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Abstract

Discriminative methods commonly produce models with relatively good generalization abilities. 

However, this advantage is challenged in real-world applications (e.g., medical image analysis 

problems), in which there often exist outlier data points (sample-outliers) and noises in the 

predictor values (feature-noises). Methods robust to both types of these deviations are somewhat 

overlooked in the literature. We further argue that denoising can be more effective, if we learn the 

model using all the available labeled and unlabeled samples, as the intrinsic geometry of the 
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sample manifold can be better constructed using more data points. In this paper, we propose a 

semi-supervised robust discriminative classification method based on the least-squares formulation 

of linear discriminant analysis to detect sample-outliers and feature-noises simultaneously, using 

both labeled training and unlabeled testing data. We conduct several experiments on a synthetic, 

some benchmark semi-supervised learning, and two brain neurodegenerative disease diagnosis 

datasets (for Parkinson’s and Alzheimer’s diseases). Specifically for the application of 

neurodegenerative diseases diagnosis, incorporating robust machine learning methods can be of 

great benefit, due to the noisy nature of neuroimaging data. Our results show that our method 

outperforms the baseline and several state-of-the-art methods, in terms of both accuracy and the 

area under the ROC curve.

Index Terms

Linear discriminant analysis; semi-supervised learning; robust classification; feature selection; 
sample outlier detection; Alzheimer’s disease; Parkinson’s disease; biomarker identification; 
disease diagnosis; nuclear norm; regularization

1 Introduction

Discriminative methods learn a mapping from the input feature space to the output label 

space for a task of classification (or regression). Such methods usually achieve good 

classification (or regression) results, compared to the generative methods, when there is 

enough number of training samples. But they carry out limited abilities when there are a 

small number of labeled data [1]. On the other hand, when noise contaminates the data, 

discriminative models usually fail to find an optimal mapping. In many real-world 

applications, the data are usually contaminated by different levels of noise. In some cases, a 

whole bunch of samples are affected (e.g., deviations in neuroimaging data due to radiation 

or patient movements during the imaging process), and therefore not useful for the learning 

task. These types of deviations are often denoted as sample-outliers. On the other hand, 

sometimes only some specific predictor values or features are infected, known as intra-

sample-outliers (or feature-noises).

Various efforts have been made to add robustness to different learning methods. For 

instance, Suzumaura et al. [2] and Xu et al. [3] introduced robustness to the conventional 

support vector machine formulation by proposing various regularization terms or 

suppressing the influence of the outliers. In other works, Kim et al. [4] and Croux et al. [5] 

proposed robust variations of Fisher/Linear Discriminant Analysis (LDA) method, and Li et 
al. [6] introduced a worst-case LDA, by minimizing the upper bound of the LDA cost 

function. These methods are all robust to sample-outliers. On the other hand, some methods 

were proposed to deal with the feature-noises, such as [7, 8]. Many previous methods use 

Robust Principal Component Analysis (RPCA) [9], to deal with feature-noises in an 

unsupervised manner. Furthermore, many robust approaches that denoise the data while 

training the model do not offer straightforward strategies to deal with the testing data. Often, 

the denoising procedure of the training and the testing data are conducted separately (e.g., in 

[10]), which might induce a bias to the whole learning process. One solution is to denoise 
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the training and the testing data together, provided that the testing data are available. 

Therefore, we propose to take advantage of them as unlabeled data during the training phase. 

Under such semi-supervised setting, the constructed discriminative model can be more 

reliable, particularly for the cases with the small-sample-size problem. This could be 

attributed to the fact that more samples are being used to model the intrinsic geometry of the 

sample manifold.

The main application we are anticipating in this paper is the diagnosis of neurodegenerative 

diseases, based on neuroimaging data. This is a challenging problem, as the data is pretty 

much prone to noise and often there is a limited number of samples. Hence, there is a calling 

need for robust machine learning methods for such applications. Neurodegenrative diseases 

are debilitating and incurable conditions caused by progressive degeneration or death of the 

cells in the brain nervous system. These diseases affect millions of people around the world. 

Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) are among the most common 

types. Although neurodegenerative diseases manifest with diverse pathological features, the 

cellular level processes resemble similar structures. For instance, in AD, deposits of tiny 

protein plaques result into brain damage and progressive loss of memory [11], while PD is 

mainly initiated by a selective loss of dopaminergic neurons in the Substantia Nigra (SN) 

brain region, leading to declining in the generation of a chemical messenger, dopamine. 

Lack of dopamine yields loss of ability to control body movements, along with several non-

motor problems (e.g., depression, and anxiety) [12]. These diseases are often incurable; thus, 

early diagnosis and treatment are crucial to slow down their progression in the initial stages.

The challenges for building reliable diagnosis models include: (1) It is usually burdensome 

to acquire noise-free imaging data from the patients. Different sources of noise may affect 

the acquired data, including a wide variety of noises in the neuroimage acquisition 

procedure, the imposed artifacts due to preprocessing, and the large amount of inter-subject 

variabilities; (2) To build a good diagnosis model, through learning a classifier, we need a 

sufficiently large number of labeled subjects. However, acquiring reliably enough labeled 

data is costly and time-consuming. Therefore, models that can take advantage of unlabeled 

data (subjects that we are not certain about their disease) could be of great interest; (3) 

Different neurodegenerative diseases often affect different regions of the brain, i.e., only 

certain regions of the brain are associated with the disease. Thus, using all features can 

undermine the diagnosis performance, and we need to identify the imaging biomarkers for 

each specific disease while learning the diagnosis model.

To deal with the aforementioned challenges, we propose a semi-supervised discriminative 

classifier, to take advantage of the available unlabeled testing data. This leads to a more 

substantial number of samples, which can yield better modeling of the intrinsic geometry of 

the sample manifold. As a result, our model jointly estimates the noise model (both sample-

outliers and feature-noises) on the whole labeled training and unlabeled testing data and 

simultaneously builds a discriminative model upon the denoised training data. Unlike many 

previous works on denoising medical images, we do not define the problem of denoising 

separately from the analysis part. In the sense that if a sample (or a feature value) does not 

act in accordance with others in building the model, it should be counted as a sample-outlier 

(or a feature-noise). This observation suggests that intertwining the denoising procedure 
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with the learning framework will help to identify the sample-outliers and feature-noises 

more efficiently while learning a robust classification model. It is important to note that 

denoising and outlier detection has a long history in the area of medical image analysis and 

computing. The inter- and intra-subject variabilities, the noise sourced from the images 

devices, and the pre-processing errors emerge the study of robust methods for analyzing 

medical imaging data. For instance, in the recent years, several attempts have been made for 

denoising the medical images [13–16] or detecting outliers [17, 18], as a preprocessing step 

to any analysis on medical images.

1.1 Background and Overview of the Proposed Method

In this paper, we introduce a novel classification model based on LDA, which is robust 

against both sample-outliers and feature-noises, referred to as robust feature-sample linear 

discriminant analysis (RFS-LDA). The original LDA formulation finds the mapping 

between the sample space and the label space through a linear transformation matrix, 

maximizing a so-called Fisher discriminant ratio [4]. In practice, the major drawback of 

LDA is the small-sample-size problem, which arises when the number of available training 

samples is much less than the dimensionality of the feature space [19]. Original LDA finds 

the mapping by incorporating covariance matrices of the input feature matrices. In cases 

where the number of samples is much less than the number of features, these matrices are 

probably rank-deficient [20]. A reformulation of LDA based on the reduced-rank least-

squares problem (known as LS-LDA) [20] tackles this problem. LS-LDA finds the mapping 

β ∈ ℝl×m by solving the following problem:

min
β

‖(YtrYtr
⊤)−½(Ytr − βXtr)‖F

2
, (1)

where Ytr ∈ ℝl×Ntr is a binary class label indicator matrix, for l different classes (or labels), 

and Xtr ∈ ℝm×Ntr is the matrix containing Ntr m-dimensional training samples. (Ytr Ytr
⊤)−½

 is 

a normalization factor that compensates for the different number of samples in each class 

[20]. As a result, the mapping β is a reduced rank transformation matrix [8, 20], which could 

be used to project a test data xtst ∈ ℝm×1 onto an l-dimensional space. Note that directly 

minimizing (1) avoids the small-sample-size problem by not using the covariance matrices. 

