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Abstract

Advancing from statistical associations of complex traits with genetic markers to understanding 

the functional genetic variants that influence traits is often a complex process. Fine-mapping can 

select and prioritize genetic variants for further study, yet the multitude of analytical strategies and 

study designs makes it challenging to choose an optimal approach. We review the strengths and 

weakness of different fine-mapping approaches, emphasizing the main factors that affect 

performance. Topics include interpreting results from genome-wide association studies (GWAS), 

the role of linkage disequilibrium, statistical fine-mapping approaches, trans-ethnic studies, 

genomic annotation and data integration, and other analysis and design issues.

Graphical Abstract

Fine-mapping is the process by which a trait-associated region from a genome-wide association 

study (GWAS) is analysed to identify the particular genetic variants that are likely to causally 

influence the examined trait. This Review discusses the diverse statistical approaches to fine 

mapping, their foundations, strengths and limitations, including integration of trans-ethnic human 

population data and functional annotations.
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Introduction

Common complex human traits1 — including quantitative traits and diseases — often result 

from multiple environmental and genetic causes. Genome-wide association studies [G] 
(GWAS)1 have been widely used to identify the genomic regions on chromosomes that 

harbour genetic determinants of complex traits [G]2–8. To date, 47,681 statistical 

associations of single-nucleotide polymorphisms (SNPs) with complex traits are 

summarized in the US National Human Genome Research Institute (NHGRI)–European 

Bioinformatics Institute (EBI) GWAS Catalog9, representing 2,185 traits with association p-

values less than 10−5. This success can be attributed to cost-efficient genotyping microarrays 

containing a large number of SNPs. However, the SNPs on microarrays typically do not 

cause10 the trait. Rather, the SNPs on microarrays, called tag-SNPs [G], are chosen because 

they are highly correlated (i.e., large amount of linkage disequilibrium [G] (LD)) with 

neighbouring SNPs, thereby serving as surrogates for large genomic regions that contain 

unmeasured SNPs11,12. The association between a tag-SNP and a trait can be indirect, 

resulting from tag-SNP associated with a causal SNP, which in turn is associated with a trait. 

Because patterns of LD among SNPs can be complex, it can be challenging to determine the 

underlying causal variants [G]. This is when fine-mapping [G] can help13. The principles 

discussed here are also relevant for common genetic variants measured by whole-genome 

sequencing studies.

Fine-mapping seeks to determine the genetic variant (or variants) responsible for complex 

traits, given evidence of an association of a genomic region with a trait, and assuming at 

least one causal variant exists. After an initial GWAS identifies at least one SNP strongly 

associated with a trait (e.g., p-value <5×10−8), fine-mapping typically proceeds by the 

general steps outlined in Figure 1. These steps will be discussed in detail, but the general 

strategy is to use the GWAS list of SNPs associated with a trait to identify regions of 

interest. Each region is then visually explored for its LD structure and for genes known to be 

mapped to the region. Because it is simpler to fine-map one causal variant at a time, each 

region is partitioned into sub-regions that have approximately independent effects on the 

trait. Next, a fine-mapping strategy is chosen. The strategies we will discuss are illustrated in 

Figure 2. The selected SNPs are further evaluated for their likely function based on publicly 
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available genomic annotation in order to prioritize costly and time-consuming laboratory-

based functional studies.

The main focus of this Review is on the statistical methods used to fine-map each region of 

interest. The overarching goal is to determine which variants are most likely to be 

functional, and to quantify the strength of evidence. This information can then be used for 

follow-up studies, such as large-scale replication studies of specific candidates, or laboratory 

functional studies. Although the initial GWAS can provide statistical evidence that a region 

is likely to harbour a causal variant, additional statistical methods are needed in order to 

discriminate likely functional variants from variants that are merely correlated with the 

functional variants. A variety of methods have been used, ranging from simple heuristic 

methods, to the use of penalized regression [G] for high-dimensional data, to more refined 

Bayesian methods tailored for fine-mapping (illustrated in Figure 2). Some of the methods 

can be applied to a single study, or to multiple studies combined by meta-analysis 

techniques. When combining multiple studies, special techniques have been developed to 

simplify sharing of data, based on summary statistics [G] 14. When the ethnic background of 

subjects differs across studies, trans-ethnic [G] fine-mapping can sometimes improve the 

resolution of fine-mapping. Each of these topics will be discussed, emphasizing their 

strengths, weaknesses, and challenges. We also present the main factors that influence power 

and resolution of fine-mapping, which in turn offer guidance for study designs. We review 

the use of genomic annotation for fine-mapping, as well as the integration of gene 

expression data with GWAS data. Finally, we discuss future challenges as our understanding 

of the genetic basis of complex traits evolves.

Interpreting lead SNPs from GWAS

The decision to fine-map a region typically follows the discovery of genome-wide 

significant results from a GWAS. It is common to summarize GWAS results with a 

Manhattan plot of all p-values that measure the marginal association of one SNP at a time 

with a trait, followed with LocusZoom plots for regions of interest15 (Figure 1). This allows 

one to focus on the SNPs with the smallest (that is, most significant) p-values in distinct 

regions, sometimes called the lead or index SNPs. GWAS results are most reliable when 

SNP associations achieve the accepted genome-wide statistical significance threshold of p-

value<5×10−8 (REFS 16,17), a threshold that corrects for multiple testing, although some 

investigators use a weaker threshold of p-value<10−6 to highlight regions that are 

‘suggestive’ of harbouring causal variants.

A limitation of the lead SNP is that there is a reasonable chance that it is not the causal 

variant. This can occur because GWAS microarrays are based on tag-SNPs, with the tag-

SNP merely correlated with the unmeasured causal SNP. Furthermore, even if the causal 

SNP is measured or imputed, there is a reasonable chance that the statistical association of 

the causal SNP with the trait is not the most significant association among all the associated 

SNPs when statistical power [G] is not large. For example, based on simulations with 1,000 

cases and 1,000 controls, there was a 79% chance that the lead SNP was found to be causal 

when the odds-ratio (OR) for disease risk was 1.5 and the risk allele frequency was 50%, but 

only a 2.4% chance when the OR was 1.1 and the risk allele frequency was 5%18. Zaykin et 
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al.19 considered multiple causal variants and the impact of LD and drew similar conclusions 

that true associations are not likely to result in the smallest p-values, in part due to the small 

effect sizes of variants on complex traits. These findings emphasize the importance of 

caution when considering the lead SNP as likely causal, and the importance of fine-mapping 

in order to identify the causal variant(s).

