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Abstract

Identifying robust survival subgroups of hepatocellular carcinoma (HCC) will significantly 

improve patient care. Currently, endeavor of integrating multi-omics data to explicitly predict 

HCC survival from multiple patient cohorts is lacking. To fill in this gap, we present a deep 

learning (DL) based model on HCC that robustly differentiates survival subpopulations of patients 

in six cohorts. We build the DL based, survival-sensitive model on 360 HCC patients’ data using 

RNA-seq, miRNA-seq and methylation data from TCGA, which predicts prognosis as good as an 

alternative model where genomics and clinical data are both considered. This DL based model 

provides two optimal subgroups of patients with significant survival differences (P=7.13e-6) and 

good model fitness (C-index=0.68). More aggressive subtype is associated with frequent TP53 
inactivation mutations, higher expression of stemness markers (KRT19, EPCAM) and tumor 

marker BIRC5, and activated Wnt and Akt signaling pathways. We validated this multi-omics 

model on five external datasets of various omics types: LIRI-JP cohort (n=230, C-index=0.75), 

NCI cohort (n=221, C-index=0.67), Chinese cohort (n=166, C-index=0.69), E-TABM-36 cohort 

(n=40, C-index=0.77), and Hawaiian cohort (n=27, C-index=0.82). This is the first study to 

employ deep learning to identify multi-omics features linked to the differential survival of HCC 

patients. Given its robustness over multiple cohorts, we expect this workflow to be useful at 

predicting HCC prognosis prediction.
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Introduction

Liver cancer is the 2nd leading cancer responsible for the mortality in men, worldwide (1). In 

USA, more than 40,000 people are estimated to be diagnosed with liver cancer in 2017, 

according to the American Cancer Society (2). It is one of the few cancer types with increase 

in both incidence and mortality rates, by ~3% per year in the US (3). Hepatocellular 

carcinoma (HCC) is the most prevalent type (70–90%) of liver cancer. It is aggravated by 

various risk factors, including HBV/HCV infection, nonalcoholic steatohepatitis (NASH), 

alcoholism, and smoking. The 5-year survival rate of HCC varies greatly from different 

populations, with an average rate of less than 32% (4–9). The high level of heterogeneity in 

HCC along with the complex etiological factors makes the prognosis prediction very 

challenging (10, 11). Moreover, treatment strategies in HCC are very limited, imposing 

additional urgent needs for developing tools to predict patient survival (12).

To understand the HCC heterogeneity among patients, a considerable amount of work has 

been done to identify the HCC molecular subtypes (13–19). A variety of numbers of 

subtypes were identified, ranging from 2 to 6, based on various omics data types, driving 

hypotheses and computational methods. Besides most commonly used mRNA gene 

expression data, a recent study integrated copy number variation (CNV), DNA methylation, 

mRNA and miRNA expression to identify the 5 HCC molecular subtypes from 256 TCGA 

samples (20). However, most of the studies explored the molecular subtypes without relying 

on survival during the process of defining subtypes (21). Rather, survival information was 

used post hoc to evaluate the clinical significance of these subtypes (20). As a result, some 

molecular subtypes showed converging and similar survival profile, making them redundant 

subtypes in terms of survival differences (16). New approaches to discover survival-sensitive 

and multi-omics data based molecular subtypes are much needed in HCC research.

To address these issues, for the first time, we have utilized deep learning (DL) computational 

framework on multi-omics HCC datasets. We chose the autoencoder framework as the 

implementation of DL for multi-omics integration. Autoencoders aim to reconstruct the 

original input using combinations of non-linear functions which can then be used as new 

features to represent the dataset. These algorithms have already been proved to be efficient 

approaches to produce features linked to clinical outcomes (22). Autoencoders were 

successfully applied to analyze high-dimensional gene expression data (23, 24), and to 

integrate heterogeneous data (25, 26). Notably, autoencoder transformation tends to 

aggregate genes sharing similar pathways (27), therefore making it appealing to interpret the 

biological functions. The contributions of this study to HCC field is not only manifested in 

its thorough and integrative computational rigor, but also unify the discordant molecular 

subtypes into robust subtypes that withstand the testing of various cohorts, even when they 

are in different omics forms.

We derived the model from 360 HCC samples in TCGA multi-omics cohort, which have 

mRNA expression, miRNA expression, CpG methylation and clinical information. We 

discovered two subtypes with significant differences in survival. These subtypes hold 

independent predictive values on patient survival, apart from clinical characteristics. Most 

importantly, the two subtypes obtained from our DL framework are successfully validated in 
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five independent cohorts, which have miRNA or mRNA or DNA methylation dataset. 

