and believe that our findings
mainly resemble what occurs in B-cells. We were interested to see if the gene expression of
these proteins (NF-kappaB and Bank1) were affected by Hg-induced ANoA and found that
the Bank1 gene expression was significantly lower in the A.SW strain (Fig 4A) on day 4

(p < 0.05), whereas its expression in the B10.S strain was not affected (Fig 4B). The lower
expression of BankI upon Hg-exposure may lead to dysregulation of the B-cell receptor (BCR)
downstream signaling pathway, which is regulated by Bank1 [24, 33].

One key protein in the intracellular cascade is NF-kappaB, which we also found to be asso-
ciated with ANoA development. Upon BCR signaling, downstream signaling leads to the acti-
vation of NF-kappaB-induced expression of various cytokines, such as II-6 and Tnfo [34]. We
found that Nkfb1 gene expression was significantly higher after 12 days of Hg-exposure com-
pared to day 0 and day 4 (p < 0.05) in the A.SW strain (Fig 5A). The less-susceptible B10.S
strain showed no significant difference in the Nfkb1 expression after Hg-exposure (Fig 5B).

Further, the Il6 and Tnf gene expression in the A.SW strain was significantly increased
(p <0.05) on days 8 and 12 compared to day 0 (Fig 6A and 6C). The B10.S showed no differ-
ences in 116 and Tnf gene expression at all time-points except for Il6 between days 4 and 8
(p = 0.0087) (Fig 6B and 6D). IL-6 regulates multiple biological processes and is highly
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Fig 4. Gene expression of Bankl. Gene expression in spleens obtained from female A.SW and B10.S mice exposed to
8 mg HgCl,/L for 4, 8, or 12 days. Day 0 represents unexposed mice. Total RNA expression of Bankl A) A.SW and B)
B10.S. Figure represents fold difference (y-axis) and presented as median + interquartile range for each group (Kruskal
Wallis, Dunn’s multiple comparisons test). * Significant difference (p <0.05) between groups in each strain. Gapdh and
Ppia were used as endogenous control. Fold change is relative to the mean of unexposed A.SW mice (reference sample)
for the A.SW strain and the mean of unexposed B10.S mice (reference sample) for the B10.S strain.

https://doi.org/10.1371/journal.pone.0199979.g004
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involved in autoimmunity [20, 35-40]. In humans, IL-6 is elevated in both SLE [35] and Ssc
[36]. RA patients show high IL-6 concentrations in synovial fluids [37], and treatment with
anti-IL-6 receptor antibodies responds effectively for some rheumatic patients [38]. In mice,
I1-6 exacerbate disease activity by activation of Th-1 cells in the EAE mouse model [39], and of
Th-17 cells in Salmonella-infected mice [40]. We have previously shown that in II-6 KO mice
Hgl A abrogates the development of ANoA [20]. We believe that the susceptibility for develop-
ing ANoA is regulated by the H-2 loci, but the enhancement is regulated by an intrinsic BCR
pathway regulated by Bank1 and NF-kappaB. This leads to expression of cytokines, such as IL-
6 and Tnfa, that are highly involved in autoimmunity.
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Fig 6. Gene expression of 116 and Tnf. Experimental design same as in Fig 4. Total RNA expression of 6 in A) A.SW
and B) B10.S mice followed by Tnf expression in C) A.SW and D) B10.S mice. Figure represents fold difference (y-
axis) and presented as median + interquartile range for each group (Kruskal Wallis, Dunn’s multiple comparisons
test). Significant difference (* p < 0.05, ** p < 0.01) between groups in each strain. Endogenous controls and statistical
analysis same as in Fig 4.

https://doi.org/10.1371/journal.pone.0199979.g006
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Splice variants of Bank1 are associated with ANoA

Bank1 consists of two splice variants, one full-length and another, A2, lacking exon 2.
Increased quantities of the full-length isoform compared to the A2 isoform are associated with
higher risk of systemic autoimmune disease development in humans [41]. The reduced
amount of the A2 isoform, compared to full-length isoform, is correlated with a s10516487
R61 risk variant in humans [42]. We studied the splice variant expression in our two strains,
since these strains are susceptible to ANoA production and the A.SW strain shows a higher
ANOoA titer compared to the B10.S strain. To detect splice variants, the relative gel band inten-
sities of amplified DNA fragment covering exon 2 were measured for A.SW and B10.S strains
after 4, 8 and 12 days of Hg-exposure, with day 0 as a control group (Fig 7). Both strains
expressed the full-length Bankl DNA fragment (with exon 2), and the short A2 isoform (with-
out exon 2) (54 Fig), which is consistent with previous findings that mice (C57BL/6, BALB/c],
NOD/Lt, DBA/1], NZBWF1, NZW/Lac] and NZB/BINJ) express both variants [41].