LD for population fine-mapping

Fine-mapping in population-based studies leverages measures of non-random associations 

between pairs of loci. When loci are near each other and the frequency of recombination 

between them is low, the alleles from the different loci that occur on the same chromosome 

(called a haplotype [G] ) tend to be inherited as a unit. Alleles on a haplotype occurring 

together more than by chance is referred to as gametic association, or more commonly as 

linkage disequilibrium (LD). Various measures of LD have been proposed20, but they all 

depend on the difference between the observed joint frequency of alleles occurring on the 

same haplotype versus that expected by random chance. The most frequently used measure 

of LD is a standardized difference, which can be easily estimated by the Pearson correlation 

between the counts of the minor alleles (i.e., less common alleles) for two SNPs. This 

correlation coefficient is directly related to statistical power, and it is a reasonable measure 

for fine-mapping, although for case–control studies of rare diseases, measures such as 

attributable risk can perform better21.

Using LD to fine-map a complex trait is based on the premise that ancestral meiotic 

recombinations diminish LD, implying that the SNP with the strongest association with a 

trait is either the causal variant or close to the causal variant. However, evaluating one SNP 

at a time can be misleading due to the complex patterns of LD in a genomic region. A 

classic example is the association of Alzheimer’s disease with multiple SNPs around the 

APOE locus on chromosome 19. As the distance from APOE increases, the p-values for the 

association of SNPs with disease do not follow a monotonic pattern, but rather increase and 

decrease22. This opened a debate of whether there are genes in this region other than APOE 
that cause Alzheimer’s disease. Yet, the large amount of LD in this region has made it 

challenging to resolve this issue23. Factors beyond recombination that influence LD are 

mutation rates of the genetic markers, natural selection, population migrations and 

admixture, population bottlenecks, and demographic history (e.g., population size and 

mating patterns)24. Because LD is influenced by factors other than recombination, it is too 

limiting to rely solely on patterns of pairwise LD, or even haplotype blocks [G], to provide 

reliable fine-mapping of complex traits.

Factors influencing fine-mapping

A number of factors influence the performance of fine-mapping, including the number of 

causal SNPs in a region and their effect sizes on the trait, the local LD structure, sample size, 

SNP density, and whether the causal variants can be measured. Careful definition of the 

phenotype to enrich for genetic causes (e.g., disease severity, strength of family history) 

might increase the genetic effect size. The local LD structure is difficult to control, but trans-

ethnic meta-analyses can capitalize on differences in LD structure. Factors that can be 

Schaid et al. Page 4

Nat Rev Genet. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



controlled in study designs are the sample size and SNP density. Sample size can be 

increased by pooling different studies or performing meta-analyses, recognizing that disease 

heterogeneity might increase, thus diluting efforts. Because it is critical to have high SNP 

density to capture the causal variants, in the following section we focus on strategies to 

increase density.

Increasing SNP density

The density of SNPs can be increased by DNA sequencing, but the costs for sequencing the 

large sample sizes required for fine-mapping can be prohibitive. Alternative cost-efficient 

strategies include genotype imputation [G] and additional genotyping.

Genotype imputation

Imputation of SNPs can fill in sporadic missing genotypes, harmonize data from different 

GWAS genotyping arrays to perform a pooled or meta-analysis, and increase the density of 

SNPs for fine-mapping25,26. Key criteria for imputation success are high correlation of 

directly assayed SNPs with the un-typed SNPs and appropriate reference panels that provide 

templates for LD patterns and allele frequencies that are representative of the study 

sample25. Popular reference panels are the 1000 Genomes Project27 and the Haplotype 

Reference Consortium28. Although imputed SNPs tend to be robust to the choice of quality 

control filters29, power to detect associations with a trait decreases as imputation accuracy 

decreases25.

Additional genotyping

Because imputation accuracy depends on the local LD structure, regions with weak LD 

might require actual genotyping to accurately evaluate their association with a trait. 

Situations where additional genotyping helps are: validation of imputed SNPs, possibly 

improving fine-mapping by reducing genotype measurement error; discovery of low-

frequency SNPs that are not in strong LD with a lead SNP; identification of SNPs that are 

not well-represented in a reference panel; and disentanglement of SNPs that appear to be in 

perfect LD because of a small reference sample30.

Cost-efficient genotyping is becoming more accessible with the development of custom 

genotyping arrays that target certain diseases or traits, such as Oncoarray for common 

cancers31; Metabochip for metabolic, cardiovascular, and anthropometric traits32; and 

Immunochip for major autoimmune and inflammatory diseases33. These specialized arrays 

are primarily designed to evaluate associations of SNPs that are known to be associated with 

specific diseases or traits. Notable advantages of these arrays are increased density of SNPs 

in known gene regions and cost efficiency to achieve large sample sizes for fine-mapping. 

However, there are limitations. First, array content is focused on SNPs or genes that are 

already known to be associated with specific diseases or traits, which might exclude finding 

novel genes. These arrays also contain a backbone of genome-wide tag-SNPs that might 

overcome this limitation, albeit at a lower resolution than high-density arrays that are 

typically used for initial GWAS discovery. Second, array content can be based on reference 

data with incomplete coverage. Third, array content is based on SNPs rather than structural 
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variation. Fourth, SNPs may be excluded from arrays due to assay failure. Finally, array 

designs are primarily based on European ancestry.

Partition to independent regions

When analyzing one SNP at a time, it is common to find multiple SNPs in a region to be 

marginally associated with a trait. This can occur when multiple non-causal SNPs are 

correlated with a single causal SNP. The LD among the SNPs will make each SNP appear to 

be associated with a trait when analyzing one SNP at a time. By contrast, when analyzing all 

SNPs jointly, only the causal SNP is expected to be associated with the trait when 

accounting for the LD among the SNPs, simplifying fine-mapping efforts. Alternatively, 

when there are in fact multiple causal SNPs, and they are correlated with each other and 

with other non-causal SNPs, fine-mapping can be more challenging because joint analyses 

are not expected to highlight just one causal SNP.

To simplify fine-mapping, it can be advantageous to first partition the region of interest 

according to the independent effects of SNPs on the trait, and then separately fine-map each 

partition. To determine if multiple marginally associated SNPs are driven by one or a few 

independent statistical associations, conditional forward stepwise regression is often used 

(e.g., logistic regression for case–control studies, or linear regression for quantitative traits). 

This entails conditioning on the lead SNP from a GWAS by treating it as an adjusting 

covariate in a regression model and testing the remaining SNPs in the region of interest. If a 

secondary SNP is found to be statistically significant after adjusting for the primary SNP, the 

sequential testing proceeds by treating some SNPs as adjusting covariates while screening 

the remaining SNPs, until no conditional tests are significant. A challenge is to decide on the 

threshold for significance. Some investigators use the stringent GWAS threshold p-

value<5×10−8, while others use more liberal thresholds, such as p-value<10−4 or even p-

value<0.05.