Functional analysis of these two subtypes identified that gene expression signatures 

(KIRT19, EPCAM and BIRC5) and Wnt signaling pathways are highly associated with poor 

survival. In summary, the survival-sensitive subtypes model reported here is significant for 

both HCC prognosis prediction and therapeutic intervention.

Materials and Methods

Datasets and study design

In this study, we used a total of 6 cohorts, and the descriptions of them are detailed below. 

We used TCGA data in two steps: the first step is to obtain the labels of survival-risk classes, 

using the whole TCGA data set; another step is to train an SVM model, by splitting the 

samples 60/40% to training and holdout testing data (detailed in “Data partitioning and 

robustness assessment” subsection). We used 5 additional confirmation data sets to evaluate 

the prediction accuracy of the DL based prognosis model.

TCGA set—We obtained multi-omics HCC data from the TCGA portal (https://tcga-

data.nci.nih.gov/tcga/). We used R package TCGA-assembler (v1.0.3) (28) and obtained 360 

samples with RNA-seq data (UNC IlluminaHiSeq_RNASeqV2; Level 3), miRNA-seq data 

(BCGSC IlluminaHiSeq_miRNASeq; Level 3), DNA methylation data (JHU-USC 

HumanMethylation450; Level 3), and the clinical information. For the DNA methylation, we 

mapped CpG islands within 1500 bp ahead of transcription start sites (TSS) of genes and 

averaged their methylation values. In dealing with the missing values (preprocessing of 

data), three steps were performed as elsewhere (29). First, the biological features (e.g. genes/

miRNAs) were removed if having zero value in more than 20% of patients. The samples 

were removed if missing across more than 20% features. Then we used impute function 

from R impute package (30), to fill out the missing values. Lastly, we removed input features 

with zero values across all samples.

Confirmation cohort 1 (LIRI-JP cohort, RNA-seq)—230 samples with RNA-seq data 

were obtained from ICGC portal (https://dcc.icgc.org/projects/LIRI-JP). These samples 

belong to Japanese population primarily infected with HBV/HCV (31). We used the 

normalized read count values given in the gene expression file.

Confirmation cohort 2 (NCI cohort, microarray gene expression)—221 samples 

with survival information were chosen from GSE14520 Affymetrix high-throughput 

GeneChip HG-U133A microarray dataset, from an earlier study of HCC patients (32). This 

is a Chinese population primarily associated with HBV infection. Log2 Robust Multi-array 

Average (RMA)-calculated signal intensity values provided by the authors were used for 

analysis.

Confirmation cohort 3 (Chinese cohort, miRNA expression array)—166 pairs of 

HCC/matched noncancerous normal tissue samples were downloaded, with CapitalBio 

custom Human miRNA array data (GSE31384) (33). Since the data were already log2 

transformed, we used unit-scale normalization.
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Confirmation cohort 4 (E-TABM-36, gene expression microarray)—40 HCC 

samples were used, with survival information and transcriptional profiling from Affymetrix 

HG-U133A GeneChips arrays platform (16). We used the CHPSignal values for the further 

processing as a measure of gene expression.

Confirmation cohort 5 (Hawaiian cohort, DNA Methylation array)—27 samples 

were used, with genome-wide methylation profiling from Illumina HumanMethylation450 

BeadChip platform (34). Probe to gene conversion was done the same way as for TCGA 

HCC methylation data.

All the available clinical information for the confirmation cohorts is listed in Supplementary 

Table S1. These cohorts were used to test the Support Vector machine (SVM) machine-

learning models.

Transformed features using a deep Learning framework

We used the 3 preprocessed TCGA HCC omics datasets of 360 samples as the input for the 

autoencoders framework. We stacked the 3 matrices that are unit-norm scaled by sample, in 

order to form a unique matrix as reported before (35). An autoencoder is an unsupervised 

feed-forward, non-recurrent neural network (36). Given an input layer taking the input x = 

(x1, …, xn) of dimension n, the objective of an autoencoder is to reconstruct x by the output 

x’ (x and x’ have the same dimension), via transforming x through successive hidden layers. 