We analyzed the time-dependent expression of same splice variant and the differences in
quantities between the two splice variants. The band intensity of the full-length variant in the
A.SW strain showed no significant difference on all days when exposed to Hg (Fig 7A). The
B10.S strain showed a significant increase (p < 0.05) after 4 days of Hg-exposure compared to
day 0 (Fig 7B). However, the relative band intensity of the short A2 isoform of BankI was sig-
nificantly higher in the A.SW strain upon Hg-exposure (day 8; p < 0.01, day 12; p < 0.01) (Fig
7C). The less-susceptible B10.S strain showed a significant increase between days 4 and 8
(p < 0.05) (Fig 7D). Our results show that the higher expression of the short A2 isoform of
Bank1 is associated with a higher ANoA development. When comparing the quantities
between the two splice variants, we detected a significantly higher expression of the short A2
isoform compared to the full-length isoform after 8 and 12 days (p < 0.05) in the A.SW strain.
The B10.S strain had significantly lower expression of the short A2 isoform compared to the
full-length isoform after 4 and 12 days (p < 0.05). In humans, the full-length splice variant is
associated with SLE, and this may be explained by the higher diversity in human genes and by
the higher diversity between human populations compared to the two inbred mouse strains
used in this study. The data for the susceptible B10.S strain are in concordance with what was
found in human SLE patients, but we also found that higher expression of the short A2 isoform
of BanklI is associated with a higher ANoA titer.
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HgIA alters TIr9 gene expression

When BCR is stimulated, it also undergoes endocytosis and activates Tlr9 [43], leading to p38,
JNK, and NF-kappaB activation [44]. Experiments on B-cells from BankI-deficient mice
showed that Bank1 controls TIr9 signaling via the p38-MNK1/2 pathway, in which Bank1-defi-
cient showed higher 1I6 expression [45]. We were therefore interested if HgIA affects the gene
expression of TIr9. The A.SW strain showed significantly higher TIr9 mRNA expression after 8
days (p = 0.043) compared to day 0 (Fig 8A). The less susceptible B10.S strain presented an
opposite trend, with significantly lower Tlr9 gene expression after 4 days (p < 0.05) compared
to day 0 (Fig 8B). Taken together, TIr9 activation and downstream signaling are involved in
HgIA, where a high ANoA titer favors the Tlr9-stimulated pathway.

A high ANoA titer seems to be initiated by BCR activation

A relevant question is, what activates the BCR to initiate the autoimmune manifestation in
HglIA? Mercury has a high capacity of binding to thiol-containing proteins and affecting their
structure [46]. Fibrillarin is a nucleolar protein involved in a small nucleolar ribonucleoprotein
(snoRNP) complex, which is required for pre-rRNA processing [47, 48]. This protein is known
to be modified by HgIA in susceptible mice and to develop ANoA that seems to target fibrillarin
[49]. It has been suggested that cryptic epitopes of fibrillarin are shown as antigens by MHC
class II in antigen-presenting cells (APC) presented to T-cells [49]. Our findings indicate that
high ANoA development is initiated by BCR signaling since the associated genes (Bankl and
Nfkb1) are linked to ANoA, and Bankl is highly expressed in B-cells but not in T-cells [24, 28].

However, both B- and T-cells are essential for development of ANoA in HgIA [23]. We
believe that autoantigens developed in HgIA may provide ligands for BCR on B-cells, which in
turn function as antigen presenting cells (APC)s for T-cells by presenting their antigens via
MHC class IT on TCR. B-cells also activate T-cells in a variety of other ways. B-cell derived IL-
6 has been shown to promote differentiation into T-follicular helper [50] cells, and activation
of T helper 1 and T helper 17 cells in autoimmune disease [40, 51]. B- and T-cells are required
for development of ANoA [23], but the high titer may be initiated by a BCR activation.

What may cause a low ANOA titer?

