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Abstract

Introduction—Models from signal detection theory are commonly used to score 

neuropsychological test data, especially tests of recognition memory. Here we show that certain 

item response theory models can be formulated as signal detection theory models, thus linking two 

complementary but distinct methodologies. We then use the approach to evaluate the validity 

(construct representation) of commonly used research measures, demonstrate the impact of 

conditional error on neuropsychological outcomes, and evaluate measurement bias.

Method—Signal detection-item response theory (SD-IRT) models were fitted to recognition 

memory data for words, faces, and objects. The sample consisted of US Infantry Marines and 

Navy Corpsmen participating in the Marine Resiliency Study. Data comprised item responses to 

the Penn Face Memory Test (PFMT; N = 1,338), Penn Word Memory Test (PWMT; N = 1,331), 

and Visual Object Learning Test (VOLT; N = 1,249), as well as self-report of past head injury with 

loss of consciousness.

Results—SD-IRT models adequately fitted recognition memory item data across all modalities. 

Error varied systematically with ability estimates, and distributions of residuals from the 

regression of memory discrimination onto self-report of past head injury were positively skewed 

towards regions of larger measurement error. Analyses of differential item functioning revealed 

little evidence of systematic bias by level of education.

Conclusions—SD-IRT models benefit from the measurement rigor of item response theory—

which permits the modeling of item difficulty and examinee ability—and from signal detection 

theory—which provides an interpretive framework encompassing the experimentally-validated 
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constructs of memory discrimination and response bias. We used this approach to validate the 

construct representation of commonly used research measures and to demonstrate how non-

optimized item parameters can lead to erroneous conclusions when interpreting 

neuropsychological test data. Future work might include the development of computerized 

adaptive tests and integration with mixture and random effects models.
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Introduction

Models from signal detection theory (SDT; Wickens, 2002) are commonly used to score 

both clinical and experimental test data in neuropsychology (e.g., Delis et al., 2000; Kane et 

al., 2007; Thomas et al., 2013). Although SDT originated in engineering, applications to 

psychological research, especially testing paradigms used in psychophysics (e.g., Green & 

Swets, 1966) and recognition memory (Lockhart & Murdock, 1970; Snodgrass & Corwin, 

1988), are widespread.

DeCarlo (1998; 2011) demonstrated that some SDT models can be formulated as 

generalized linear models. In this paper, we extend this work to show that, because certain 

psychometric approaches also fall under the category of generalized linear models (de Boeck 

& Wilson, 2004), a restricted form of a popular item response theory (IRT; Lord, 1980) 

model can be shown to be equivalent to a popular SDT model. In doing so, we link a 

valuable body of psychometric research and technical literature from IRT to the 

measurement of a general class of cognitive constructs. We then demonstrate how methods 

from IRT can be used to address two applied measurement concerns raised by the Standards 

for Educational and Psychological Testing: conditional error and measurement bias (AERA, 

APA, & NCME, 2014).

Signal Detection Theory

The SDT model shown in Figure 1 assumes that the presentation of repeated or old items 

(targets) and non-repeated or new items (foils) during the recognition period of testing 

evokes familiarity that can be represented by underlying probability distributions: typically 

normal but also logistic. Under one version of the model, target and foil items are assumed 

to follow unimodal, symmetric distributions of familiarity with equal variances1 but 

different means. In SDT terms, the distribution of familiarity for targets corresponds to the 

signal plus noise intensity distribution on a sensory continuum; and the distribution of 

familiarity for foils corresponds to the noise intensity distribution. A larger distance between 

the mean of the target distribution(μT) and the mean of the foil distribution (μF) implies 

1In previous work, we have found that the additional parameter of the unequal variance SDT model does not meaningfully contribute 
to the measurement of individual differences. Moreover, this model is not commonly used in applied neuropsychological work. 
Nonetheless, future studies may wish to explore the impact of the equal variance assumption on the estimation and interpretation of 
model parameters.
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greater target familiarity, and thus a higher probability of accurate responding. This distance 

is a measure of memory discrimination and is defined as

d′ =
μT − μF

D , (1)

where D is a scale parameter, reflecting the common standard deviation, and is often fixed to 

1.0 for simplicity. Familiarity drives recognition; however, because familiarity follows a 

probability distribution, and because the familiarity distributions of targets and foils often 

overlap, the SDT model assumes that examinees must establish a criterion, C, representing 

the level of familiarity beyond which they will classify test items as targets. This criterion is 

centered relative to the midpoint between μT and μF, using:

Ccenter = C −
μT + μF

2 . (2)

Typically, closed-form solutions are used to estimate values of d′ and Ccenter for individual 

examinees given their observed true and false positive rates (see Snodgrass & Corwin, 

1988). In doing so, an examinee’s ability to recognize previously studied information (d′) 

can be disentangled from their bias towards conservative or liberal responding (Ccenter). That 

is, estimates of memory strength (d′) can be compared across subjects with liberal, neutral, 

and conservative response biases.

SDT’s appeal in applied work lies in its ability to provide researchers and clinicians with an 

experimentally validated interpretive framework for multiple latent abilities presumed to 

underlie recognition memory test performance. Studies have bolstered this position by 

showing that manipulations of environmental and stimulus factors have predictable effects 

on d′ and Ccenter. Snodgrass and Corwin (1988), for example, used a word recognition 

memory task to show that manipulating word imagery strength had an effect on d′ but not 

Ccenter. By contrast, manipulating payoff (i.e., preferentially punishing false positive or false 

negative responses) had an effect on Ccenter but not d′. SDT parameters have also shown 

unique diagnostic utility. Although memory deficits—low values of d′— associated with 

Alzheimer’s and other forms of dementia are well known, Alzheimer’s patients also show 

abnormally liberal response biases—negative values of Ccenter (Budson, Wolk, Chong, & 

Waring, 2006): a clinical finding not shared by patients with primary memory disorders such 

as Korsakoff’s syndrome (Snodgrass & Corwin, 1988).