For a given layer i, we used tanh as activation function between input layer x and output 

layer y. That is:

y = f i(x) = tanh(Wi ․ x + bi)

Where x and y are two vectors of size d and p, respectively and Wi is the weight matrix of 

size d × p, bi an intercept vector of size p and Wi․x = ΣjWi,j․xj, with xj the value of a single 

feature from x. For an autoencoder with k layers, x´ is then given by:

x′ = F1 k(x) = f 1°…° f k − 1° f k(x)

Where fk−1°fk(x) = fk−1(fk(x)) is the composed function of fk−1 with fk. To train an 

autoencoder, the objective is to find the different weight vectors Wi minimizing a specific 

objective function. We chose logloss as the objective function which measures the error 

between the input x and the output x′:

logloss(x, x′) = ∑
k = 1

d
(xklog(x′k) + (1 − xk) log(1 − x′k))

In order to control overfitting, we added an L1 regularization penalty αw on the weight 

vector Wi, and a L2 regularization penalty αa on the nodes activities: F1→k(x). Thus the 

objective function above becomes:
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L(x, x′) = logloss(x, x′) + ∑
i = 1

k
(αw‖Wi‖1 + αa‖F1 i(x)‖2

2)

We implemented an autoencoder with three hidden layers 500, 100 and 500 nodes 

respectively, using python Keras library (https://github.com/fchollet/keras). We used the 

bottleneck layer of the autoencoder to produce new features from the omics data. The values 

αa and αw were set to 0.0001 and 0.001. Finally, to train the autoencoder we used the 

gradient descent algorithm with 10 epochs and 50% dropout. Here, epoch means the 

iteration of the learning algorithm (stochastic gradient descent) through the entire training 

dataset. During one epoch, the learning algorithm processes each instance of training data 

once.

Transformed feature selection and K-means clustering

The autoencoder reduced the initial number of features to 100 new features obtained from 

the bottleneck layer. Next for each of these transformed features produced by autoencoder, 

we built a univariate Cox-PH model and selected features from which a significant Cox-PH 

model is obtained (log-rank p-value < 0.05). We then used these reduced new features to 

cluster the samples using the K-means clustering algorithm. We determined the optimal 

number of clusters with two metrics: Silhouette index (37) and Calinski-Harabasz criterion 

(38). We used the scikit-learn package for K-means implementation (39).

Data partitioning and robustness assessment

We used a CV like procedure to partition the TCGA dataset as follows: We used a 60/40% 

split (training/test sets) of the TCGA data, in order to have sufficient number of test samples 

that generate evaluation metrics. We first randomly split the 360 samples from TCGA into 5 

folds. We then used 2 of the 5 of folds as the test set, and the remaining 3 folds as the 

training set. With this approach, we obtained 10 new combinations (folds). For each of these 

10 new folds, we constructed a model using the 60% samples (training set) and predicted the 

labels in test set (held-out). This data partitioning was only used to assess the robustness of 

the model. For each training fold, a distinct autoencoder and a classifier (see below) were 

built to predict the labels of the test fold. The labels of the TCGA samples are finally 

inferred using an autoencoder built with all the samples and these labels were used for the 

prediction of the confirmation datasets.

Supervised classification

After obtaining the labels from K-means clustering, we built supervised classification 

model(s) using SVM algorithm. We normalized each omics layer in the training set, then 

selected the top N features which are most correlated with the cluster labels (obtained from 

K-means), based on ANOVA F-values. We set default N values as 100 for mRNAs, 50 for 

methylation and 50 for miRNAs.

To predict on TCGA 3 omics held-out test data, we built an SVM classifier from a 

combination of top 100 mRNAs, 50 methylation and 50 miRNA features, selected by 
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ANOVA. To predict each of the other 5 confirmation cohorts used in this study, we built an 

SVM classifier on each omics type, using the corresponding top 100 mRNAs, 50 

methylation, or 50 miRNA features selected by ANOVA, respectively. For a confirmation 

cohort from a specific omic layer, we first selected common features (mRNAs, CpG sites or 

miRNAs) between this cohort and the corresponding omic layer in the TCGA training set. 

Specifically, the common features between the five cohorts and TCGA training dataset are: 

14634 for LIRI-JP cohort, 9311 for NCI cohort, 174 for Chinese cohort, 10550 for E-

TABM-36 cohort and 19883 for Hawaiian cohort.

We then applied two scaling steps on both training set and the confirmation cohort samples. 

We first used a median scaling on both the training set and the new test samples, where each 

feature is rescaled according to its median and absolute median deviation. This approach 

was used to normalize samples from RNA-seq data previously (40). For mRNA and DNA 

methylation data, we then applied a robust scaling on the training set and confirmation 

samples using the means and the standard deviations of the training set (41). For miRNA 

confirmation data, we applied the unit scale normalization for both the miRNA training and 

the confirmation cohort. When predicting a single sample, an alternative rank normalization 

(rather than robust or unit scale normalization) can be applied to both the new sample and 

samples from the training sets (see more details in supplementary File S1).

