Skip to main content
. Author manuscript; available in PMC: 2019 Jul 1.
Published in final edited form as: J Labelled Comp Radiopharm. 2018 Mar 12;61(9):636–651. doi: 10.1002/jlcr.3607

TABLE 1.

Decay properties, production methods, chelators, and theranostic pair for potential PET-radiometals. The gamma spectrum for each radiometal listed below is provided as Supporting Information (Figure S1)

Radionuclide t1/2 Average β+Energy/ Iβ+ (%) Principle γ Emissions / Iγ (%) Optimal Production Method Typical Chelators Theranostic Partner Isotope
89Zr 78.4 h 396 keV/ 23% 909 keV/ 99% Cyclotron DFO
HOPO DOTA
-
64Cu 12.7 h 278 keV/ 18% - Cyclotron NOTA DOTA TETA SAR family 67Cu
86Y 14.7 h 660 keV/ 32% 1076 keV/83%
628 keV/33%
1153 keV/31%
777 keV/22%
1921 keV/21%
1854 keV/17%
Cyclotron DOTA
DTPA
90Y
52Mn 5.6d 242 keV/ 29% 1434 keV/ 100%
935 keV/95%
744 keV/90%
Cyclotron DOTA -
55Co 17.5 h 570 keV/76% 931 keV/75%
1409 keV/17%
Cyclotron DOTA
HBED
TETA
NOTA
58mCo
152Tb 17.5 h 1140 keV/20% - Proton-induced spallation DOTA 161Tb
90Nb 14.6 h 620 keV/51% 1129 keV/93%
2319 keV/82%
141 keV/67%
2186 keV/18%
High energy cyclotron DFOA -
66Ga 9.3 h 1750 keV/57% 1039 keV/37%
2752 keV/23%
4295 keV/4%
Cyclotron DOTA
NOTA
71Ga
72As 26.0 h 1170 keV/88% 834 keV/81%
630 keV/8%
Cyclotron Trithiol / lipoic acid 77As
69Ge 39.1 h 490 keV/24% 1107 keV/36%
574 keV/13%
872 keV/12%
Cyclotron Metal oxide nanoparticles -