Item Response Theory

IRT comprises a collection of models and techniques used to evaluate psychological 

measures (Embretson & Reise, 2000; Lord, 1980; McDonald, 1999). Among other benefits, 

IRT improves upon the classical approach by explicitly assessing conditional measurement 

error, improving the quantification, scaling, and equating of scores, more effectively 

identifying item bias, and facilitating the development of advanced measurement tools such 
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as computerized adaptive tests (Embretson & Hershberger, 1999). IRT is now widely used in 

personality and psychiatric symptom measurement (Reise & Waller, 2009), and is garnering 

increased attention in neuropsychological measurement (e.g., Mungas, Reed, Marshall, & 

González, 2000; Pedraza, Sachs, Ferman, Rush, & Lucas, 2011; Thomas et al., 2013).

Many applications of IRT assume unidimensional measurement models; however, 

multidimensional models (Reckase, 2009) are often more plausible in cognitive testing. One 

popular model is the compensatory extension of the two-parameter (2P) model, where low 

ability on one latent trait can be compensated by high ability on another latent trait. The 

slope-intercept form of the 2P model assumes two types of item parameters: threshold (τ) 

and discrimination (α). The number of person parameters—or abilities (θ)—is defined by 

theory or by exploratory methods, and will be denoted M. IRT models are typically fitted to 

the entire item response matrix over all examinees and items. Compensatory 

multidimensional 2P IRT models can be expressed as:

f P Xij = 1 τj, αj, θi = τj + αjθi, (3)

where Xij is the response of examinee i on item j (Xij =1 for a correct response and Xij =0 

for an incorrect response), τj is the threshold of item j, θi is the column vector of abilities for 

examinee i [θi1, θi2, … θiM], and αj is the row vector of discrimination parameters for item j 
related to each of these abilities [αj1, αj2, … αjM]. The function f links the probability (P) of 

a correct response (left side of Equation 3 within parentheses) to the linear predictor (right 

side of Equation 3). Two commonly used link functions are the logit the inverse of the 

cumulative distribution function for the logistic distribution—and the probit—the inverse of 

the cumulative distribution function for the normal distribution (see Madsen & Thyregod, 

2011). Whereas the predicted value of the probit is a z-score associated with P, the predicted 

value of the logit is the log-odds. However, the choice between these link functions is 

arbitrary, as a scaling constant can be multiplied into the linear predictors when the logit is 

used to achieve a metric that is nearly equivalent to the normal model, or divided into the 

linear predictors when the probit is used to achieve a metric that is nearly equivalent to the 

logistic model (Camilli, 1994; de Ayala, 2009). The parameter τj is interpreted as item 

easiness, and is negatively related to item difficulty (βj). The row vector αj conveys the 

extent to which item j can discriminate between different levels of ability; that is, higher 

values convey better discrimination and, all things equal, more precise measurement. The 

column vector θi conveys the standing of each examinee on the latent psychological 

constructs thought to systematically influence item performance.

In comparison to classical test theory, IRT provides users with more accurate and rigorous 

methods for studying the precision of ability estimates (Embretson & Hershberger, 1999). In 

IRT, precision is defined by the information about the true values of θ that items are 

expected to provide (Reckase, 2009). Stated differently, if the item score changes along with 

θ, the item is informative (precise); if the item score does not change along with θ, the item 

is non-informative (imprecise). The information function for an entire test is the sum of all 

item information functions. Information values are difficult to interpret directly; however, 
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one over the square root of information is equal to standard error of estimate (SEθ): the 

standard deviation of the maximum likelihood estimate of θ. SEθ is typically a U-shaped 

function of θ with the low point of the function corresponding to the overall difficulty of the 

item (or test). That is, items and tests are most informative, and thus produce the lowest 

standard error, when ability and difficulty are closely matched. For example, Pedraza, Sachs, 

Ferman, Rush, and Lucas (2011) used IRT to show that most items from the Boston Naming 

Test have difficulty values located in the average to below average range of ability. 

Consequently, precision is relatively high within the low-average range of ability but low 

within the above average range of ability. Results such as these are commonly used to guide 

test development and refinement, especially computerized adaptive tests (e.g., Cella et al., 

2007), and to identify strengths and weaknesses of existing instruments.

Applications of IRT are becoming increasingly common in neuropsychology, with papers 

now appearing in the Journal of Clinical and Experimental Neuropsychology (e.g., Jahn, 

Dressel, Gavett, & O’Bryant, 2015), Neuropsychology (e.g., Kenzik et al., 2015), and the 

Archives of Clinical Neuropsychology (e.g., Li, Root, Atkinson, & Ahles, 2016) among 

other current periodicals. Nonetheless, the methodology is still somewhat rare in comparison 

to other domains of clinical assessment (Thomas, 2017). This could reflect a disconnect 

between models that are common in IRT and models that are common in neuropsychology, 

such as the equal variance SDT model. This paper thus serves as link towards greater 

integration of IRT applications in neuropsychology.

Motivation for the Signal Detection-Item Response Theory Model

Motivation for a combined signal detection-item response theory model (hereafter referred 

to as the SD-IRT model) lies in the observation that rarely, if ever, are cognitive test scores 

thought to reflect strictly unidimensional constructs. Modern neuroscience acknowledges 

that complex cognitive functions are due to interactions among brain networks (Sporns, 

2011), models from cognitive psychology habitually assume several coordinated, but 

distinct, cognitive processes (Lewandowsky & Farrell, 2011), and in neuropsychological 

assessment it is recognized that deficits in one domain (e.g., attention) often lead to deflated 

scores in measures of separate domains (e.g., memory; Lezak, Howieson, Bigler, & Tranel, 

2012). Many clinicians and applied researchers have embraced this complexity as a tool that 

can be leveraged into informative understandings of complex human behavior (Brown, Lohr, 

Notestine, Turner, Gamst, & Eyler, 2007). Methodologists, as well, have touted the benefits 

of models that convey complex psychological narratives (Mislevy, Levy, Kroopnick, & 

Rutstein, 2008).