The B10.S (H-2°) strain is also a susceptible strain to HgIA, but it initiates a less severe autoim-
mune manifestation with the development of lower ANOA titer compared to the A.SW strain

[17,21-23]. A relevant question is, why did the B10.S strain show a significant increase neither
in the gene expression of intracellular proteins involved in the expression of Il-6 and Tnfo. nor
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Fig 8. Gene expression of TIr9. Experimental design same as in Fig 4. Total RNA expression of TIr9 in female A) A.
SW and B) B10.S. Figure represents fold difference (y-axis) and presented as median + interquartile range for each
group (Kruskal Wallis, Dunn’s multiple comparisons test). Significant difference (* p < 0.05) between groups in each
strain. Endogenous controls and statistical analysis same as in Fig 4.

https://doi.org/10.1371/journal.pone.0199979.g008

PLOS ONE | https://doi.org/10.1371/journal.pone.0199979 July 17,2018 10/18


https://doi.org/10.1371/journal.pone.0199979.g008
https://doi.org/10.1371/journal.pone.0199979

@° PLOS | ONE

Bank1 and NF-kappaB as key regulators in anti-nucleolar antibody development

in the gene expression of these two cytokines? One explanation could be that the initiation and
activation of the immune system, when exposed to Hg, may need more time. We have seen
that ANoA in A.SW mice starts to develop after 12 days, whereas in the B10.S strain, the devel-
opment starts after 30 days (data not shown). Another explanation could be that there are
other pathways leading to the development of ANoA as well, but the BCR/Bank1/NF-kappaB
pathways seem to be linked to a more severe autoimmune response.

Materials and methods
Mice

Mice were housed at the Animal Facilities, Linkdping University, Sweden, and were kept
under a controlled environment with 2-4 mice/cage. The mice were offered standard mouse
pellets (CRME rodent, Special Diets services) and drinking water ad libitum. Studies were
approved by the Laboratory Animal Ethics Committee, Linkoping, Sweden, and all mice were
treated humanely with regard to alleviating any suffering. Numbers of mice in each study are
presented in Table 2.

Genetic linkage study. Female A.SW mice were obtained from Taconic, and male B10.S
mice were obtained from the Jackson Laboratory. F1 hybrids were derived by crossing female
A.SW mice and male B10.S mice. F2-hybrids (n = 60 males, 83 females) were obtained by
crossing F1-hybrids. F2 mice (8-10 weeks old) received either tap water (n = 14) or 4.0 mg
HgCl,/L (Fluka) in drinking water (n = 129), for 6 weeks before sacrifice. Blood was obtained
from retro-orbital plexus after 6 weeks, and all animals were sacrificed by cervical dislocation,
and tails, spleens and kidneys were obtained and stored at -70°C. Collected blood was allowed
to clot for 2 hours before being centrifuged at 500 g for 15 minutes, after which the serum was
removed and subsequently stored at -20°C.

Expression study. Female A.SW mice were obtained from Taconic and female B10.S
mice were obtained from the Jackson Laboratory. Mice (8-9 weeks old) were given 8.0 mg
HgCl,/L (Fluka) in drinking water for 0, 4, 8 or 12 days. Each group consisted of 5-7 female
mice. Mice were sacrificed by cervical dislocation, and spleens were sampled in RNAlater
(Invitrogen) and stored at -70°C for subsequent analysis.

Genetic linkage analysis
Serum antinuclear antibodies assessed by Indirect immunofluorescence. Sera from 129

Hg-exposed and 14 unexposed F2 mice were diluted 1:80-1:20,480 and incubated with HEp-2

Table 2. Dose of Hg exposure and number of mice in each study.

Genome Wide Association Study

Experiment Number of Mice/strain Mercury Exposure (mg HgCl,/L)
SNP Genotyping 129/ F2 4
Haplotyping 129/ F2 4
Fine Mapping 30/F2 4
ANoA Hg exposed 129/ F2 4
ANOA control 14/ F2 0
Expression Study
Experiment Number of Mice/strain Mercury Exposure (mg HgCl,/L)
Gene Expression, Splice variant expression 6 per group / A.SW 8
6 per group / A.SW 0
6-7 per group / B10.S 8
5 per group/ B10.S 0

https://doi.org/10.1371/journal.pone.0199979.t002
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cells (Binding Site Ltd, Birmingham, UK) to detect binding of goat anti-mouse IgG antibodies
(Sigma, St Louis, Missouri, USA) to cellular antigens [52]. The ANoA titer was defined as the
highest serum dilution that showed specific ANoA staining. No staining at serum dilution of
1:80 was considered as a negative result (0). The fluorescence intensity of ANoA was assessed
blinded in a Nikon incident-light fluorescence microscope (Nikon Instech Co. Ltd., Kanagawa,
Japan) using coded samples.