After it projects the samples to the output space, we need a simple step to infer the class 

labels. LDA maximizes inter-class variance, while minimizing the intra-class variance, in the 

mapped space. Thus, we expect that in the mapped space, same-class samples to be closer to 

each other. The class labels could, therefore, be simply determined using a k-NN strategy.

To make LDA robust against noisy data, Fidler et al. [7] estimate a robust basis, which 

consists all the discriminative information for classification or regression. In the testing 

phase, the estimated basis identifies the outliers in samples (images in their case) and then 

calculates the coefficients using a subsampling approach. On the other hand, Huang et al. [8] 

proposed a general formulation for Robust Regression (RR) and classification (i.e., Robust 

LDA or RLDA), where, they first denoise the training feature values using a strategy similar 

to RPCA [9], and then build the above LS-LDA model using the denoised data. In the testing 
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stage, they denoise the testing samples using the denoised training data. This separate 

denoising procedure could not effectively form the underlying geometry of sample space to 

denoise the data. Furthermore, RR [8] only accounts for feature-noises by imposing a sparse 

noise model constraint on the features matrix, despite the fact that the least-squares data 

fitting term in (1) is vulnerable to large sample-outliers.

Recently, in robust statistics, it is found that ℓ1 functions are able to make more reliable 

estimations [21] than ℓ2 least-squares fitting functions. This has been previously adopted in 

many applications, including robust face recognition [22] and robust dictionary learning 

[23]. Reformulating the objective in (1) with ℓ1 loss entails the following problem:

min
β

‖(Ytr Ytr
⊤)−½(Ytr − βXtr)‖1 . (2)

We incorporate this fitting function to deal with the sample-outliers, in this paper. We also 

adopt a strategy to simultaneously denoise the data from feature-noises. This is done through 

a semi-supervised setting to take advantage of all labeled and unlabeled data, and build the 

structure of the sample space more robustly. Figure 1 illustrates this idea, in which Fig. 1a 

shows a traditional learning problem. However, if the data contains sample-outliers or some 

samples suffer from noise in their feature values (Fig. 1b), traditional methods usually fail to 

build reliable models.

Semi-supervised learning has long been of great interest in different fields, because it can 

make use of unlabeled or poorly labeled data to achieve better prediction models [24, 25]. 

For instance, Joulin and Bach [26] introduced a convex relaxation and used their model in 

different semi-supervised learning scenarios. In another work, Cai et al. [27] proposed a 

semi-supervised discriminant analysis, where the separation between different classes is 

maximized using the labeled data points, while the unlabeled data points estimate the 

structure of the data. Belkin et al. [28] similarly used the unlabeled data for regularization. In 

contrast, we incorporate the unlabeled testing data in our formulation to better estimate the 

intrinsic geometry of the sample manifold and denoise the data, while building the 

discriminative model upon the labeled training data. By incorporating the unlabeled testing 

data (Fig. 1c), we learn the classification model, while denoising both training and testing 

data and detecting sample-outliers.

We apply our method for the diagnosis of neurodegenerative brain disorders. Specifically, in 

this study, we use two popular databases: PPMI [29] and ADNI [30]. The former aims at 

investigating PD and its related disorders, while the latter is designed for diagnosing AD and 

its prodromal stage, known as Mild-Cognitive Impairment (MCI). In addition, to validate the 

proposed method, we further conduct experiments on synthetic data, as well as some 

benchmark datasets for semi-supervised learning.

1.2 Contributions

The contributions of this paper are multi-fold: (1) We propose an approach to dealing with 

the sample-outliers and feature-noises simultaneously and build a robust discriminative 
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classifier. The sample-outliers are penalized through an ℓ1 fitting function. (2) Our proposed 

model operates under a semi-supervised setting, where the whole data (i.e., labeled training, 

and unlabeled testing samples) are incorporated to build the intrinsic geometry of the sample 

space, which leads to better data denoising. (3) We further select the most discriminative 

features for the learning process through regularizing the weights matrix with an ℓ1 norm. 