Although psychometric models need not mimic the full complexity of cognitive 

neuroscience, the added difficulty that comes with simultaneously measuring multiple latent 

dimensions is formidable nonetheless. As in factor analysis, multidimensional IRT models 

must contend with rotational indeterminacy; that is, there are infinite combinations of θ and 

α that would all produce the same likelihood given certain rotations of the multidimensional 

space. Whereas finding an interpretable rotation across a battery of tests can be 

comparatively simple—being that psychologists typically have a priori beliefs about the 

domains assessed by distinct tests (e.g., Patt et al., 2017)—it is often more challenging to 
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interpret multidimensionality at the item level. Moreover, whereas exploratory solutions to 

rotational indeterminacy may be suitable for psychometric development of tests, applied 

research often demands consistent interpretation of measured constructs in order to facilitate 

repeatability and comparability of results across studies.

What is needed is an empirically validated, theory-based solution to the problem of 

rotational indeterminacy. As shown below, because certain IRT and SDT models can be 

formulated as generalized linear models (DeCarlo, 1998; de Boeck & Wilson, 2004), the 

equal variance version of the SDT model and the compensatory multidimensional 2P IRT 

model can be expressed as the same generalized linear model: the SD-IRT model. This 

model, as shown below, provides one solution to the problem of rotational indeterminacy 

and allows us to bring IRT’s rigorous approach to studying measurement precision to bear 

on the understanding of latent constructs defined by SDT.

Formulation of the Signal Detection-Item Response Theory Model

In the SDT model, the probability of responding to a foil can be expressed as the area to the 

right of the criterion under the foil distribution, and the probability of responding to a target 

as the area to the right of the criterion under the target distribution (see Figure 1). Using 

derivations presented in DeCarlo (1998), these probabilities can be expressed with the 

following:

f P U = 1 Foil =
μF − C

D , (4)

and

f P U = 1 Target =
μT − C

D , (5)

where f is either a logit or a probit link function2 and U is a binary variable that takes on a 

value of 1 for a positive response and 0 for a negative response. Equations 4 and 5 can be 

combined into a single expression by introducing a variable Z that equals 1 if the test item is 

a target and −1 if the test item is a foil:

f P U = 1 Z =
μT − C

D
Z + 1

2 +
μF − C

D
1 − Z

2 . (6)

2With respect to the choice of link function, f, the probit has been more strongly associated with SDT and the logit has been more 
strongly associated with Luce’s choice model (Luce, 1959; 1963); however, as with IRT, several authors have noted that under the 
right parameterization the results are nearly equivalent so long as the appropriate scaling constant is used (e.g., DeCarlo, 1998; 
Kornbrot, 2006; Snodgrass & Corwin, 1988; Wickens, 2002).
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Fixing the scale parameter D to 1, as is common in SDT, and simplifying produces the 

formula that appears in Appendix A of DeCarlo (1998):

f P U = 1 Z = − Ccenter + d′
2 Z . (7)

Two changes are needed to align SDT with IRT. First, as in IRT, the SDT model must be 

formulated to predict the probability of a correct response (X = 1) rather than the probability 

of a positive response (U = 1). Using the property that f(1-P) = −f(P) for both the probit and 

the logit link functions, and knowing that positively responding is correct when a target is 

presented whereas negatively responding is correct when a foil is presented, Equation 7 

yields:

f P X = 1 Target = f P U = 1 Z = 1 = − Ccenter + d′
2

f P X = 1 Foil = f 1 − P U = 1 Z = − 1 = Ccenter + d′
2

. (8)

These equations are combined into:

f P X = 1 Z = − ZCcenter + d′
2 . (9)

Second, to account for item differences in easiness and person differences in ability, the 

equation was modified as follows:

f P Xi j = 1 Z = τ j − Z jCcenter, i +
di′
2 , (10)

where τj represents the easiness of item j, Zj is equal to 1 if item j is a target and −1 if item j 
is a foil, Ccenter,i is the criterion parameter or tendency for responding of examinee i, and di′ 
is the ability of examinee i for discriminating between foils and targets. Using notations 

common to IRT, Equation 10 can be re-expressed as a compensatory multidimensional 2P 

IRT model:

f P Xij = 1 τj, αCcenter, j, αd′, j, θCcenter, i, θd′, i = τj + αCcenter, jθCcenter, i + αd′, jθd′, i, (11)

where τj is the easiness of item j, θCcenter,i and θd′,i are the abilities of examinee i 
corresponding to their bias toward responding positively and capacity for discriminating 

between targets and foils, respectively; and αCcenter,j and αd′,j are the discrimination 

parameters of item j corresponding to these two abilities. In contrast to a 2P IRT model, 

where all of these parameters would be estimated from the data, the two discrimination 
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parameters in the SD-IRT model are fixed to values based from derivations of the SDT 

model:

αCcenter, j = +1.0 If item j is a Foil
−1.0 If item j is a Target

αd′, j = + 0.5.

(12)

Note that αCcenter,j is determined by –Z and αd′,j is set to 0.5 to account for the division by 2 

in Equation 10. In applied research, this difference is important because it forms a known 

basis for interpreting parameters in line with the experimental cognitive and clinical 

literatures using SDT. Moreover, fixing these parameters solves the rotational indeterminacy 

problem for the compensatory multidimensional 2P IRT model. That is, the SD-IRT model 

forces a specific rotation of the latent multidimensional space by fixing, rather than freely 

estimating, the α values. Alternative expressions for Equation 11 are reported in the 

appendix.

Applications

Analyses were conducted within the context of an ongoing study of neurocognitive 

outcomes within a large sample of US Infantry Marines to be deployed overseas to 

Afghanistan. We explored potential applications of the SD-IRT approach by determining 

whether the models could adequately fit recognition memory item data collected across 

measures of multiple modalities. Specifically, our analyses focused on the Penn Face 

Memory Test (PFMT), the Penn Word Memory Test (PWMT), and the Visual Object 

Learning Test (VOLT): recognition memory measures of faces, words, and objects, 

respectively, from the Penn Computerized Neurocognitive Battery (CNB) (Gur et al., 2001, 

2010). The Penn CNB is a popular research measure that has been used in large-scale and 

longitudinal studies of several clinical populations including individuals suffering from 

psychosis, suicidality, and posttraumatic stress (e.g., Irani et al., 2012; Moore, Reise, Gur, 

Hakonarson, & Gur, 2015), as well as in healthy and usually high-performing populations 

such as NASA astronauts (Basner et al., 2015).