There are several limitations of forward stepwise conditional regression. First, as the number 

of steps increases, the number of statistical tests increases. If there are m SNPs, then after k 
sequential steps approximately km statistical tests will be performed, increasing the chance 

of a false positive result. Second, when m is large, perhaps close to the number of subjects in 

the sample, and when a liberal threshold is used to include SNPs at each step, the forward 

selection procedure becomes unstable34 and is overly optimistic regarding the trait variation 

explained by the selected SNPs35. Third, the probability (i.e., statistical power) to detect 

secondary signals diminishes as the correlation among SNPs increases.

To illustrate diminishing power to detect a secondary SNP by conditional analysis, we 

derived simple formulas (see Supplementary information S1 (box)) to examine power. We 

assumed 90% power to detect the primary SNP when it explains 1% of a quantitative trait 

variation. We set the effect size for the secondary SNP to be a fraction of that for the primary 

SNP (fraction 50–100%), and we assumed the stringent GWAS threshold p-value<5×10−8 

for testing the effect of the secondary SNP. Figure 3 shows a dramatic loss in power to detect 

secondary signals as the correlation of SNPs increases, even at levels of SNP correlation 

ρ=0.2. Power also decreases as the effect size of the secondary SNP decreases. Hence, one 
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should be cautious when using conditional testing to declare only a single SNP to be 

statistically significant, because low power can cause missed secondary associations.

Types of fine-mapping approaches

A number of approaches have been used to perform fine-mapping. We present three main 

strategies that have been used in the literature: heuristic methods, penalized regression 

models, and Bayesian methods (illustrated in Figure 2). Heuristic approaches were the first 

to be used, having grown out of practical experience and educated guesses, but with loosely 

defined criteria. Penalized regression models were developed in other fields of statistics, 

with the aim to reduce high-dimensional predictor variables (e.g., SNP data for fine-

mapping) to a much smaller set that are strongly associated with a trait. In recent years, 

Bayesian methods have been specifically tailored for fine-mapping. The main features of 

these three approaches are discussed, along with their benefits and limitations.

Heuristic fine-mapping approaches

Because the LD structure around the lead SNP from GWAS has a substantial role in fine-

mapping, it is popular to first examine the correlation among the SNPs surrounding a lead 

SNP. One approach is to filter SNPs according to their pairwise correlation (r2) with the lead 

SNP, retaining as potentially causal only those SNPs with an r2 above a threshold. 

Alternatively, hierarchical clustering of all SNPs in a region based on their pairwise r2 has 

been used to create clusters. However, both of these approaches depend on arbitrary 

thresholds to filter or form clusters. More rigorous penalized models and Bayesian methods 

that jointly model the simultaneous effects of multiple SNPs on a trait are more informative.

Another way to view correlation structure is by pairwise LD among SNPs within haplotypes, 

using software such as Haploview36 (Figure 1). This gives a visual impression of discrete 

haplotype blocks37. Combining the GWAS lead SNP with SNPs in the same haplotype block 

is an alternative way to select potential causal SNPs. However, one should be cautious with 

this approach. Recombination hot-spots [G] strongly influence block features, yet block 

boundaries can be arbitrary due to the choice of statistical model parameters and 

computational method, as well as genetic marker density and allele frequencies38,39. Internal 

inconsistencies of blocks are troubling, such as when two markers in strong LD flank 

markers with little LD with one of the flanking markers38. The above heuristic methods to 

choose SNPs for functional follow-up are too limiting because they do not account for the 

joint effects of the SNPs on the trait, and they do not give an objective measure of the 

confidence that a SNP is causal, but rather rely on somewhat arbitrary thresholds and 

subjective interpretations of correlations among SNPs.

Penalized regression models

An alternative fine-mapping approach is to use a regression model to jointly analyze all the 

SNPs in a region. Traditional model building is based on forward selection (or alternative 

stepwise methods), using p-values to determine whether a SNP should be included in a 

model. However, a large number of SNPs, and high correlation among the SNPs, can make 

traditional regression models unstable. A more robust approach is provided by penalized 
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regression models. These models simultaneously perform estimation of SNP effect sizes and 

SNP selection into a model by shrinking small effect estimates toward zero. Popular 

penalized models are lasso40, elastic net41, minimax concave penalty42, and a normal-

exponential-gamma shrinkage prior43 implemented in the hyperlasso software. Simulation 

studies show that penalized models tend to perform better than forward selection. Forward 

selection can be too conservative when using a very stringent p-value threshold to select 

SNPs, yet a liberal threshold increases the chance of falsely selecting SNPs44. Penalized 

models use tuning parameters to select SNPs into a model, with tuning parameters chosen to 

encourage SNPs with small effect sizes to be removed from the model. Tuning parameters 

are often estimated by cross-validation [G] to choose a model with minimum prediction 

error. Penalized models tend to result in sparse models, selecting only one or a few SNPs 

belonging to a group of correlated SNPs. This can result in a good prediction model that 

includes non-causal SNPs and excludes a causal SNP when they are highly correlated. In 

Supplementary information S1 (box) we provide R code for readers to further see how high 

correlation combined with sparse models reduces the chance of selecting the causal variant. 

By contrast, Bayesian methods have been specifically designed for fine-mapping, offering 

advantages over heuristic and penalized regression approaches.

Bayesian methods overview

The challenge of both penalized regression and Bayesian variable selection methods is to 

determine which SNPs have non-zero effect sizes (regression β values) on a trait. Although 

we refer to SNPs with non-zero effect sizes as causal, it is important to realize that statistical 

methods alone cannot determine causality. Penalized models choose SNPs based on cross-

validation that minimizes the error of predicting a trait. By contrast, Bayesian inference 

focuses on the probability of a specific hypothesis, or specific model, thus providing 

probabilistic interpretation of models of interest.

A model for fine-mapping can be represented by an indicator variable for each SNP, with 

values of 1 for causal and 0 for not, and organizing these indicators for all SNPs of interest 

in vector c. For m SNPs, there are 2m possible c vectors (hence 2m possible models), ranging 

from all values of c equal to 0 for no SNPs causal, to all values equal to 1 for all SNPs 

causal. Using Bayes’ formula, the prior probability [G] of a model can be combined with the 

likelihood of the data D (trait and SNPs) to compute the posterior probability [G] of a 

specified model Mc, which we denote P(Mc | D). See box 1 for how the posterior probability 

is calculated. There are several ways to specify the prior probability for a model, such as 

assuming that variants are independent and equally likely to be causal45,46, or assuming a 

fixed number of causal variants out of the total variants46,47 (see Supplementary information 

S1 (box) for more details). The posterior probabilities for different models can be used to 

determine the posterior probability of including each SNP in any of the models (posterior 

inclusion probability [G] (PIP)), as well as determining the minimum set of SNPs required 

to capture the likely causal SNPs (credible sets). A variety of Bayesian fine-mapping 

methods have been developed, and are summarized in Table 1.
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Box 1

Bayesian methods

The goal of Bayesian methods is to compute the probability of a specific model, 

conditional on the observed data, denoted D, which includes the trait and SNPs. For a 

model Mc specified by a vector c of indicator variables, each indicator variable having 

values of 1 if a SNP is causal and 0 if a SNP is non-causal, the posterior probability of 

model Mc is:

P(Mc ∣ D) =
P(D ∣ Mc)P(Mc)

∑
M ∈ ℳ

P(D ∣ M)P(M)
,

where the sum in the denominator is over all models from a specified model space ℳ. For 

example, if the model space were to allow exactly one causal SNP out of k SNPs, there 

would be k possible c vectors, and k possible models in the space ℳ.