We used the scikit-learn package to perform grid search to find the best hyperparameters of 

the SVM model(s) using 5-fold cross-validation (CV) and built SVM models.

Evaluation metrics for models

The metrics used closely reflect the accuracy of survival prediction in the subgroups 

identified. Three sets of evaluation metrics were used.

Concordance index (C-index)—The C-index can be seen as the fraction of all pairs of 

individuals whose predicted survival times are correctly ordered (42) and is based on 

Harrell’s C statistics (43). A C-index score around 0.70 indicates a good model, whereas a 

score around 0.50 means random background. To compute the C-index, we first built a Cox-

PH model using the training set (cluster labels and survival data) and predict survival using 

the labels of the test/confirmation set. We then calculated the C-index using function 

concordance.index in R survcomp package (44). To compute the C-index using the multiple 

clinical features, we built a Cox-PH using the glmnet package instead (45). We opted to 

perform penalization through ridge regression rather than the default Lasso penalization. 

Before building the Cox-PH model, we performed a 10-fold CV to find the best lambda.

Log-rank p-value of Cox-PH regression—We plotted the Kaplan-Meier survival 

curves of the two risk groups, and calculated the log-rank p-value of the survival difference 

between them. We used Cox proportional hazards (Cox-PH) model for survival analysis 

(46), similar to described before (47, 48), using R survival package (49).

Brier score—It is another score function that measures the accuracy of probabilistic 

prediction (50). In survival analysis, the brier score measures the mean of the difference 

between the observed and the estimated survival beyond a certain time (51). The score 
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ranges between 0 and 1 and a larger score indicates higher inaccuracy. We used the 

implementation of brier score from R survcomp package.

Alternative approaches to the deep Learning framework

We compared the performances of the deep learning framework with two alternative 

approaches. In the first approach, we performed PCA analysis and used the same number 

(100) of principal components as those features in the bottleneck layer of Figure 1. We then 

identified the subset (13) of PCA features significantly associated with survival using 

univariate Cox-PH models, using the same procedure as the Cox-PH step in Figure 1. In the 

second approach, we selected top 37 features among all three omics features using single-

variant Cox-PH models, based on the C-index scores. We clustered the samples using the 

same K-means procedure as in Figure 1.

Functional analysis

A number of functional analyses were performed to understand the characteristics of 2 

survival risk subtypes of TCGA HCC samples.

TP53 mutation analysis—We analyzed the somatic mutation frequency distributions in 

the survival subtypes for the TP53 gene, among TCGA and LIRI-JP cohorts. TCGA and 

LIRI-JP cohorts have exome sequencing and whole genome sequencing data for 186 and 

230 samples with survival data, respectively. We performed Fisher’s test on TP53 mutation 

between two survival risk groups.

Clinical covariate analysis—We tested the associations of our identified subtypes with 

other clinical factors, including gender, race, grade, stage and risk factors, using Fisher’s 

exact tests. To test if the two survival risk subtypes have prognostic values in addition to 

clinical characteristics, we built a combined Cox-PH model with survival risk classification 

and clinical data, and compared it to the one with only clinical data (stage, grade, race, 

gender, age and risk factor).

Differential Expression—In order to identify the differential expressed genes between 

the two survival risk subtypes, we performed the differential expression analysis for the 

mRNA, miRNA expression and methylation genes. We used DESeq2 package (52) to 

identify the differential gene and miRNA expression between the 2 subtypes (false discovery 

rate, or FDR <0.05). Additionally, we used log2 fold change greater than 1 as filtering for 

mRNA/miRNA. For methylation data, we transformed the beta values into M values as 

elsewhere (53, 54) using the lumi package in R (55). We fit the linear model for each gene 

using lmFit function followed by empirical Bayes method, using limma package in R (56). It 

uses moderate t-tests to determine significant difference in methylation for each gene 

between S1 and S2 subtypes (Benjamin-Hochberg corrected P<0.05). Additionally, we used 

averaged M value differences greater than 1 as filtering. We used volcano plot to show the 

differentially methylated genes in two subtypes.

Enriched pathway analysis—We used upregulated and downregulated genes for the 

KEGG pathway analysis, using the functional annotation tool from the online DAVID 
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interface (57, 58). We used the modified Fisher’s Exact Test p-value (EASE score provided 

by DAVID) threshold of 0.10 to consider a pathway significant. We plot the gene-pathway 

network using Gephi (59).