The PFMT, PWMT, and VOLT are scored and interpreted with respect to the same assumed 

measurement framework: the equal variance SDT model. We sought to validate the meaning 

and interpretability of these scores (i.e., their construct representation) by fitting the SD-IRT 

model to item data. We compared two models: (1) A SD-IRT model with item intercepts 

constrained to be equal and item discrimination parameters fixed according to Equation 12; 

and (2) A SD-IRT model with unconstrained item intercepts and item discrimination 

parameters fixed according to Equation 12. The τ constrained model produces estimates of 

θd′ and θCcenter that are consistent with d′ and Ccenter estimates based on closed-form 

solutions. However, this model does not allow variation in item difficulty, and thus is 

expected to poorly fit the item data. The τ unconstrained model, in contrast, allows item 

effects, and thus is expected to fit the item data much better.
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Additionally, we aimed to demonstrate the practical utility of the SD-IRT model for use in 

neuropsychological research and practice. We focus on two specific concerns highlighted by 

the Standards for Educational and Psychological Testing (AERA, APA, & NCME, 2014). 

The first concerns the reporting of standard error of measurement (SEM) for scores. 

Although methods for estimating SEM vary, the most commonly referenced expression in 

clinical assessment derives SEM from reliability. As such, SEM is often reported as a single 

value for the sample of scores considered in an analysis. However, due to the fact that most 

psychological measures employ categorical response options (e.g., correct vs. incorrect), 

measurement error often varies systematically. Standard 2.14 notes that, “When possible and 

appropriate, conditional standard errors of measurement should be reported at several score 

levels unless there is evidence that the standard error is constant across score levels” 

(Standard 2.14; AERA, APA, & NCME, 2014).

Concerns related to conditional error are particularly relevant to the Penn CNB. Unlike 

standardized measures, the Penn CNB is commonly adapted for the specific populations 

under investigation in order to prevent floor and ceiling effects (i.e., loss of test score 

variance in the extremes of the performance distribution). Precisely characterizing patterns 

of measurement error in relation to the latent constructs of the SD-IRT model (i.e., θd′ and 

θCcenter) could thus serve as a guide to future studies. The SD-IRT model provides a method 

for determining whether neuropsychological tests produce conditional errors for the latent 

constructs assessed. Specifically, the standard error of estimate for the jth item, SEθ, can be 

expressed as:

SEθ = 1
PQ αCcenter, j

2 + αd′, j
2 1/2 , (13)

where P is the probability of responding correctly and Q is the probability of responding 

incorrectly3. Equation 13 is a general expression that applies to most multidimensional IRT 

models (see Reckase, 2009). Notably, the probability of responding to an item correctly (P) 

and incorrectly (Q), as well as the item discrimination parameters, all appear in the 

denominator. In the SD-IRT model, the discrimination parameters are fixed, and thus only 

person ability (θd′ and θCcenter) and item difficulty or easiness (τj) will differentially impact 

error (i.e., via their impact on P and Q). More specifically, to the extent that that ability and 

difficulty are closely matched, and thus P and Q are close to 0.5, SEθ will become smaller; 

conversely, to the extent that ability and difficulty are mismatched, and thus P and Q are 

close to 0.0 or 1.0, SEθ will become larger.

A second concern highlighted in the Standards for Educational and Psychological Testing 

relates to fairness, and specifically measurement bias, in testing. The Standards (Chapter 3) 

stress that it is important to identify and account for measurement bias when it exists. A 

method that has grown in popularity involves using IRT to assess items for differential item 

3For multidimensional models, SEθ is defined with respect to a likelihood surface. The direction of descent along the surface impacts 
the value of SEθ. Here, we define SEθ with respect to the steepest descent along a line from the origin of the space (see Reckase, 
2009).
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functioning (DIF). DIF exists when examinees from separate populations have different 

probabilities of responding to an item correctly, even when they have the same value on the 

underlying ability measured (Millsap, 2011). That is, DIF does not simply indicate a group 

difference in ability, but rather an unfair or unintended performance advantage for one or 

more groups.

A common use of DIF methodology, including in neuropsychology, is to determine whether 

item properties differ by groups defined by high versus low education (e.g., Kim et al., 2017; 

Teresi et al., 2009). The implicit, if not explicit, assumption of this work is that a certain, 

qualitative level of education (e.g., college education in the United States) is more likely 

attained by individuals with higher levels of acculturation, social privilege, and wealth (Jez, 

2014), and that these factors might artificially inflate scores. That is, the concern is not that 

education is correlated with ability, but rather that education serves as a proxy for variables 

that affect test scores, but are irrelevant to ability. On the PWMT, for example, it is possible 

that certain words are more familiar to college educated examinees, and that this familiarity 

conveys an unfair advantage in recognition memory. In the context of the SD-IRT model, the 

relevant question is whether examinees with different levels of education or race, who 

nonetheless have the same θd′ and θCcenter values, have different response probabilities. This 

can be detected through DIF analyses that assess whether τ parameters vary by group.

Methods

Participants

The Marine Resiliency Study II (MRS-II; Oct 2011-Oct 2013) Neurocognition project is a 

prospective, longitudinal investigation of neurocognitive performance in Infantry Marines 

and Navy Personnel deployed to Afghanistan. Data for the current study come from 

participants’ initial pre-deployment baseline assessments. The study was approved by the 

institutional review boards of the VA San Diego Research Service and the Naval Health 

Research Center. Written informed consent was obtained from all participants. Data from a 

total of 1,441 individuals were included in the analyses. Demographic characteristics of the 

sample are reported in Table 1. Females were not eligible for Infantry Battalions at the time 

of testing thus the subject pool is all male.