The term P(D|Mc) is the probability of the data under an assumed model. If only a fixed 

set of β values were considered, P(D|Mc) would be the likelihood of the data, denoted 

P(D|β). This is the same likelihood used in frequentist analyses. But, Bayesian inference 

treats the β values as random in order to account for their uncertainty. This is 

accomplished by assuming a prior distribution for the β values, which we denote P(β|

Mc), and averaging over their possible values. This leads to the marginal likelihood, 

computed by integrating over the distribution of β values;

P(D ∣ Mc) = ∫ P(D ∣ β)P(β ∣ Mc)∂β .

The ingredients of Bayesian methods are the likelihood [P(D|β)] and the assumed prior 

distribution of the models and their parameters. Details regarding choices of likelihood 

models and prior probabilities for Bayesian fine-mapping, as well as approximate Bayes 

factors, are discussed in Supplementary information S1 (box).

Bayesian methods: posterior inclusion probability

Bayesian methods for fine-mapping have been specialized in order to focus on the SNPs that 

have the largest chance of being causal45,48. The PIP for a SNP is the probability of 

including a SNP as causal in any of the models. For SNP j, the PIP is computed by the sum 

of the posteriors over all models that include SNP j as causal,

PIP j = P(c j = 1 ∣ D) = ∑
M, c j = 1

P(M ∣ D)

After the posterior probabilities for the different models are computed, the PIP is rapid to 

compute and is an output from many Bayesian fine-mapping software packages (Table 1). 
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Ranking SNPs by their PIP is a convenient way to select putative causal SNPs46. For 

example, the top k SNPs ranked by their PIP maximizes the expected number of causal 

SNPs across all possible subsets of size k47. However, caution is warranted when multiple 

SNPs in a region are highly correlated and all are approximately equally correlated with the 

phenotype. In this situation, none of the individual PIPs would be very large. It would be 

better to estimate the posterior expected number of causal SNPs by summing the estimated 

PIPs for all SNPs in the region45.

Bayesian methods: credible sets

Bayesian methods can be used to determine the α credible set49, the minimum set of SNPs 

that contains all causal SNPs with probability α. When assuming only one causal SNP, α is 

the sum of PIPs for SNPs in a set. This means that an α credible set is equivalent to ranking 

SNPs from largest to smallest PIPs50, and taking the cumulative sum of PIPs until it is at 

least α.

Bayesian methods can also allow for multiple causal SNPs in a region. Although 

computation time increases because of the larger number of models required for multiple 

causal SNPs, recent developments46,51–54, notably the JAM software55, make it feasible to 

stochastically search over a wide array of possible models. An excellent demonstration of 

the benefits of Bayesian fine-mapping is provided by a fine-mapping analysis of 84 prostate 

cancer GWAS loci using 143,804 subjects56. Single signals of causal variants were found in 

63 regions, and 12 regions showed evidence of multiple independent causal variants. 

Furthermore, only 15 (5.4%) of the 280 original GWAS tag-SNPs remained as potential 

causal variants.

There are numerous advantages to Bayesian methods for fine-mapping. First, unlike p-

values, posterior probabilities for SNPs can be directly compared. Second, they tend to 

select fewer SNPs as potentially causative compared to selecting SNPs based on their 

correlation with the lead SNP18. Third, simulation studies have shown Bayesian methods to 

perform better than both conditional stepwise regression46,55,57 and penalized regression 

models47. Finally, because Bayesian models are based on the joint effects of SNPs, they 

control for SNPs with large effects, improving power to detect SNPs with lesser effects. See 

Figure 2 for visual aspects of Bayesian fine-mapping.

Combining studies and meta-analyses

Combining data from multiple cohorts can increase fine-mapping resolution, and the fine-

mapping strategies discussed above can be used when individual-level data are pooled. 

However, because it can be challenging to obtain individual-level data from multiple 

cohorts, summary statistics for the associations of a trait with SNPs can be used14. This 

strategy is gaining popularity because it simplifies data sharing and computational issues. 

When summary statistics are appropriately chosen, there is no loss of information compared 

to using individual-level data58. Most summary statistics focus on marginal regression β 
values and their variances. To obtain the joint effects of multiple SNPs using individual-level 

data, one must regress trait y on all SNPs simultaneously, y = XβJ+e, where βJ is a vector of 

the joint effects of SNPs, X is a matrix of the coded SNP effects (e.g., counts of minor 
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alleles), and e is random error. By contrast, in summary data when only the marginal β 
values are available, it is still possible to determine the joint effects of SNPs needed for fine-

mapping. When effect sizes are small, there is a simple relationship between the joint and 

marginal effects59, determined by βJ = R−1βM, where βM is a vector of the marginal effects 

and R−1 is the inverse of the matrix of pairwise SNP correlations (assuming the columns of 

X are standardized to have a mean of 0 and a variance of 1). The key aspect is the SNP 

correlation matrix, which summarizes the LD among the SNPs. When the original data are 

used to estimate the SNP correlations, there is no loss of information relative to analyzing 

individual-level data58. In practice, an appropriate reference sample is often used to estimate 

the SNP correlations, such as the 1000 Genomes Project, allowing marginal summary 

statistics from single SNP analyses to be combined for a joint analysis59. However, if the LD 

patterns in the reference sample do not represent those in the analyzed samples, the 

estimated joint effects can be biased, leading to errors in fine-mapping. Furthermore, the size 

of the reference sample should not be too small, and should increase in size as the GWAS 

sample size increases60.

Trans-ethnic fine-mapping

Comparisons of GWAS findings across ethnically diverse populations have revealed that 

associations of SNPs with complex traits are often consistent across populations, with 

similar direction of effects of alleles on traits61,62. Trans-ethnic meta-analyses that combine 

GWAS results of the same trait across genetically diverse populations can aid fine-mapping 

by capitalizing on ethnic differences in LD patterns63,64 (Figure 2).