This is especially of great interest for the neurodegenerative disease diagnosis, where the 

features from different regions of the brain are extracted, but not all the regions are 

associated with a certain disease. Thus, the most discriminative regions associated with the 

disease would be identified, leading to a more reliable diagnosis model.

2 The Proposed Method: RFS-LDA

Suppose we have Ntr training and Ntst testing samples, each with a m dimensional feature 

vector, which leads to a set of N = Ntr + Ntst total samples. Let X ∈ ℝm×N denote the set of 

all samples (both training and testing), in which each column indicates a single sample, and 

also let yi ∈ ℝ1×N their corresponding ith labels. In general, with l different labels, we can 

define Y ∈ ℝl×N. Thus, X and Y are composed by stacking up the training and testing data 

as: X = [Xtr Xtst] and Y = [Ytr Ytst]. Our goal is to determine the labels of the test samples, 

Ytst ∈ ℝl×Ntst.

Note that, throughout the paper, bold capital letters denote matrices (e.g., A), while bold 

lowercase letters denote vectors (e.g., a). All non-bold letters denote scalar variables. aij is 

the scalar in the row i and column j of A. 〈a1, a2〉 denotes the inner product between a1 and 

a2. ‖a‖2
2 = 〈a, a〉 = ∑iai

2 and ||a||1 = Σi|ai| represent the squared Euclidean norm and the ℓ1 

norm of a, respectively. ‖A‖F
2 = tr(A⊤A) = ∑i jai j, ||A||1,1 = Σj Σi |aij| and ||A||* designate the 

squared Frobenius norm, ℓ1,1 norm and the nuclear norm (sum of singular values) of A, 

respectively. IK ∈ ℝK×K denotes the identity matrix.

2.1 Formulation

All the available samples, both labeled and unlabeled, are arranged into a matrix, X ∈ ℝm×N, 

each of whose columns represents the feature vector of a sample. To achieve a robust 

classifier, we seek to denoise this matrix. Following [31, 32], this could be done by 

assuming that X can be spanned on a low-rank subspace and therefore should be rank-

deficient. This assumption supports the fact that samples from same classes are more 

correlated [8, 32] and linearly-dependent. Accordingly, the original matrix X is decomposed 

into the summation of two counterparts, D ∈ ℝm×N and E ∈ ℝm×N. The former represents 

the denoised data matrix, while the latter is the error matrix. This is similar to RPCA [9], 

used in many computer vision applications. With this decomposition, we can assume that the 

denoised data matrix shall be rank-deficient and the error matrix sparse.

But as one can easily infer, this process of denoising does not incorporate the label 

information and is, therefore, unsupervised. Nevertheless, recall that we are also seeking a 

mapping between the denoised training samples and their respective labels. So, matrix D 
should be spanned on a low-rank subspace that would lead to a good classification model of 

its sub-matrix, Dtr. We incorporate the regression model in (2) as the fitting function to 
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compute a mapping β. A schematic illustration of the proposed method is depicted in Fig. S1 

of the supplementary material.

To ensure the rank-deficiency of the matrix D, like many previous works [9, 31, 32], we 

approximate the rank function using the nuclear norm (i.e., the sum of the singular values of 

the matrix). The noise is modeled using the ℓ1 norm of the matrix, which ensures a sparse 

noise model on the feature values. Accordingly, the objective function for RFS-LDA under a 

semi-supervised setting would be formed as:

min
β, D, D, E

η
2‖Ytr − βD‖1 + ‖D‖∗ + λ1‖E‖1 + λ2ℛ(β),

s . t . X = D + E, D = [Dtr; 1⊤],
(3)

where the first term is the ℓ1 regression model introduced in (2). This term only operates on 

the denoised training samples from matrix D with a row of all 1’s added to it (denoted as D̂), 
to counter for the bias in the linear model. The second and third terms, together with the first 

constraint, are similar to the RPCA formulation [9]. They denoise the labeled training and 

unlabeled testing data together, and in combination with the first term, we ensure that the 

denoised data also specifies a favorable regression. The last term is a regularization on the 

learned mapping coefficients, to avoid trivial or unexpectedly large values. The 

hyperparameters η, λ1 and λ2 are the scalar regularization hyperparameters, which will be 

discussed in detail later.