Results

Two differential survival subtypes are identified in TCGA multi-omics HCC data

From the TCGA HCC project, we obtained 360 tumor samples that had coupled RNA-seq, 

miRNA-seq and DNA methylation data. For these 360 samples, we preprocessed the data as 

described in the ‘Materials and Methods’ section, and obtained 15,629 genes from RNA-seq, 

365 miRNAs from miRNA-seq, and 19,883 genes from DNA methylation data as input 

features. These three types of omics features were stacked together using autoencoder, a 

deep learning framework (36). The architecture of autoencoder is shown in Figure 1A. We 

used the activity of the 100 nodes from the bottleneck hidden layer as new features. We then 

conducted univariate Cox-PH regression on each of the 100 features, and identified 37 

features significantly (log-rank p-value <0.05) associated with survival. These 37 features 

were subjective to K-means clustering, with cluster number K ranging from 2 to 6. Using 

silhouette index and the Calinski-Harabasz criterion, we found that K=2 was the optimum 

with the best scores for both metrics (supplementary Figure S1A). Further, the survival 

analysis on the full TCGA HCC data shows that the survivals in the two sub-clusters are 

drastically different (log-rank p-value =7.13e-6, Figure 2A). Moreover, K=2 to 6 yielded 

KM survival curves that essentially represent 2 significantly different survival groups 

(supplementary Figure S1B). Thus, we determined that K=2 was the classification labels for 

the subsequent supervised machine learning processes.

We next used the 2 classes determined above as the labels to build a classification model 

using the support vector machine (SVM) algorithm with cross-validation (CV) (Figure 1B). 

We split the 360 TCGA samples into 10 folds using 60/40 ratio for training and test data. We 

chose 60/40 split, rather than a conventional 90/10 split, in order to have sufficient test 

samples for sensible log-rank p-values in the survival analysis (see ‘Materials and 

Methods’). Additionally, we assessed the accuracy of the survival subtype predictions using 

C-index, which measures the fraction of all pairs of individuals whose predicted survival 

times are ordered correctly (42). We also calculated the error of the model fitting on survival 

data using Brier score (50). On average, the training data generated high C-index 

(0.70±0.04), low brier score (0.19±0.01), and significant average log-rank p-value (0.001) on 

survival difference (Table 1). Similar trend was observed for the 3-omics held-out test data, 

with C-index=0.69±0.08, Brier score=0.20±0.02, and average survival p-value=0.005 (Table 

1). When tested on each single omic layer of data, this multi-omics model also has decent 

performances, in terms of C-index, low Brier scores and log-rank p-values (Table 1). These 

results demonstrate that the classification model using cluster labels is robust to predict 

survival-specific clusters. Supplementary Table S2 enlists the top K features for 3-omics 

selected by ANOVA for the SVM-based classification in full TCGA cohort.
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The survival subtypes are robustly validated in five independent cohorts

To demonstrate the robustness of the classification model at predicting survival outcomes, 

we validated the model on a variety of five independent cohorts, each of which had only 

mRNA, or miRNA or methylation omics data (Table 2 and Figures 2B–2F). The common 

top features selected by ANOVA prior to SVM classification (between TCGA and 5 cohorts) 

are as follows: LIRI-JP (94%), NCI (74%), Chinese-GSE31384 (58%), E-TABM-36 (82%) 

and Hawaiian (100%). LIRI-JP dataset is the RNA-seq dataset with the most number of 

patients (n=230); we achieved a good C-index 0.75, a low Brier error rate of 0.16 and the 

log-rank p-value of 4.4e-4 between the two subtypes. For the second largest (n=221) NCI 

cohort (GSE14520), the two subgroups have decent C-index of 0.67 and low Brier error rate 

of 0.18 with log-rank p-value of 1.05e-3 (Table 2). For Chinese cohort (GSE31384), the 

miRNA array data with 166 samples, the two subgroups have C-index of 0.69, low Brier 

error rate of 0.21, and log-rank p-value of 8.49e-4 (Table 2). Impressively, the C-indices for 

the two smallest cohorts, E-TABM-36 (40 samples) and Hawaiian cohorts (27 samples) are 

very good, with values of 0.77 and 0.82, respectively. The p-values obtained for the small 

cohorts are not significant, due to small sample size, with values of 0.103 and 0.0535, 

respectively (Figures 2E, F).