A critical issue is the choice of ethnic groups. Analyses based on a mix of different 

European ancestries, or a mix of European and Asian ancestries, provide little gain for fine-

mapping30,65. Rather, simulations have shown that a substantial reduction in the size of 

Bayesian fine-mapping credible sets can be attained by including subjects of African 

ancestry65, because they have much narrower LD. Including Hispanic ancestry might also 

improve fine-mapping over using only European or Asian ancestries65. The balance of 

ethnic groups can also impact fine-mapping performance. Simulations have shown that equal 

proportions of African and European ancestry is optimal for fine-mapping18. Although 

current samples with African ancestry tend to be much smaller than those with European 

ancestry, including African ancestry can still improve fine-mapping resolution65.

Trans-ethnic analyses are often conducted as meta-analyses of summary statistics using 

random-effects methods, recognizing that a SNP can have different effect sizes across 

different ethnic groups. This heterogeneity can result from differences in study designs, 

differences due to interactions with other SNPs, or differences due to environmental or 

lifestyle factors that influence the effects of genes. METASOFT66, which implements a 

modified form of the traditional random-effects approach, is popular among trans-ethnic 

studies67–70. Alternative methods that model the heterogeneity can improve fine-mapping 

resolution. One approach is based on Bayesian methods, as implemented in the PAINTOR 

software71. Other approaches that use GWAS SNP data to explicitly adjust for heterogeneity 

include MANTRA and MR-MEGA. MANTRA is based on a computationally intensive 

Bayesian partition method that creates discrete clusters of ethnically similar subjects, 
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assuming that subjects within the same cluster have the same allelic effects for a variant, in 

contrast to subjects from different clusters having different allelic effects72. A good example 

of trans-ethnic fine-mapping with MANTRA, followed by use of PAINTOR and CAVIAR 

software to estimate PIPs and credible sets, as well as use of functional annotation, is 

provided in a large fine-mapping study of high density lipoprotein cholesterol73. In contrast 

to the discrete clusters created by MANTRA, MR-MEGA considers allelic heterogeneity on 

a continuum, and uses principal components of genetic similarity among subjects to 

determine axes of genetic variation, and then uses the principal components to adjust for 

heterogeneity of allelic effect sizes74. Simulations show that MR-MEGA can offer improved 

fine-mapping over other methods, yet retains computational efficiency74.

Factors affecting Bayesian PIPs for fine-mapping

A number of factors influence the resolution and power of fine-mapping. To quantify this 

influence, we derived a simple formula for the expected Bayes PIP of a single causal SNP 

when studying a quantitative trait (see Supplementary information S1 (box)). This expected 

posterior probability depends on the effect size of the causal SNP on a trait (measured by 

multiple regression R2, the percent of trait variation explained by the causal SNP) and the 

sample size (N). Importantly, these two factors combine into the non-centrality parameter 

that determines power, λ = NR2/(1−R2). Other factors that influence the expected posterior 

probability are the number of SNPs in the fine-mapping effort (we assume one causal SNP 

and m non-causal SNPs) and SNP correlation structure. To simplify the correlation structure, 

we assume that all SNPs are equally correlated with correlation ρ, as might occur when 

examining a small genomic region, or filtering on SNPs to achieve a correlation threshold. 

Finally, the assumed prior probabilities that SNPs are causal also influence the posterior 

probability. Based on these assumptions, the expected posterior probability for a causal SNP 

can be expressed as

postc =
prc

prc + ∑
i = 1
i ≠ c

m
pri exp { − (1 − ρ)NR2/(1 − R2)}

, (1)

Where pri is the prior probability that the ith SNP is causal, and subscript c is for the causal 

SNP.

Assuming R2 = 1%, a relatively small effect size, we illustrate in Figure 4 that large sample 

size and small SNP correlations provide the ideal setting to achieve a high posterior 

probability for a causal SNP. Increasing the number of non-causal SNPs tends to decrease 

the posterior probability, by spreading out the posterior probability among multiple non-

causal SNPs, particularly when the non-centrality parameter λ is not large. Figure 4 also 

emphasizes that it is difficult to achieve a large posterior probability for a causal SNP when 

SNPs are highly correlated. Hence, it might be premature to pre-filter SNPs to have a large 

correlation with a lead SNP before performing fine-mapping efforts, because the SNPs 
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without large correlations could still be viable candidates. Furthermore, when power is weak 

or SNP correlation is large, well-informed prior probabilities are most critical because in 

these situations they have a larger effect on the posterior probabilities. Of course, mis-

specified prior probabilities can result in a non-causal SNP having a large posterior 

probability, misleading fine-mapping efforts.

Genomic annotation

Genomic annotation that assigns biological function to DNA sequences can be informative 

about the likely function of SNPs selected by fine-mapping analyses, and can aid 

prioritization of follow-up functional studies. Large-scale initiatives have increased publicly 

available resources, including Gene Ontology75, GENCODE76, ENCODE77, FANTOM578, 

and the Roadmap Epigenomics Project79. By integrating multiple datatypes for a variety of 

tissues and cell-types, current annotations provide functional context for approximately 80% 

of the human genome80. Analyses of published GWAS findings have identified significant 

enrichment for functional annotations among complex trait associations81–83, motivating the 

use of annotation to improve fine-mapping resolution. Annotations are generally categorized 

according to protein-coding and non-protein-coding.

Protein-coding annotation

Annotation for SNPs in genes that code for proteins focuses on their impact on the resulting 

protein structure. Examples of annotation include whether a SNP occurs in an exon, an 

intron, a splice site, or whether it is involved in alternative splicing. A large number of 

bioinformatics annotation methods are available to functionally characterize coding SNPs 

and provide impact scores that predict their deleterious effect84,85. Although prediction 

accuracy can be low from individual methods, combining methods can lead to improved 

predictions, such as by the CADD86 and REVEL87 methods.

Non-protein-coding annotation

The ENCODE project has shown that the genome is pervasively transcribed, and that the 

majority of bases are found in primary transcripts, including non-protein-coding 

transcripts88. Genetic variation in non-coding regions is often involved in gene regulation. 

Some examples of non-coding annotation are promoters, enhancers, long non-coding RNA 

loci, transcription start sites, transcription factor binding sites, regulatory sequences, features 

of chromatin accessibility and histone modification patterns, and DNaseI hypersensitive 

sites. Variant impacts on putative transcription factor binding site (TFBS) motifs can be 

estimated by position weight matrices from databases such as TRANSFAC89 and 

JASPAR90. Annotation tools such as FIRE91, RegulomeDB92, and CADD86 provide 

regulatory impact scores for non-coding SNPs by aggregating multiple evidence sources of 

functional importance.