The regularization on the coefficients could be posed as a simple norm of the matrix, β. But, 

in many applications, like ours (disease diagnosis), many of the features in the feature 

vectors are redundant. This is because we extract features from different brain regions, but 

not all the regions contribute to a certain disease. Therefore, it is desirable to determine 

which features are the most relevant and the most discriminative for the task. Following [11, 

22, 33], we are seeking a sparse set of weights that ensures incorporating the most 

discriminative features. Therefore, we propose a regularization on the weights matrix as a 

combination of the ℓ1 and Frobenius norms:

ℛ(β) = ‖β‖1, 1 + γ‖β‖F . (4)

Evidently, the solution to the objective function in (3) is not easy to achieve. This is because 

it contains a quadratic term, and the minimization of the ℓ1 fitting function is not 

straightforward, due to its indifferentiability. To this end, we formalize the solution with a 

similar strategy as in Iteratively Re-weighted Least Squares (IRLS) [21]. The ℓ1 fitting term 

is approximated by a conventional ℓ2 least-squares, in which each of the samples in the D̂ 

matrix is weighted with the reverse of their regression residual. Additionally, since we 

regularize the weights β using a combination of ℓ1 and ℓ2 norms, the non-zero elements 

would represent the selected features by the algorithm. In order to reflect this to feature 

denoising scheme, we define a projection operator ℘β(.). This operator projects the values of 

the non-selected features (respective to zero values in β) to zero, to decrease their effect in 
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minimizing the rank of the matrix D (in the second term). Therefore, the new problem would 

be:

min
β, D, D, E

η
2‖(Ytr − βD)α‖F

2 + ‖𝒫β(D)‖∗ + λ1‖E‖1 + λ2ℛ(β),

s . t . X = D + E, D = [Dtr; 1⊤] .
(5)

where α̂ is a diagonal matrix, the ith diagonal element of which is the ith sample’s weight:

αii = 1
(yi − βdi)

2 + δ
, ∀i, j ∈ {0, …, Ntr}, i ≠ j, αi j = 0. (6)

Hyperparameter δ is a small positive number (10−4 in our experiments), to prevent from any 

division by zeros in (6). In the next subsection, we introduce an algorithm to solve this 

optimization problem.

Our work is closely related to the RR formulations in [8], where the authors impose a low-

rank assumption on the training data feature values and an ℓ1 assumption on the noise model. 

The discriminant model is learned similarly to LS-LDA, as described in (1). Whereas, we 

observed that to have a more robust regression model, we need to establish a strategy where 

we can weight the samples. This is because the ℓ1 noise model in [8] can only discard a 

controlled amount of sparse noise in the feature values, not the whole samples. On the other 

hand, our model operates under a semi-supervised setting, where both labeled training and 

unlabeled testing samples are denoised simultaneously, leading to a more robust denoising 

model. Also, our model further selects the most discriminative features to learn the 

regression model, by regularizing the learned weights and enforcing a sparsity condition on 

them.

To optimize the objective function in (5), we use the Alternating Direction Method of 

Multipliers (ADMM) [34]. The detailed optimization steps, along with the comprehensive 

analysis of the algorithm, its convergence properties and an upper bound for the time 

complexity of the proposed algorithm are provided in the supplementary material.