The DL-based methodology outperforms alternative approaches

We compared the performance of the model described in Figure 1B to two alternative 

approaches (supplementary Figure S2). In the first approach, we replaced autoencoder with 

the conventional dimension reduction method Principal Component Analysis (PCA). Similar 

to the 100 features from hidden nodes in the autoencoder, we obtained top 100 Principal 

Components, which were then subjective to univariate Cox-PH. As a result, 13 Principal 

component features remained. However, this approach failed to give significant log-rank p-

value (P=0.14) in detecting survival subgroups (supplementary Figure S2A). It also yielded 

significantly lower C-index for test data (0.62) (supplementary Table S3), as compared to the 

model using autoencoder. In the second approach, we by passed the step of autoencoder, 

performed uni-variate Cox-PH analysis on each input feature in the 3 omics data types, and 

kept the top 37 features based on the C-index scores (supplementary Figure S2B). This 

model gave a P-value of 3.0e-8, still much less significant than the deep-learning method 

(6.0e-9, supplementary Figure S2C). More importantly, these alternative approaches failed 

overall to find significant subgroups in the majority of the confirmation sets. The only 

significance is in the LIRI-JP dataset using the Cox-PH approach (supplementary Table S3).

Worth noticing, the 3-omics based DL model gives better prediction metrics in CV, when 

compared to single-omics based DL models (supplementary Table S4), suggesting that 

indeed multi-omics data are better than single-omics data for model building. Finally, 

autoencoders fitted with a high number of epochs, with more than three hidden layers or 

with a high number of hidden nodes presented significant decreases of the performances. 

However, only one hidden layer or too few hidden nodes appeared also less efficient 

(supplementary Table S3).
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Adding clinical information does not improve DL-based multi-omics model

It remains to see if the DL-based multi-omics model will improve the predictability, by 

adding clinical information. Therefore, we assessed the performance of alternative models 

with clinical variables as the features, either alone or in combination with previous DL-

based multi-omics model (Table 3). When clinical features were used as the sole feature set 

for survival prediction, the models’ performances were much poorer (Table 3), when 

compared to the DL-based genomic model (Table 2). Then we combined the clinical features 

with the 3 omics layers before the K-means clustering step in Figure 1B. Surprisingly, the C-

indices of the combined model were not better on the confirmation cohorts with larger 

sample sizes (LIRI-JP and NCI cohorts), compared to those of DL-based multi-omics 

model. C-index and p-value were only slightly but not statistically significantly better for the 

Hawaiian cohort, which has only 27 samples. We thus conclude that the DL-based multi-

omics model performs sufficiently well even without clinical features. We speculate the 

reason is due to the unique advantage of DL neural network, which can capture the 

redundant contributions of clinical features through their correlated genomic features.

Associations of survival subgroups with clinical covariates

We performed the Fisher’s exact test between the two survival subgroups and the clinical 

variables from TCGA cohort, and found that only grade (P=0.0004) and stage (P=0.002) 

were significantly associated with survival, as expected. Since HCC is aggravated by the 

multiple risk factors including HBC, HCV, and alcohol, we also tested our model within 

subpopulations stratified by individual risk factors (Table 4). Impressively, our model 

performed very well on all the risk factor categories with C-indices ranging from 0.69–0.79, 

and Brier scores between 0.19 and 0.20. Log-rank P-values were significant in HBV infected 

patients (P=0.04), alcohol consumers (P=0.005) and others category (P=0.0035). The only 

non-significant p-value (P=0.20) was obtained from the HCV infected patients, probably 

attributed to the small group size (n=31).

TP53 is one of the most frequently mutated genes in HCC, and its inactivation mutations 

have been reported to be associated with poor survival in the HCC (60). Between the 2 

survival subgroups S1 and S2 in TCGA samples, TP53 is more frequently mutated in the 

aggressive subtype S1 (Fisher’s test p-value=0.042). Further, TP53 inactivation mutations 

are associated with the aggressive subtype S1 in LIRI-JP cohort, where whole genome 

sequencing data are available (p-value=0.024).