Integrating annotation into fine-mapping

Ad-hoc review of SNP annotations is often applied to SNPs selected by fine-mapping 

analyses in order to identify patterns of annotation enrichment and prioritize candidates for 

functional validation. This subjective approach can be cumbersome and biased. Alternative 
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methods can improve fine-mapping, such as using functional annotation to weight SNPs93 in 

regression models, or extending Bayesian models to allow the prior probability that a SNP is 

causal to depend on annotation (see Supplementary information S1 (box))57,94–97. 

Advantages of Bayesian methods are that the weights given to functional annotation are 

inferred from the data, and jointly mapping multiple regions simultaneously provides a way 

to share annotation information across different regions57,95. Most methods allow for a 

relatively small number of annotation features, which requires screening each annotation one 

at a time in order to select a subset for a final model. An alternative approach that 

incorporates automatic selection of annotations from a large number of features overcomes 

this limitation94. Bayesian mapping software that allows use of annotation is highlighted in 

Table 1.

The broad impact of the use of annotation on fine-mapping is yet unknown. By simulations, 

Van de Brunt et al.18 found that incorporating annotation into Bayesian prior probabilities 

gave modest benefit for fine-mapping, by increasing the frequency of small credible sets 

(e.g., less than 10 SNPs) from 27% without annotation to 36% with annotation. In real 

applications of fine-mapping four blood lipid traits, the 90% credible set size reduced from 

an average of 17.5 SNPs without use of annotation to 13.5 SNPs with use of annotation57. 

When using a Bayesian method to fine-map three diseases in the Welcome Trust Case 

Control Consortium, very few SNPs in the credible sets were found to have annotated 

functions50. So, use of annotation information can be limiting from two angles: first, 

incorporation of annotation into prior probabilities has limited impact on well-powered 

studies and second, current understanding of broad genomic function may be too limiting to 

accurately improve prior probabilities of causation. Conversely, annotation might help when 

association signals are at best moderate, or in regions of high LD, when there are multiple 

causal SNPs in a region, or when different regions share enrichment for specific annotation 

features.

Integrating GWAS with gene expression

More than 90% of trait-associated alleles discovered by GWAS map to non-coding regions, 

with strong evidence of enrichment for regulatory elements, such as enhancers, promoters, 

insulators, and silencers81. Furthermore, SNPs associated with complex traits are 

significantly more likely to be expression quantitative trait loci [G] (eQTLs) than other 

SNPs on genotype arrays with the same allele frequencies98. This suggests that SNPs 

discovered by GWAS influence the amount of expression of nearby genes, and this altered 

expression ultimately influences the trait.

Statistical methods have been developed to integrate eQTL data with GWAS data to quantify 

the evidence of a causal pathway from SNP to gene-expression to a complex trait. The 

intermediate variable, mRNA, is the mediator between a SNP and a trait. One approach to 

test a causal pathway is by a causal inference test 99, with small p-values inferring causality. 

Alternative Bayesian approaches focus on the posterior probability that a single SNP is 

causally related to both mRNA level and the trait 100,101. Mendelian randomization is yet 

another approach that can be used to distinguish whether a single SNP influences both gene 

expression and the trait, versus whether separate SNPs in LD influence gene expression and 
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the trait102. Details of these various approaches are provided in Supplementary information 

S1 (box).

A critical issue for integrating eQTL and GWAS results is the type of tissue for which the 

expression was measured. Complex diseases often result from dysfunction of multiple 

tissues or cell types, and the expression of genes varies widely across different types of 

tissues. Selecting relevant tissue types for a given disease process or complex trait can be a 

substantial challenge. Numerous public resources facilitate exploring gene expression in 

different tissues, such as the Genotype-Tissue Expression (GTEx) project, which includes 

genotypes, gene expression, and histological and clinical data for 449 human donors across 

42 distinct tissues103.

Conclusions

Fine-mapping efforts have made considerable advancements to refine the most likely genetic 

variants discovered by large-scale genetic association studies of complex traits. We reviewed 

a variety of analytical methods, with the more sophisticated and relevant methods based on 

Bayesian fine-mapping. A common underlying basis of all methods is LD between 

measured SNPs and causal variants that makes fine-mapping feasible, as well as 

challenging. Although the details of a particular study will determine the success of fine-

mapping, general guidelines for evaluating the robustness of fine-mapping efforts are 

provided in Box 2. Most of our Review discussed SNPs. Other types of genetic variants can 

be analyzed with similar strategies, such as small insertions or deletions (indels) analyzed as 

binary variables. Currently, there are few general methods to incorporate large structural 

variants into GWAS fine-mapping. Yet, germline structural rearrangements have helped to 

discover simple Mendelian disease genes, such as partial deletion of chromosome 15 leading 

to discovery of the gene UBE3A that causes Angelman syndrome104, or a 1.5Mb inversion 

on chromosome 17q12 leading to renal cysts and diabetes syndrome (RCAD), an autosomal 

dominant disorder 105. Genetic variants with more than two alleles would require extension 

of current methods. For example, the human leukocyte antigen (HLA) locus on chromosome 

6 is highly polymorphic and is involved with immune response and multiple diseases. This 

region has unique fine-mapping challenges, some of which can capitalize on GWAS data 

(see Supplementary information S1 (box)).

Box 2

Guidelines for evaluating fine-mapping

The goal of fine-mapping is to determine which variants in a genomic region are most 

likely to be causally related to a trait after accounting for how the variants in the region 

are correlated. One challenge with Bayesian fine-mapping can be that the output credible 

sets contain a large number of variants. A way to reduce the number of putative causal 

variants is improved use of annotation, perhaps by careful selection of relevant cell-types 

for gene regulation annotation. Another way is to increase sample size. With large 

samples, Bayesian fine-mapping can sometimes result in a credible set of just a few 

variants, or perhaps a single variant. To gain confidence in fine-mapping results, it is 
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worthwhile to evaluate the robustness of the results. Some guidelines for evaluating 

robustness are given below.

• What is the spread of the posterior inclusion probability (PIP) values for the 

variants in a credible set? If the PIPs are similar for multiple variants in a 

credible set, it can be worthwhile to view the correlation among the variants, 

and the effect sizes of the variants with effects of variants adjusted for each 

other. Large correlations among variants with similar effect sizes can suggest 

that it is not possible to distinguish among the variants with the available 

sample.

• When using summary statistics and a reference panel to estimate the SNP 

correlations, how well does the reference panel match the study sample? 

When possible, it is worthwhile to compare the correlations among the 

variants in the study sample with the correlations in the reference panel. Large 

differences between study sample and reference panel warrant further fine-

mapping analyses with the correlations obtained by the study sample. When 

correlations among SNPs from the study sample are not available, comparison 

of allele frequencies between reference panel and study sample can 

sometimes reveal problems, such as large differences is allele frequencies.