Measures

As previously noted, cognitive tests were administered as part of the Penn CNB, a 45-min 

neurocognitive battery designed for efficient computerized assessment with minimal 

proctoring (Gur et al., 2001, 2010; Moore, Reise, Gur, Hakonarson, & Gur, 2015). The 

PFMT measures episodic memory for faces. The test begins by showing examinees 20 faces 

that they will be asked to identify later. Faces are shown in succession for an encoding 

period of 5 seconds each. After this initial learning period, examinees are immediately 

shown a series of 40 faces—20 targets and 20 foils—and are asked to decide whether they 

have seen each face before. Penn Face Memory Test foil faces are matched to targets for age, 

ethnicity, and gender. The PWMT measures episodic memory for words. The test is identical 

to the Penn Word Memory Test (above), except that the participant is asked to memorize 

words instead of faces. Penn Word Memory Test foil words are matched to targets for 
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length, frequency, imageability, and concreteness. The VOLT measures episodic memory for 

objects. The test is identical to the Penn Face Memory Test and Penn Word Memory Test 

(above), except that the participant is asked to memorize 10 Euclidean shapes and tested for 

recognition using 10 targets and 10 foils.

Analyses

We first examined scree plots (eigenvalues for eigenvectors) based on principle axis 

factoring of the polychoric item correlation matrices for each test. Although the SD-IRT 

modeling approach suggests that a 2-factor model ought to fit the recognition memory item 

data, we wanted to determine whether an exploratory technique would support this 

assumption. A simple and common interpretative approach is to infer dimensionality based 

on the number of factors that fall above the “elbow” of eigenvalues plotted from highest to 

lowest (Cattell, 1966). Importantly, we used this as a descriptive tool meant to support the a 
priori theory of two factors within the SDT model, and not as a guide to determine the final 

number of factors to retain.

Modeling analyses were conducted using the mirt package for R (Chalmers, 2011). Models 

were fitted to data using an expectation maximization (EM) algorithm.4 Ability estimates 

were taken as maximum a posteriori (MAP) values. Data included accuracy scores from 

each test. Only complete and valid data were analyzed (Face = 97%; Word = 97%; Object = 

91%). Models were compared using Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) values. AIC and BIC penalize overparameterized models and 

become smaller with better fit (see de Ayala, 2009). Absolute fit was determined by 

examining root mean square error of approximation (RMSEA; values range from 0 [good 

fit] to 1 [poor fit] with values < .06 commonly regarded as acceptable). Item fit (dependence) 

was evaluated by residual correlations between pairs of items (i.e., known in IRT as Q3; 

Yen, 1993).

To explore the impact of SEθ on substantive analyses, we regressed MAP estimates of θd′ 
onto self-report of past head injury with loss of consciousness (LOC). Specifically, head 

injury with LOC was measured as an ordinal variable with 5 levels: no LOC (n = 1,016), 

LOC < 1min (n = 226), LOC 1–15 min (n = 143), LOC 16–30 min (n = 14), and LOC > 30 

min (n = 45). LOC was based on the most severe head injury participants reported during 

their pre-deployment assessment (i.e., encompassing injuries associated with prior 

deployments, prior non-deployment related injuries, and injuries acquired prior to joining 

the military). We regressed estimates of θd′ from each test (PFMT, PWMT, and VOLT) onto 

4Choosing identification constraints—as is required for latent variable models—requires special care. It is interpretively convenient, 
though not necessary, to scale estimates in a manner that is consistent with values that are obtained using closed-form SDT solutions 
(see Snodgrass & Corwin, 1988). For this purpose, identification can be achieved by (1) constraining the α parameters according to 
Equation 12, (2) freely estimating the θd parameters, (3) freely estimating the θCcenter in the τ constrained model but constraining 
their mean to 0 in the τ unconstrained model, and (4) constraining all τ parameters to 0 in the τ constrained model but constraining the 
mean of the τ parameters to 0 in the τ unconstrained model. At the time of writing, the mirt package did not allow the mean of the τ 
parameters to be constrained; thus, we instead fixed the θd′ mean to 0 during estimation and then rescaled parameters after estimation 
to achieve the desired scaling in the τ unconstrained model. Also, we rescaled estimates of θd′ and θCcenter to be consistent with the 
normal metric. Example R code that simulates data and then estimates both SD-IRT models is provided in online supplemental 
material.
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head injury with LOC, plotted distributions of residuals, and examined associations with 

SEθ.

Finally, we examined the tests for DIF based on education. Participants were split into two 

groups based on whether or then had completed any years of college (n = 206; focal group) 

or not (n = 872; reference group). Methods for evaluating DIF assume that the metrics of 

item parameters estimated in the reference and focal groups have been linked. We used the 

all-others-as-anchors (AOAA) approach, which has been shown to have high statistical 

power and well-controlled Type I error (Wang & Woods, 2017). In the approach, a series of 

model comparisons are first used to identify anchor items (i.e., by rank ordering likelihood-

ratio test statistics [χ2
LR] based on models that free vs. fix τ across groups, and then 

choosing items that produced the lowest 20% of values). Next, fitting models that fix 

anchors to be equal between groups, but freely estimate ability means in the focal group, 

likelihood-ratio tests were used to determine whether individual items could be fixed across 

groups without significantly deteriorating model fit. The false discover rate was controlled 

using the Benjamini-Hochberg procedure.

Results

Dimensionality

Scree plots for all tests based on principal axis factoring of the polychoric correlation 

matrices are shown in Figure 2. Both the Penn Face Memory Test and the Penn Word 

Memory Test appear to have two meaningful dimensions. The Visual Object Learning Test, 

in contrast, appears to have only one.

Parameter estimates and model fit

Model fit statistics are reported in Table 2. For all tests, the unconstrained model produced 

better AIC and BIC statistics when compared to the constrained model. Although the 

unconstrained model consistently produced acceptable RMSEA values, the constrained 

model consistently produced poor values. Supplemental Figure 1 plots ability estimates 

produced by closed-form SDT expressions (d′ and Ccenter) versus constrained model MAP 

estimates (θd′ and θCcenter). The estimates are very similar. Differences are due to the 

estimators’ unique methods for handling perfect response strings.