Functional analysis of the survival subgroups in TCGA HCC samples

We used DESeq2 package (52) for differential gene expression between the two identified 

subtypes. After applying the filter of log2 fold change >1 and FDR >0.05, we obtained 820 

up-regulated and 530 down-regulated genes in the aggressive sub-cluster S1. Figure 3 shows 

the comparative expression profile of these 1350 genes after normalization. The up-regulated 

genes in the S1 cluster include the stemness marker genes, EPCAM (P=5.7e-6), KRT19 
(P=6.7e-15) and tumor marker BIRC5 (P=1.2e-13) genes, which were also reported earlier 

to be associated with aggressive HCC subtype (61–63). Additionally, 18 genes (ADH1B, 
ALDOA, APOC3, CYP4F12, EPHX2, KHK, PFKFB3, PKLR, PLG, RGN, RGS2, 
RNASE4, SERPINC1, SLC22A7, SLC2A2, SPHK1, SULT2A1, TM4SF1) differentially 
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expressed in the two subtypes have similar trends of expression as in the previous study, 

where a panel of 65-gene signature was associated with the HCC survival (64).

Using the differentially expressed genes above, we conducted KEGG pathway analysis to 

pinpoint the pathways enriched in two subtypes. Since we have used EASE score in DAVID 

as the enrichment method, these results should be interpretive only (65). These subtypes 

have different and (almost) disjoint active pathways, confirming that they are distinct 

subgroups at the pathway level (Figure 4). Aggressive subtype S1 is enriched with cancer 

related pathways, Wnt signaling pathway, PI3K-Akt signaling pathway etc. (Figure 4A). 

Wnt signaling pathway was reported being associated with aggressive HCC previously (66). 

In contrast, the moderate subtype S2 has activated metabolism related pathways including 

drug metabolism, amino acid and fatty acid metabolism etc. (Figure 4B). Further biological 

functional studies are needed to confirm the signaling pathway (for S1) vs. metabolic 

pathway (for S2) preferences between the two survival groups. We performed similar 

differential analysis for miRNA expression and methylation data, and detected 23 miRNAs 

and 55 genes’ methylation statistically different between the two subgroups (supplementary 

Figure S3 and supplementary File S2).

Discussion

Heterogeneity is one of the bottlenecks for understanding the HCC etiology. Though there 

are many studies for subtype identification of the HCC patients, embedding survival 

outcome of the patients as part of the procedure of identified subtypes has not been reported 

before. Moreover, most reported HCC subtype models have either no or very few external 

confirmation cohorts. This calls for better strategies, where the identified subtypes could 

reflect the phenotypic outcome of the patients i.e. the survival directly. Present work 

includes the integration of the multi-omics data from the same patients, giving an edge by 

exploiting the improved signal-to-noise ratio. To our knowledge, we are the first to use the 

deep learning framework to integrate multi-omics information in HCC. It propels deep 

learning to develop risk stratification model, not only for prognostication but also 

instrumental for improvising risk-adapted therapy in HCC.

We have identified two subtypes from the molecular level. This model is robust and perhaps 

more superior than other approaches, manifested in several levels. Firstly, CV results gave 

the consistent performance in TCGA HCC test samples, implying the reliability and 

robustness of the model. Secondly, deep-learning technique used in the model has captured 

sufficient variations due to potential clinical risk factors, such that it performs as accurately 

or even better than, having additional clinical features in the model. Thirdly, autoencoder 

framework shows much more efficiency to identify features linked to survival, compared to 

PCA or to individual Cox-PH based models. Lastly and most importantly, this model is 

repetitively validated in five additional cohorts, ranging from RNA-seq, mRNA microarray, 

miRNA array, and DNA methylation platforms.

In association with clinical characteristics, the more aggressive subtype (S1) has consistent 

trends of association with higher TP53 inactivation mutation frequencies in the TCGA and 

LIRI-JP cohorts, which is in concordance with the previous study (60). Association of 
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stemness markers (KRT19, EPCAM) with S1 subtype is also in congruence with the 

literature (61, 62). Moreover, S1 subtype is enriched with activated Wnt signaling pathway 

(66). Despite our effort, the one to one comparison with the previous studies is not feasible 

due to the absence of cluster label information in original reports, and lack of survival data 

in some cases. Fortunately, we were able to identify five external confirmation cohorts 

encompassing different omic dataset, and succeeded in validating the subtypes among them. 

These results gave enough confidence that the 2 survival subtype specific model proposed in 

this report is of direct clinical importance, and maybe useful to improve HCC patients 

survival.

Some caveats are worth discussion below. First, we used whole TCGA data set in step 1 

(Figure 1B), in order to learn the class label of the TCGA samples in an unsupervised way. 