3 Experiments

To evaluate the proposed approach, we compare our method against several baselines and 

state-of-the-art methods in different scenarios. The first experiment evaluates our method on 

a synthetic set of data, which highlights how the proposed method is robust against sample-

outliers or feature-noises separately, or when they occur at the same time. Then we employ 

some benchmark semi-supervised learning datasets and report results in comparisons with 

some baseline and state-of-the-art methods. The results of these two experiments (i.e., on 

synthetic and benchmark data) are reported in the supplementary material. We then 

apply the proposed RFS-LDA method to the problem of neurodegenerative brain disorder 

and disease diagnosis.
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For the choice of hyperparameters, a set of possible values are first predefined, and the best 

hyperparameters are selected through 10-fold cross-validation, for all the competing 

methods. The RFS-LDA hyperparameters (as in Eq. (5)) are set with the same strategy as in 

[8]:

λ1 =
Λ1

( min (m, N)) , λ2 =
Λ2
m

, ηk =
Λ3‖X‖∗

‖Ytr − βkDk‖F
2 , (7)

and ρ (controlling the {μ}s in the iterative optimization algorithm) is set to 1.01. We have set 

Λ1, Λ2, Λ3 and γ through inner-cross-validation grid-search in the range [10−4, 10].

3.1 Datasets

In this study, we use two real-world databases for two different brain neurodegenerative 

diseases, namely PD and AD. The first set of data is obtained from the Parkinson’s 

Progression Markers Initiative (PPMI) database [29], with the MRI data from 374 PD and 

169 normal control (NC) subjects. The second dataset comes from the Alzheimer’s disease 

neuroimaging initiative (ADNI) database, which includes MRI and FDG-PET data. We used 

93 AD patients, 202 MCI patients, and 101 NC subjects, each with complete MRI and FDG-

PET data. The subjects’ brain images are preprocessed and regions of interest (ROI) features 

are extracted for each subject. For more detailed information about these two datasets and 

the preprocessing steps for feature extraction refer to the supplementary material.

3.2 Baseline Methods

We compare our proposed method with different baseline methods, including the 

conventional LS-LDA [20], RLDA [8], and linear Support Vector Machine (SVM). Another 

baseline method can be defined as running the same procedures as in the proposed method 

but disjointly. Therefore, we apply RPCA on the matrix X separately to first denoise, noted 

as RPCA+LS-LDA) [8]. To analyze the effectiveness of the feature selection strategy of the 

proposed method, we also include baseline methods which use sparse feature selection 

(SFS) together with SVM (SFS+SVM), and RLDA (SFS+RLDA). Except for RPCA+LDA, 

the other methods in comparison do not incorporate the testing data. In order to have a fair 

set of comparisons, we also compare against the transductive Matrix Completion (MC) 

approach [32] and the semi-supervised formulation of SVM (S3VM) [35]. These two 

methods incorporate the unlabeled testing data in the process of training their models. 

Additionally, in order to further evaluate the effect of the ℓ1 norm regularization on the 

weights matrix β, we also report results for RFS-LDA when regularized by only γ||β||F 

(denoted as RFS-LDA*), rather than the regularization term introduced in (4). Finally, we 

report results using the supervised version of our proposed method, which is denoted as 

supervised RFS-LDA (S-RFS-LDA). In S-RFS-LDA, we train our model using only the 

training data, where X in (5) is replaced with Xtr. In this way, we can examine the effect of 

using unlabeled testing data in the prediction model.
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3.3 Disease Diagnosis

We evaluate our method with two popular datasets for neurodegenerative disease diagnosis, 

PPMI and ADNI, for diagnosis of PD and AD, respectively. These datasets, subject 

information, preprocessing steps, and feature extraction are explained in Section C of the 

supplementary material.

Results—The first row in Table 1 shows the diagnostic accuracy of the proposed technique 

(RFS-LDA) in comparisons with different baseline and state-of-the-art methods using 10-

fold cross-validation. The results show that the proposed method outperforms all others. 

This can be attributed to the fact that our method better deals with feature-noises and 

sample-outliers. Recall that samples and their corresponding feature vectors extracted from 

the neuroimaging data are quite prone to noise, as discussed earlier. Therefore, some of the 

samples might not be useful, and some might be contaminated by a certain amount of noise. 

Our method can deal with both types of noises, as supported by the results. The second 

disease diagnosis experiment is conducted on ADNI, in which the goal is to discriminate 

normal controls (NC) from mild cognitive impairment (MCI) and AD subjects. Therefore, 

NC subjects form our negative class, while the positive class is defined as AD in one 

experiment, and MCI in the other. The diagnosis results of the AD vs. NC and MCI vs. NC 

are reported in the second and third rows in Table 1, respectively. As it can be seen, in 

comparison with the state-of-the-art, our method achieves better results in terms of both 

accuracy and the area under ROC curve.