DNA extraction. DNA isolated from tail, spleen or kidney from A.SW, B10.S, F1 and F2
mice was extracted using the Wizard SV Genomic DNA Purification System (Promega). These
tissues were used to obtain the required amounts and concentrations of DNA. The quantity
and purity of DNA was measured with a Qubit 3.0 fluorometer (Thermo Fisher Scientific).

Genome-wide genotyping and quantitative trait loci (QTL). For the genome-wide gen-
otyping, 129 Hg-exposed F2 samples were genotyped using the SNP&SEQ technology plat-
form at Uppsala University. The Illumina Mouse Medium Density Linkage Panel contained
1449 single-nucleotide polymorphism (SNP) markers, of which 819 were polymorphic SNPs
between the two strains A.SW and B10.S (S5 Fig).

Genotype-phenotype linkage analysis in F2 mice was performed to obtain genetic positions
associated with ANoA. Quantitative trait loci (QTL) were identified based on the logarithm of
odds (LOD) score profiles derived from a genome-wide single-QTL scan by Haley-Knott
regression [53] with a hidden Markov model (HMM) using R/qtl software (v.2.15.3) [54].
Regression was based on the data from 129 F2 offspring for 819 SNPs covering 19 autosomes.
The origin of DNA determines the recommended LOD score for linkage. Outbred mice, or
humans, require a higher linkage percentage compared to the inbred mice that were used in
this study. The genome-wide significance threshold was calculated based on 10,000 permuta-
tion replicates. This procedure is based on the normal distribution and gives an approximate
p-value of 0.05 [54, 55].

Haplotyping. Additional microsatellites were used to narrow down the region by haplo-
type analysis in which the QTL was found (S1 Table) in 129 Hg-exposed F2 mice and two
unexposed A.SW and B10.S mice. Briefly, microsatellite primers were identified using the
Mouse Genome Informatics (MGI) database [56] based on the background strains of A (for A.
SW) and C57BL6 (for B10.S). For each sample, 20 ng of genomic DNA was mixed with the
Extract-N-Amp PCR reaction mix (Sigma-Aldrich), and 30 cycles of amplification were per-
formed in a thermal cycler (Thermo Fisher), with a temperature profile as follows: denatur-
ation at 94°C for 30 s, annealing at 61°C for 60 s, and extension at 72 C for 90 s. PCR products
were run on 4% agarose gel for 1.5 hours at 70 Volts. Haplotypes were identified by comparing
the genotypes of F2 mice with the genotypes of A.SW and B10.S mice [57].

Fine mapping. Thirty F2 mice, homozygous for the A.SW strain on associated haplotype,
were selected for fine mapping. Fine mapping was based on next generation sequencing
(NGS) of genes within the haplotype containing SNPs between background strains A (for A.
SW) and C57BL/6 (for B10.S). SNPs were identified using the Ensembl [29] and MGI data-
bases [56]. Design of target sequences was performed using the web-based application SureDe-
sign (Agilent) for coding exons and UTRs (5'UTR and 3"UTR) for 11 genes (S2 Table). The
genomic DNA (gDNA) library was prepared from 30 F2 mice (homozygous for A.SW strain
on marker rs3676039), one A.SW mouse and one B10.S mouse (used as controls) using Sure-
Select QXT Target Enrichment for Illumina kit (Agilent) in accordance with the manufacturer
's protocols. Briefly, 32 DNA samples (n = 30 for F2 mice, n = 1 for A.SW mice, n = 1 for B10.
S mice) were enzymatically fragmented, and adaptors were added to the ends of the fragments
(350 bp fragment size). gDNA libraries were amplified and purified, followed by hybridization
and capture the next day. Libraries were indexed and pooled into 4 groups (8 libraries per
group) for multiplex sequencing. Sequencing was performed with a MiSeq Benchtop
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Sequencer (Illumina) using 500 cycles paired-end reads and a MiSeq v2 reagent kit (Illumina).
All data were analyzed using the command line in the Linux operating system. Quality score of
raw data (FASTQ files) were analyzed with FastQC [58]. Sequence data were aligned with the
mouse reference gene, Mus musculus USCS Mm10 [59], using the Burrows-Wheeler Aligner
(BWA) software package [60]. Aligned sequencing data (SAM files) were converted into BAM
files with SAM tools [61]. Variant calling was performed with the Genome Analysis Toolkit
(GATK) [62]. Genotype data on all 30 F2 mice were used for additional linkage analysis with
R/QTL.