Therefore, when we build a SVM model using TCGA training dataset and apply it on TCGA 

testing data, the C-statistics may be inflated; however, when we apply the SVM model to the 

other external datasets, these data sets give more unbiased C-statistics, since they are not 

part of the SVM model construction process. Also, our current model is trained on TCGA 

HCC data, and it has been reported earlier that TCGA samples are impure (67). Liver tumor 

samples (LIHC) was reported to have better than average purity among 21 tumor types, 

higher than Breast Cancers in TCGA. Also, to obtain only HCC samples, we have procured 

the data from the TCGA website with their clinical annotation for liver hepatocellular 

carcinoma under the LIHC flag. The purity issue, along with the heterogeneous nature of 

HCC due to various risk factor, may explain why we do not have C-index better than 0.80 in 

the TCGA training data. To further examine the effects of risk factors on the model, we built 

sub-models for samples with only HBV, HCV and alcohol risk factor. We obtained C-indices 

of 0.90, 0.92 and 0.83 on HBV, HCV and alcohol affected TCGA subpopulations. Thus the 

heterogeneity of the population does affect the model performance. However, issues exist to 

test these models on external datasets, since the submodels were built on small training data, 

thus they could suffer from over-fitting in confirmation cohorts. Moreover, sample risk-

factors are not always known for public cohorts, restricting our confirmation effort. Albeit 

these issues, the current TCGA based model has an average C-index 0.74 on 5 external 

confirmation, indicating the model is generally predictive. Additionally, we used log-rank p-

value and brier score as other performance metrics to assess our pipeline. In the future, we 

plan to collaborate with clinicians to prospective cohorts, and improve the model over time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall workflow
(A) Autoencoder architecture used to integrate 3 omics of HCC data. (B) Workflow 

combining deep learning and machine learning techniques to predict HCC survival 

subgroups. The workflow includes two steps. Step 1: inferring survival subgroups and Step 

2: predicting risk labels for new samples. In step 1: mRNA, DNA methylation and miRNA 

features from TCGA HCC cohort are stacked up as input features for autoencoder, a deep 

learning method; then each of the new, transformed features in the bottle neck layer of 

autoencoder is then subject to single variate Cox-PH models, to select the features associated 

with survival; then K-mean clustering is applied to samples represented by these features, to 

identify survival-risk groups. In step 2, mRNA, methylation and miRNA input features are 

ranked by ANOVA test F-values, those features that are in common with the predicting 

dataset are selected, then top features are used to build SVM model(s) to predict the survival 

risk labels of new datasets.
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Figure 2. Significant survival differences for TCGA and external confirmation cohorts
(A) TCGA cohort, (B) LIRI-JP cohort, (C) NCI cohort, (D) Chinese cohort, (E) E-TABM-36 

cohort, and (F) Hawaiian cohort.
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Figure 3. Differentially expressed genes and their enriched pathways in the two subtypes from 
TCGA cohort
S1: aggressive (higher-risk survival) subtype; S2: moderate (lower-risk survival) subtype.
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Figure 4. Bipartite graph for significantly enriched KEGG pathways and upregulated genes in 
two subtype
Enriched pathway-gene analysis for upregulated genes in the (A) S1 aggressive tumor sub-

group and (B) less aggressive S2 sub-group.
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Table 1

Cross-validation based performance robustness of SVM classifier on training and test set in TCGA cohort.

Dataset 10-folds CV C-index Brier score Log-rank p-value
(geo. mean)

Training 3-omics training (60%) 0.70 (± 0.04) 0.19 (± 0.01) 0.001

Test

3-omics test (40%) 0.69 (± 0.08) 0.20 (± 0.02) 0.005

RNA only 0.68 (± 0.07) 0.20 (± 0.02) 0.01

MIR only 0.69 (± 0.07) 0.20 (± 0.02) 0.003

METH only 0.66 (± 0.07) 0.20 (± 0.02) 0.031
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Table 3

Performance of the model using clinical features on confirmation cohorts.

Confirmation
cohort

C-index
(clinic
only)

C-index
(Combined#)

Brier
score

Log-rank
p-value

LIRI-JP 0.55 0.74 0.16 0

NCI 0.45 0.65 0.19 0.007

E-TABM-36 0.50 0.75 0.19 0.056

Hawaiian 0.70 0.87 0.19 0.003

#
Combined = clinical + DL-based class labels
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Table 4

Full model performance within each subpopulation stratified by the clinical confounders in TCGA cohort.

Confounder # samples C-index Brier score Log-rank
p-value

HBV 74 0.74 0.20 0.04

HCV 31 0.69 0.19 0.20

Alcohol 67 0.79 0.20 0.005

Others 59 0.77 0.19 0.0035
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