• Because highly correlated SNPs can make fine-mapping difficult, sometimes 

compromising numerical computations, it is worthwhile to examine the 

correlations among the SNPs chosen based on fine-mapping. High 

correlations (e.g., more than 0.98) might warrant more careful scrutiny.

• Different software for fine-mapping make different assumptions, and the 

computational methods can be implemented differently. To evaluate the 

robustness of a finding, it can sometimes be worthwhile to compare results 

across different software packages. Consistent results can improve confidence 

in the fine-mapping findings. However, inconsistent results can be caused by 

multiple factors, including different modelling assumptions, rounding errors, 

or differences in stochastic search methods. Hence, comparison of results 

across different software packages can be useful, but expertise in the software 

is required in order to give adequate interpretation of results.

• Trans-ethnic fine-mapping assumes that the set of causal SNPs are the same 

for all populations, but accounts for differences in effect sizes across 

populations. For this reason, it can be worthwhile to evaluate the estimated 

effect sizes of the SNPs selected by fine-mapping to determine if just one, or 

a few, of several populations have effect sizes that dominate the fine-mapping.

As fine-mapping efforts proceed, an important consideration is the expected level of 

resolution. Using simulations that closely align with genomic structure of the UK 10,000 

Genomes (UK10K) sample of 3,642 unrelated subjects of European ancestry, Wu et al.106 

found that at least 80% of common variants identified in published GWAS that used imputed 

data were within 33.5 kb of causal variants. This provides optimism for fine-mapping 
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GWAS results when using the study designs and computational methods discussed in this 

Review. Sharing of data in large meta-analyses, and improved genomic annotation, will 

probably improve resolution.

The frequency of variants has a large impact on the success of fine-mapping by statistical 

methods. Wu et al.106 found that rare untyped causal variants (minor allele frequency less 

than 0.01) are unlikely to map to a common variant in GWAS, whether using imputed data 

or whole-genome sequencing. Less-common variants tend to have lower levels of LD with 

other variants, making it challenging to impute less-common variants by statistical methods. 

But, low levels of LD can be advantageous for fine mapping when the variants are accurately 

genotyped or imputed and a study has high power to detect associations with single variants. 

Whole-exome sequencing and whole-genome sequencing open new avenues to discover rare 

variants. A challenge of these types of sequencing studies is the very large sample size (e.g., 

approximately 100,000 subjects) needed to discover regions that harbour rare causal variants 

for complex traits107. Furthermore, the statistical methods for rare-variant associations with 

a trait do not focus on single rare variants, but rather evaluate an entire region108. So, the 

initial discovery of a region provides little evidence of specific variants that are likely to be 

causal. Nonetheless, whole-genome sequencing can be informative for fine-mapping rare 

variants, but in this situation various sources of annotation of variants will be key to 

success109. Alternative approaches that combine functional assay results with computational 

prediction of function110 might prove useful for fine-mapping, albeit with the requirement of 

functional assays developed for each specific region of interest.

Our understanding of the genetic basis of human disease has evolved from single major 

genes influencing rare Mendelian disorders to multiple genes — polygenic — influencing 

common complex traits. Future fine-mapping challenges will face complex traits driven by a 

large number of variants with small effects, possibly based on a genetic architecture of 

regulatory networks composed of a small number of core genes that directly affect a trait, 

but with a large number of genes outside the core that indirectly affect the trait — an 

omnigenic model111. Understanding the genetic architecture of regulatory networks offers 

new opportunities to integrate this information into future fine-mapping strategies.
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Refer to Web version on PubMed Central for supplementary material.
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Glossary

Genome-wide association studies (GWAS)
Scans of genetic markers, typically single-nucleotide polymorphisms (SNPs), across DNA 

of many subjects to find variants statistically associated with a complex trait.

Complex traits
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Either quantitative traits (e.g., blood pressure, height) or common diseases (e.g., major 

cancers) that are caused by many genetic and environmental factors working together, each 

having a relatively small effect and few if any being absolutely required for disease to occur.

Tag-SNPs
SNPs that are sufficiently correlated with neighbouring SNPs such that the tag-SNP serves 

as a surrogate for unmeasured SNPs.

Linkage disequilibrium (LD)
Non-random association of alleles at different loci on a haplotype in a given population. LD 

is key to fine-mapping, because coinheritance without recombination of alleles from 

different variants implies that the variants are proximal on the same chromosome.

Causal variants
Genetic variants that mechanistically contribute to diseases or quantitative traits, but are not 

fully penetrant in the sense that the variant may not be a sufficient cause in isolation.

Fine-mapping
To refine the genomic localization of causal variants by the use of statistical, bioinformatic 

or functional methods.

Penalized regression
A way to estimate regression coefficients by maximizing the log-likelihood of the data while 

placing a penalty that constrains the size of the regression coefficients, shrinking small 

coefficients toward zero, sometimes exactly to zero. Although this causes coefficient 

estimates to be biased, it improves the overall prediction of the model by decreasing the 

variance of the coefficient estimates.

Summary statistics
Measures of statistical association between a trait and one or more single-nucleotide 

polymorphisms (SNPs) that summarize the size of effects of the SNPs on the trait, the 

variances of the effect sizes, and how the effect sizes are correlated among themselves. For 

case–control studies, summary statistics include the estimated log-odds ratios from logistic 

regression, the variances of the log-odds ratios, and the correlations among the log-odds 

ratios.

Trans-ethnic
Genetic association study including subjects from more than one ethnic background.

Statistical power
The probability of correctly rejecting a null hypothesis of no statistical association between a 

single-nucleotide polymorphisms (SNP) and a trait when in truth a statistical association 

exists. Power depends on the magnitude of the SNP effect, the sample size, and the p-value 

threshold for deciding statistical significance.

Haplotype
A combination of alleles found on the same chromosome.
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Haplotype block
A set of highly associated alleles on a chromosome that tend to be inherited together.

Genotype imputation
A method for estimating (‘imputing’) the unobserved genotypes of study subjects, both for 

individuals with missing or unreliable genotypes at a genotyped single-nucleotide 

polymorphism (SNP) and for all individuals at an ungenotyped SNP.

Recombination hot-spots
Genomic regions where the rate of recombination is much higher than neutral expectation.

Cross-validation
A technique to build a prediction model by randomly partitioning the sample into a training 

set to train the model (e.g., determine which single-nucleotide polymorphisms (SNPs) to 

include in a model), and a test set to measure its predictive performance (e.g., average 

squared prediction error). It is common to split the original sample into 10 equal size 

subsamples, use 9 to train and 1 to test, and repeat this process 10 times such that each of the 

10 subsamples is used as a test sample, and then average the predictive performance over the 

10 training subsamples.

Prior probability
In Bayesian probability theory, the probability distribution assigned to parameters of 

interest, specified to represent prior knowledge of their values before observing the data.