It is worth noting that running the model using a 10-fold cross-validation for the PD vs. NC 

(543 subjects), AD vs. NC (194 subjects), and MCI vs. NC (303 subjects) experiments on a 

PC (Intel® Core™ i7 @ 2.30 GHz and 8.00 GB of memory), with a parallel implementation 

in MATLAB® (i.e., using parfor for 4 workers) took approximately 6, 2 and 3.5 hours, 

respectively. Additionally, to test the statistical significance of the obtained results, we 

further conducted a Fisher exact test [36] on the accuracy score achieved by each of the 

methods. This test verifies that the method is significantly more accurate (with a p-value of p 
< 0.05) than randomly assigning the samples to the two classes. The results of this statistical 

test indicated that the proposed method achieves a p-value of even less than 0.001. This 

shows that there are no random associations with the obtained results. However, for some of 

the compared baseline methods, a p-value of p > 0.05 was observed, which is not appealing. 

These methods are marked with a † sign in Table 1. It is important to note that the 

comparisons between the supervised (S-RFS-LDA) and the semi-supervised (RFS-LDA) 

versions of the proposed algorithm in both Table 1 and Figure S5 of the supplementary 

material show that including the unlabeled testing data improves the results by a relatively 

notable margin. This can be because including more samples gives us a better representation 

of the sample manifold, leading to better denoising of simultaneous training and testing data, 

in a way that a better classifier is built.

Although the studies on Parkinson’s disease using modern machine learning techniques are 

scarce, there are quite a few studies in the literature for Alzheimer’s disease. State-of-the-art 

machine learning approaches for this purpose either aim at developing feature selection 

techniques or focus on designing delicate classifiers. The first type usually use sophisticated 
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techniques for feature selection [37, 38], feature learning [39], or feature extraction[40–42] 

and then an straightforward classification technique (like SVM) is utilized. The second type 

develops task-specific classifiers to enhance the classification accuracies, e.g. [43–45]. In 

contrast, our method constructs the sample manifold using all labeled and unlabeled data to 

denoise the features and also selects the best features for classification, with a classification 

loss robust to sample-outliers. In Table 2, we compare our method with several state-of-the-

art methods for Alzheimer’s disease diagnosis. The table includes all the information about 

the dataset and the methods they used for obtaining those results. This is only to show where 

our method stands among the previous works in the same field.

As discussed earlier, in medical imaging applications many sources of noise contribute to the 

acquired data, and therefore methods that can deal with noise and outliers are of great 

interest. Our method enjoys from a single optimization objective that can simultaneously 

suppress sample-outliers and feature-noises, which, compared to other methods, exhibits a 

good performance. One of the interesting functions of the proposed method is the 

regularization on the mapping coefficients with the ℓ1 norm, which would select a compact 

set of features to contribute to the learned mapping. The magnitude of the coefficients would 

show the relevance of the specific features for building the prediction model. In our 

application, the features from the whole brain regions are extracted, but not all the ROIs are 

associated with the disease (e.g., AD, MCI or PD). By exploring the learned coefficients by 

our method, we can determine which brain regions are highly associated with a certain 

disease.

Identification of Disease Biomarkers—To extract these most relevant ROIs, we select 

the ROIs that were given larger weights in 50% of the ten repetitions of the 10-fold cross-

validation tests. Fig. 2(a) visualizes the most relevant regions for PD on a raw brain 

template, including the middle frontal gyrus right, pons, substrata nigra left and right, red 

nucleus left, pallidum left, pautmen left, caudate right, inferior temporal left, and superior 

temporal gyrus right. As in the previous studies in the literature [46, 47], deep brain and 

striatum areas are known to play crucial roles for PD. Our study also confirms these clinical 

findings. Same experimental settings for AD and MCI identifies the top regions selected by 

our algorithm in AD vs. NC and MCI vs. NC classification scenarios (Figs. 2(b) and (c), 

respectively). These regions, including middle temporal gyrus, medial front-orbital gyrus, 

postcentral gyrus, caudate nucleus, cuneus, and amygdala, have also been reported to be 

associated with AD and MCI in the literature [11, 48]. The analysis of such selection of 

brain regions can be further incorporated for future clinical studies.