Expression study

RNA extraction and cDNA reverse transcription. Total RNA was extracted from
spleens of female A.SW and B10.S mice (n = 24) using the RNeasy Mini Kit (Qiagen) accord-
ing to the manufacturer’s instructions. The quantity and purity of the RNA were measured
using a Qubit 3.0 fluorometer (Thermo Fisher Scientific). RNA was diluted to 20 ng/pL and
reverse-transcribed to cDNA by using the High-Capacity cDNA Archive kit (Applied
Biosystems).

Gene expression. Gene expression from A.SW and B10.S mice was performed in dupli-
cates using the Applied Biosystems 7500 Fast Real-Time PCR system with Applied Biosystems
TagMan gene expression assays (Applied BioSystems). Target gene expression for Bankl,
Nfkb1, Tlr9, Il6 and Tnf was measured with FAM (6-carboxyfluorescein) reporter dye-labeled
probes (S3 Table). The geometric means of Gapdh and Ppia in each group were used as endog-
enous controls. The results are presented as relative transcription levels determined by the
comparative 2724 method [57].

Splice variant expression. cDNA of BankI from A.SW and B10.S mice, encompassing
exon 2 and the upstream exon 1 and downstream exon 3 sequences, was amplified for splice
variant detection in A.SW and B10.S mice (F primer: ATGCTTCCTGTGGCTITCTGG, R primer:
CGAGGCACAGATGGTCTCAG). Fragments were amplified by 30 cycles of PCR under following
conditions: denaturation at 94°C for 30 s, annealing at 60°C for 60 s, and extension at 72°C for
90 s. PCR products were separated on 1% agarose gel for 30 minutes at 120 Volts and mea-
sured with the GeneFlash Gel Documentation System (GeneFlash). Bands where quantified
based on their relative intensities using Image] software 1.x [63].

Secondary structure prediction

Prediction of the secondary structure of Bankl1 protein was performed using the Chou & Fas-
man Secondary Structure Prediction (CFFSP) server. The cDNA sequences of background
strains A.SW and B10.S were used to obtain the protein sequences that were used to predict
the secondary structures of Bank1 by the Chou & Fasman algorithm [30]. The cDNA
sequences were obtained from the Ensembl database [29].

Conserved region

Comparison of SNPs in the Bank1 gene between background strains of 32 mammals (S2 Fig)
was performed using the Ensembl database (Flicek et al. 2017). The conserved region of the
amino acid sequences was analyzed using Clustal X (version 2.1) multiple sequence alignment
software (Larkin et al. 2007). Amino acid sequence alignment was performed for 14 species
(S3 Fig) together with A (background strain for A.SW) and C57BL/6 (background strain for
B10.S) mouse strains. These 14 species were selected because they have a sequenced Bank]1
gene that can be used for alignment using the Ensembl database.
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Statistical analysis

Comparisons of ANOA titers, gene expression levels and splice variants were performed using
the Kruskal-Wallis and Dunn’s multiple comparisons tests and presented as medians * inter-
quartile ranges. The effect plot was obtained using the non-parametric Mann-Whitney U-test
and presented as mean = SEM. Differences with p < 0.05 were considered significant.

Conclusion

Bank1 and Nfkb1 are based on genome-wide scan and fine mapping of the candidate genes for
regulation of high antinucleolar antibody titer. Mutations, gene expression and splice variant
expression of Bank1, as well as gene expression of NfkbI, are associated with the susceptibility
to the development of ANoA. A high ANoA titer seems to be B-cell initiated with Bank1 and
NEF-kappaB as key regulators in the intracellular pathway, including TIr9, leading to the pro-
duction of cytokines such as Il-6 and Tnfo, which are highly involved in autoimmune
manifestations.
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