For the Penn Face Memory Test, 68% of the residual correlations were less than .05, 95% 

were less than .10, and 99% were less than .15. For the Penn Word Memory Test, 72% of the 

residual correlations were less than .05, 95% were less than .10, and 99% were less than .15. 

For the Visual Object Learning Test, 49% of the residual correlations were less than .05, 

88% were less than .10, and 99% were less than .15. Detailed item fit values for the 

unconstrained model are shown in Supplemental Figure 2.

Standard error of estimate

SEθ functions for the unconstrained models fitted to each test are shown in Figure 3. The 

figure also shows the distribution of each construct within the sample. All tests are expected 

to provide the best precision (lowest SEθ) near the 0 points of both θd′ and θCcenter. 
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Conversely, the tests are expected to provide worse precision (highest SEθ) at high values of 

θd′. Thus, the tests are expected to measure examinees with low memory discrimination 

ability better than examinees with high memory discrimination ability. The Penn Face 

Memory Test and the Penn Word Memory Test have very similar SEθ functions; however, 

the distribution of θd′ for the Penn Word Memory Test has a higher mean value than the 

distribution of θd′ for the Penn Face Memory Test (which is consistent with mean item 

accuracies of 85% and 82% respectively). The Visual Object Learning Test has the worst 

SEθ among the tests, which is explained by the Visual Object Learning Test having fewer 

items.

Regression analyses

Figure 4 plots the regression of θd′ onto head injury with LOC for each test. Although the 

associations were consistently negative, suggesting that greater duration of LOC was 

associated with poorer memory discrimination, the effects were weak and non-significant 

(PFMT b = −0.06, SE = 0.04, p = 0.13; PWMT b = −0.02, SE = 0.04, p = 0.56; VOLT b = 

−0.05, SE = 0.05, p = 0.27). The distributions of residuals are positively skewed towards 

regions of higher ability and greater measurement error, suggesting that associations 

between memory discrimination and head injury were artificially weakened for participants 

with high versus low ability.

Differential item functioning (DIF)

After establishing anchor items for the CPF (7, 9, 11, 12, 13, 26, 34, and 39), CPW (4, 6, 10, 

13, 16, 27, 28, and 38), and VOLT (6, 7, 11, and 19), 1 item on the CPF, 2 items on the 

CPW, and 0 items on the VOLT were significant for DIF. Moreover, none of the CPF or 

CPW DIF p values survived an adjustment for the false discover rate. The results provide no 

strong evidence of biased measurement by education. To further examine this point, Figure 5 

plots test response functions for the CPF, CPW, and VOLT, with separate functions for the 

two education groups. The test response functions plot expected total scores at varying levels 

of θd′ (holding θCcenter to a constant value of 0 [unbiased]). The figures are based on models 

where only parameters for anchor items were forced to be equal between groups. Thus, any 

systematic differences in the estimated τs between groups would lead to discordant 

functions. As can be seen, the expected total correct scores are nearly identical for the two 

education groups across a wide range of θd′, thus further indicating that there is little 

evidence of DIF on the tests.

Discussion

In this paper, we provided formal expressions for a combined signal detection-item response 

theory (SD-IRT) model, and then demonstrated its application to the scoring and evaluation 

of neuropsychological test data. SDT defines a specific latent measurement structure; 

namely, that test performance is determined by memory discrimination and response bias. In 

an empirical example, we supported potential applications of the SD-IRT model by showing 

that restrictions imposed by this model can be appropriate for recognition memory item data 

across multiple modalities. We then demonstrated two applications of the modeling 

approach in terms of quantifying and comparing measurement error across tests scored 
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according to the same cognitive model, and by assessing items for bias. Measurement error 

was systematically related to estimates of latent ability, which may have led to a missed 

opportunity to detect subtle consequences of brain injury. Analyses of differential item 

functioning, on the other hand, suggested little or no evidence of bias between groups 

defined by education.

Model fit to measures of face, word, and object recognition memory

Exploratory analyses (scree plots) suggested that the face and word memory tests had two 

meaningful dimensions along which individual differences could be characterized—which is 

consistent with past findings (Thomas et al., 2013) and supports the SDT interpretation of 

response processes. The object learning data, in contrast, appeared to have just one 

meaningful dimension. This may not preclude SDT-like scoring of the Visual Object 

Learning Test, but it does suggest that individual differences in memory discrimination (θd′) 

and/or response bias (θCcenter) are less distinct than for the Penn Face Memory Test and 

Penn Word Memory Test.

The SD-IRT model with item intercepts constrained to be equal—which is simply a re-

expression of an equal variance SDT model—poorly fitted the item data. However, freeing 

the item intercepts—that is, allowing items to vary in difficulty—substantially improved fit. 

Acceptable fit of the model with unconstrained item intercepts was not unequivocal. 

Residual correlation statistics suggested that a minority of items were not fitted well by the 

model. Given the large sample size, these residuals are likely not chance fluctuations in the 

data. They may, however, be few enough to be safely ignored in the process of scoring test 

data without seriously biasing results. Alternatively, the results could suggest limitations 

with the SDT model that might be accounted for by a more elaborate theory of recognition 

memory.

The equal variance SDT model is just one representation of cognitive processes involved in 

testing. The mathematical modeling literature in cognitive psychology is sophisticated and 

mature, but also unsettled (e.g., Pazzaglia, Dube, & Rotello, 2013; Wixted, 2007). For many 

areas of cognition, there is no consensus model. Batchelder and Alexander (2013) argue that 

it is important to distinguish between scientific goals and measurement goals when selecting 

a modeling approach. If the investigator’s goal is to develop or advance scientific theory 

about the measured construct itself, particularly as it relates to experimental paradigms, the 

approach discussed in this paper may not be optimal. However, if the investigator’s goal is to 

measure cognitive abilities in a way that approximates correct scientific theory, and yet is 

also flexible, SDT models are an attractive option.

Model applications

Conditional measurement error—The Standards for Education and Psychological 
Testing encourage test developers to report conditional standard errors of measurement when 

possible and appropriate (Standard 2.14; AERA, APA, & NCME, 2014). 