Posterior probability
In Bayesian probability theory, the updated probability distribution of parameters of interest, 

conditional on the observed data.

Posterior inclusion probability (PIP)
The marginal probability that a single-nucleotide polymorphism (SNP) is included in any 

causal model, conditional on the observed data, thereby providing weight of evidence that a 

SNP should be included as potentially causative.

Expression quantitative trait loci (eQTLs)
Genomic regions that harbour one or more nucleotide variants that influence the amount of 

expression of a gene.

Type-I error
(Also known as false-positive rate). The probability of incorrectly rejecting the null 

hypothesis of no association between a SNP and a trait, thereby falsely concluding a true 

association.

Multiple testing correction
When testing more than one statistical association, the probability of declaring at least one 
significant result increases as the number of statistical tests increases. If each of m 
independent statistical tests uses p-value<α to declare significance, then the chance that at 
least one of the m tests is found to be significant is approximately mα. Multiple testing 

correction maintains the overall chance of declaring at least one significant result by using 
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more stringent p-value thresholds for each association tested. The Bonferroni correction uses 

p-value<α/m to test each association.
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Online summary (Key Points)

• Genome-wide association studies of complex traits can identify multiple 

associated loci, each represented by one or more single-nucleotide 

polymorphisms (SNPs) with small p-values. An important next step to 

understanding the genetic contributions to a trait is identifying which SNP(s) 

are likely to be truly causal at a given locus.

• A major challenge in identifying underlying causal SNPs is the presence of 

linkage disequilibrium (LD), which can lead to highly correlated association 

results and multiple significant SNPs at a locus of interest. Fine-mapping 

methods aid this process by selecting and prioritizing variants most likely 

responsible for complex traits.

• A variety of computational fine-mapping approaches are reviewed, including 

heuristic, penalized models, and Bayesian methods. Bayesian methods are 

highlighted because of their flexibility and benefits.

• The main factors that influence the performance of Bayesian fine-mapping are 

quantified and discussed, including the number of causal variants in a region, 

the size of the effects of the variants on a trait, the SNP density, the local LD 

structure, and the sample size.

• Fine-mapping can be improved by further data integration, such as combining 

summary statistics from multiple cohorts to increases sample size, trans-ethic 

studies that capitalize on differences in the structure of linkage 

disequilibrium, use of genomic annotation, and integrated analysis of gene 

expression data with genetic markers and traits.
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Figure 1. Flow of typical process from intial GWAS to annotation of SNPs selected from fine-
mapping analyses
Based on GWAS p-values summarized in a Manhattan plot112, a list of SNPs that achieve 

genome-wide statistical significance (i.e., p-value <5×10−8) is used to determine regions of 

interest for fine-mapping. Each region is typlically explored according to the structure of 

linkage disequilibrium among single-nucleotide polymorphisms (SNPs) using Halpoview 

plots. Statistical assocaitions are viewed with LocusZoom plots that illustrate the patterns of 

association of each SNP with the lead SNP, as well as annotation of genes in the region. The 

regions can then be partitioned into independent sub-regions to ease computational burden, 

based on statistical models that evalute the simultaneous effects of multiple SNPs on a trait. 

Statistical fine-mapping is conducted in each region, using one of the methods illusrated in 

Figure 2. The SNPs selected from fine-mapping are then annotated with genomic features to 

prioritize follow-up functional studies. Figure is adapted from REF112.
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Figure 2. Hypothetical examples of fine-mapping strategies
All subfigures are based on LocusZoom-style illustrations of marginal single-nucleotide 

polymorphism (SNP) associations. The −log10(p-values) are presented on the left y-axis and 

variant positions are on the x-axis. The gold diamond for each locus represents the peak 

SNP. The results for other SNPs are coloured by descending degree of linkage 

disequilibrium (LD) with the peak SNP (ordered red, orange, green, and blue dots). The 

purple bars represent additional variant-level statistics produced by fine-mapping (i.e., Beta 

values for penalized regression; posterior inclusion probabilities (PIPs) for Bayesian 

methods ), and the corresponding scale is on the right y-axis. The light grey boxes represent 

the regions selected by fine-mapping. A | The heuristic approach is based on LD patterns 

with the peak SNP (rs12345). All SNPs that meet the orange LD category threshold have 

been selected. B | The penalized regression approach selects all SNPs whose effects (Beta, 

right axis) are not shrunk to zero. C | Bayesian fine-mapping produces SNP-level PIPs (right 

axis), which can be summed to form credible sets based on a specified coverage probability 

threshold (e.g., 95%). This example illustrates that the peak SNP does not correspond to the 

SNP with the highest PIP, which can occur because of the correlation structure among all 

SNPs in the region. D | Bayesian trans-ethnic fine-mapping. Results for the same locus are 

illustrated for two diverse study populations (Pop. 1 (panel Da) and Pop. 2 (panel Db)) with 

different local LD structures. The peak SNPs for the two analyses differ (rs12345 versus 

rs23456), and combining the results through meta-analysis yields a narrowed fine-mapping 

credible region (panel Dc). E | Joint analysis of multiple loci by integrating annotation in 

Bayesian fine-mapping can improve fine-mapping by borrowing annotation information 

across loci. Presented are three example independent loci (panels Ea–c) along with two 

corresponding regional annotations, indicated by bands below each locus plot. For loci 1 and 
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2, the peak SNPs overlap with Annotation 1, indicating enrichment. This enrichment results 

in the SNP with the highest PIP in locus 3 to be different from the peak SNP in locus 3.
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Figure 3. Power of conditional analysis
This figure illustrates how conditional analyses have weaker power to detect secondary 

associated single-nucleotide polymorphisms (SNPs) compared to the power of an initial 

genome-wide association study (GWAS). Power of conditional analyses diminishes as the 

correlation of a primary SNP (indicated by SNP1) and a secondary SNP (indicated by SNP2) 

increases, and when the effect size of a secondary SNP is weaker than that for a primary 

SNP. For this figure, the power for an initial GWAS to detect a primary SNP1 is 90% for an 

effect size of R2 = 1% of explained trait variation. The effect size of a secondary SNP2 is 

varied from 100% to 50% of the effect size of primary SNP1.
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Figure 4. Posterior probability for a single causal SNP when 5–40 SNPs are in a region of interest
The prior probability that a SNP is causal is assumed to be equal for all SNPs. Sample size 

(N) ranges from 500–20,000, and the percent of trait variation explained by the causal 

variant, R2, is 1%. SNPs are assumed to be equally correlated with magnitude ρ. The 

horizontal dotted line is for equal prior probabilities for SNPs, and the posterior probability 

approaches this line when the data have little information to distinguish causal from non-

causal SNPs.
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