Method Discussions—To analyze the effect of the sample-outlier detection in the 

proposed framework, we employ a dimensionality reduction technique to facilitate the 

visualization of the data points. We project the samples of the AD vs. NC experiment into 

the 2-D space using t-SNE [49]. The t-SNE projection technique visualizes high-

dimensional data by giving each sample a location in a two-dimensional map. The map 

created by the t-SNE reveals the neighborhood structure of the sample manifold at many 

different scales [49]. This is particularly important for our application, in which the high-

dimensional neuroimaging data lie on several different low-dimensional manifolds since the 
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samples come from different subjects with or without the neurodegenerative disease. Fig. 3 

shows the t-SNE projection in the 2-D space. In this figure, the samples, which received the 

smallest weights in their respective elements in the α̂ weight matrix (as in Equation (5)), are 

shown in the top part of the figure. We also depict the samples detected as outliers using the 

RANSAC [50] algorithm in the bottom part of the figure. Notably, as it is obvious in the 

figure, the samples detected as sample-outliers by our algorithm are those which are more 

controversial for the task of classification and lie outside the main neighborhood of each 

class. This is attributed to the fact that we detect them jointly with the classifier learning 

framework. On the other hand, the outliers detected by RANSAC are not always the best in 

terms of discriminability. This suggests that unsupervised outlier detection methods might 

not perform well when the aim is to learn a classifier or a regression model. In other words, 

in many learning tasks, the definition for sample-outliers might be different based on what 

the goal is.

One of the important hyperparameters in the proposed RFS-LDA is λ1, as in Eq. (5), which 

controls the noise term. Modifying this hyperparameter leads to altered noise levels, detected 

by our algorithm. To analyze its effect on the learning performance, we fix all other 

hyperparameters and run the algorithm with different values of Λ1, and therefore λ1 (as 

discussed at the beginning of Section 3). The changes in the AUC for each of our 

experiments are illustrated in Fig. 4. As can be seen, the proposed method achieves 

reasonably good results with a wide range of the values of the hyperparameter.

It is worth noting that the proposed method works under a semi-supervised setting, which 

can be quite interesting for the application of disease diagnosis. When performing the 

diagnosis for new patients, all subjects whose clinical diagnosis has not been finalized (i.e., 

they are still in the process of evaluations and clinical monitoring) can yet be included in 

model building as unlabeled samples, to build a potentially more reliable classifier.

4 Conclusion

In this paper, we proposed a novel approach for discriminative classification, which is robust 

against both sample-outliers and feature-noises. Our method enjoys a semi-supervised 

setting, where all the labeled training and the unlabeled testing data are used to detect 

outliers and are denoised simultaneously. We have applied our method to several datasets, 

including synthetic, semi-supervised learning benchmark, and neurodegenerative brain 

disease diagnosis datasets, specifically for Parkinson’s disease and Alzheimer’s disease. The 

results showed that our method outperformed all competing techniques. As a direction for 

the future works, one can develop a multi-task learning reformulation of the proposed 

method to incorporate diagnosis from multiple modalities of neuroimaging data or extend 

the approach for the case of incomplete data.
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Fig. 1. 
Overview of the proposed semi-supervised learning framework, robust to both sample-

outliers and feature-noises.
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Fig. 2. 
Top selected regions for each experiment. Selected regions are shown with different colors 

for clarity.
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Fig. 3. 
t-SNE projection of AD vs. NC samples (better viewed in color). Top: Samples detected as 

outliers by our method. Bottom: Samples detected as outliers using RANSAC [50].
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Fig. 4. 
Area under the ROC curve (AUC) as a function of the RFS-LDA hyperparameter Λ1, related 

to λ1 in (3).
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