Neuropsychologists have reported conditional standard errors using IRT methodology for 

some measures, but widespread adoption of the approach is lacking. The SD-IRT model 

provides a mechanism for determining whether neuropsychological tests produce 
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conditional standard errors. In the current study, SEθ functions (Figure 3) suggested that all 

tests evaluated are most capable of discerning individual differences in θd′ (or d′) for 

examinees with relatively poorer memory discrimination.

A well-known axiom of psychometric theory demonstrates that associations between 

variables are attenuated to the extent that measures of those variables are unreliable (Haynes 

et al., 2011; Spearman, 1904). For example, measurement error attenuates group differences 

in test performance between samples of cognitively impaired versus healthy examinees 

(Thomas et al., 2017). Moreover, the risks of interpreting differential deficits based on 

measures of distinct cognitive abilities with unequal reliabilities have been well documented 

(e.g., Chapman & Chapman, 1973).

In the current study, we demonstrated that higher measurement error was systematically 

related to residuals from analyses that regressed θd′ onto self-report of head injury with 

LOC. Specifically, associations between head injury and cognitive performance appeared to 

be attenuated as a function of ability, artificially suggesting stronger effects in low versus 

high ability participants. Not only does this imply that the overall relationship between 

history of head injury and memory discrimination was diminished, it raises concerns about 

interpreting relative change in performance. That is, to the extent that participants in the 

Marine Resiliency Study were to experience future deployment-related head injuries 

resulting in cognitive deficits, changes in cognition could appear somewhat smaller in 

individuals with higher baseline levels of cognition (a similar argument has been made in the 

context of assessing cognitive declines associated with dementia; cf. Mungas & Reed, 2000). 

Although the SD-IRT model cannot retroactively fix such problems, it can warn 

neuropsychologists against a possible misinterpretation of results. We suspect these 

problems are common to measures of recognition memory, but have not been fully explored 

due to a lack of methods for quantifying conditional measurement error.

Conditional measurement error can be identified by classic approaches that are not 

dependent on IRT methodology, and neuropsychological texts (e.g., Mitrushina, Boone, 

Razani, & D’Elia, 2005) commonly warn about ceiling and floor effects. However, IRT is 

generally considered advantageous in this respect, in that the approach provides a more fine-

grained analysis of error, including the ability to separately quantify the impact of error 

across multiple latent dimensions. For example, while common descriptions of floor and 

ceiling effects tend to suggest that precision becomes poor only in the extremes of 

performance, Figure 3 makes clear that conditional error is fluid, varying throughout the full 

range of ability. Figure 3 also demonstrates how conditional error varies as a function of 

both response bias and ability. Finally, IRT, and thus the SD-IRT model in particular, can be 

used to develop computerized adaptive tests (e.g., Gershon, Cook, Mungas, Manly, Slotkin, 

Beaumont, & Weintraub, 2014), where information about items, combined with IRT 

estimates of SEθ, θd′, and θCcenter, can be used to tailor item administration in order to 

prevent conditional error.

Measurement Bias—Bias exists when examinees from separate populations have 

different probabilities of responding to an item correctly, even when they have equal ability. 

Here, we assessed whether item easiness parameters (τ) systematically varied, and thus 
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advantaged one group or the other. Controlling for the false discover rate, we found no 

evidence that τ parameters varied by groups defined based on high versus low education. 

Thus, there is no evidence of bias on the Penn Face Memory Test, Penn Word Memory Test, 

or Visual Object Learning Test. We did not examine other potential sources of bias, such as 

bias by race or gender, due to limited sample size and demographic characteristics of the 

sample. Nonetheless, the methodology presented here is easily replicated with standard IRT 

software. It is possible that the impact of level of education on DIF might be more nuanced 

than a simple no college versus some college distinction. As an alternative, methods that do 

not assume a priori known classes of individuals might be more effective in identifying 

biased items (e.g., Cohen & Bolt, 2005).

Interpretation of latent constructs—SD-IRT models can lessen ambiguity associated 

with interpreting latent constructs measured by certain cognitive tests. Typically, constructs 

are interpreted using exploratory methods along with a program of research comparing 

constructs to observed variables as well as to other constructs in order to form a nomological 

network (Cronbach & Meehl, 1955). Although these methods are effective, they primarily 

concern the significance of constructs rather than their meaning. For this reason, Embretson 

(Whitely 1983; Embretson, 1998) introduced the concept of construct representation, which 

concerns defining the meaning of constructs through the identification of latent 

psychological abilities, processes, and strategies that underlie item responses. The SD-IRT 

model, through the process of fixing item discrimination parameters according to SDT, helps 

define the construct representation, and thus meaning of latent constructs measured by some 

cognitive tests.

A contribution of the SD-IRT model is in providing a solution to the problem of rotational 

indeterminacy for some multidimensional item response models. The application of 

multidimensional measurement models at the item level is more challenging than the 

application of these models at the test level. This is because whereas tests are developed with 

the goal to assess distinct domains of cognition (e.g., attention vs. memory), test items are 

often thought to be homogenous, and may differ only with respect to their relative 

weighting, or discrimination, of cognitive subdomains. In unrestricted models, there are 

infinite combinations of equally likely ability and discrimination parameters given different 

rotations of the multidimensional ability space. Thus, final parameter estimates are often 

based on some type of rotation method that attempts to find simple structure: a pattern of 

item discrimination parameters where items are indicators of just one dimension. The SD-

IRT model defines aspects of the latent ability space a priori based on SDT.

Future directions

Further evaluation of the SD-IRT model, including applications to tests from other domains 

of assessment, is needed before widespread use of the approach can be recommended. This 

includes not just measures of recognition memory (e.g., Delis et al., 2000), but also 

measures of other cognitive domains where the SDT scoring framework has been applied 

such as N-back tests of working memory (Kane et al., 2007), continuous performance tests 

of sustained attention and vigilance (Conners, 1994), and tests of emotion recognition (Gur 

et al., 2010) among others.
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This paper has demonstrated two of the many applications of the SD-IRT model. As noted, 

the approach combines SDT scoring with IRT methods for evaluating tests and estimating 

scores. Thus, the full array of IRT applications (see Thomas, 2017) can be considered in 

future work. We envision several extensions of the approach. First, the SD-IRT model could 

be used to develop computerized adaptive tests (CATs). Analyses revealed that the PFMT, 

PWMT, and SVOLT all provide optimal precision (lowest SEθ) for estimates of ability for 

individuals with average to below average memory functioning. Thus, the tests appear to be 

very well designed for their purpose of quantifying neurocognitive impairments. However, 

as is typical, the tests were less capable of discerning individual differences in the above 

average range of memory functioning, which would require an extended upper range of 

difficulty. It is challenging to design fixed item tests that include a wide range of item 

difficulty and yet are also tolerable and efficient. Because of this, a growing chorus of 

researchers argues that neuropsychological measures should take advantage of adaptive 

testing methodology, where item difficulty is tailored in real-time to the ongoing 

performance of individual examinees (Linden & Glas, 2010). A primary challenge in the 

development of CATs is in calibrating item parameters. Item parameters typically need to be 

pre-calibrated in large, diverse samples of many hundreds or thousands of participants, 

which can be expensive and impractical in many research settings. The SD-IRT model helps 

lessen the burden of calibration by defining item discrimination parameters a priori. Thus, 

the SD-IRT model could simplify the development of CATs for some neuropsychological 

measures.

Second, because the multidimensional IRT model described in this work is also a 

reparametrized confirmatory factor model, other latent variable methods such as structural 

equation modeling, in general, and latent growth curve models, mixed effects models, and 

mixture models, in particular, can be added on to the SD-IRT framework. This might be 

particularly valuable in longitudinal studies and randomized controlled trials. Mixture IRT 

models, where examinees are assumed to belong to one of several latent subpopulations, are 

increasingly popular in psychometric applications (de Ayala & Santiago, 2017). In samples 

where examinees might belong to subpopulations based on unknown clinical variables—

such as individuals who are or are not at risk for developing dementia—mixture IRT models 

might prove to have diagnostic or predictive utility by estimating latent class membership. 

The SD-IRT model presented in this work effectively assumed one known class of 

examinees. However, extensions of the approach based on mixture IRT methodology are 

readily implemented.

Finally, there is also a growing trend that involves combining cognitive and psychometric 

models for developing, evaluating, and scoring neuropsychological tests (e.g., Batchelder, 

2010; Brown, Patt, Sawyer, & Thomas, 2016; Brown, Thomas, & Patt, 2017; Thomas et al., 

2015; van der Mass, Molenaar, Maris, Kievit, & Borsboom, 2011). Combining measurement 

models from cognitive and psychometric theories allows researchers to assess precision and 

other aspects of measurement using modern psychometric approaches while interpreting the 

meaning of latent constructs within the context of strong, experimentally validated 

psychological theories. This paper contributes one additional model to this effort. Additional 

studies are needed that demonstrate the practical advantages of this methodology when 

compared to more typical psychometric approaches.
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Summary

In this paper, we demonstrated that certain IRT models can be formulated as SDT models, 

thus linking two complementary but distinct methodologies. We successfully fitted the SD-

IRT model to measures of recognition memory across three distinct modalities (faces, words, 

and objects). We then demonstrated two applications of the approach that directly tied to 

professional standards for psychological assessment. Further evaluations of the SD-IRT 

model are needed, but our preliminary work suggests that the approach could prove valuable 

in neuropsychological research and practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

The logistic-ogive signal detection-item response theory model can also be expressed as

P Xij = 1 τj, αCcenter, j, αd′, j, θCcenter, i, θd′, i

= 1
1 + exp − τj + αCcenter, jθCcenter, i + αd′, jθd′, i

,

(A1)
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and the normal-ogive signal detection-item response theory model can also be expressed as

P Xij = 1 τj, αCcenter, j, αd′, j, θCcenter, i, θd′, i = Φ τj + αCcenter, jθCcenter, i + αd′, jθd′, i , (A2)

where Φ is the cumulative distribution function for the normal distribution.
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Figure 1. 
Equal variance, signal detection theory model. μT = mean of the distribution of familiarity 

for targets; μF = mean of the distribution of familiarity for foils; d′ = μT minus μF (memory 

discrimination); C = criterion; Ccenter = value of the criterion relative to the midpoint 

between μT and μF (bias).
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Figure 2. 
Principle factor analysis scree plot for all recognition memory tests.
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Figure 3. 
Standard error of estimate functions for the signal detection-item response theory models. 

Face = Penn Face Memory Test. Word = Penn Word Memory Test. Object = Visual Object 

Learning Test.
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Figure 4. 
Regression of estimates of memory discrimination (θd′) onto self-report of head injury with 

loss of consciousness with distributions of residuals. SEθ = standard error of estimate. Face 

= Penn Face Memory Test. Word = Penn Word Memory Test. Object = Visual Object 

Learning Test.

Thomas et al. Page 26

J Clin Exp Neuropsychol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Test response functions allowing item parameters to vary by groups defined by college 

versus high school education. Face = Penn Face Memory Test. Word = Penn Word Memory 

Test. Object = Visual Object Learning Test.
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Table 1

Demographic Characteristics

Face Word Object

Sample Size 1,338 1,331 1,249

Age M (SD) 22.18 (2.91) 22.20 (2.91) 22.19 (2.89)

Education M (SD) 12.40 (0.95) 12.40 (0.96) 12.39 (0.97)

Ethnicity

 Not Hispanic or Latino 74% 75% 74%

 Cuban < 1% < 1% < 1%

 Mexican 15% 15% 15%

 Puerto Rican 2% 2% 2%

 South or Central American 3% 3% 3%

 Other Spanish culture/origin 5% 4% 4%

Race

 Black or African American 4% 4% 4%

 American Indian or Alaskan 2% 2% 2%

 Asian 2% 2% 2%

 Hawaiian or Pacific Islander 1% 1% 1%

 White 91% 91% 91%

Note. Face = Penn Face Memory Test; Word = Penn Word Memory Test; Object = Visual Object Learning Test. All participants were male.
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