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Differentially Methylated Genes 
in Saliva are linked to Childhood 
Stress
Ligia A. Papale1, Leslie J. Seltzer2, Andy Madrid1,3, Seth D. Pollak2,4 & Reid S. Alisch   1

Chronic and severe stress exposure in early childhood is associated with the development of psychiatric 
disorders. Yet, the molecular mechanisms underlying this relationship remain poorly understood. 
Here, we profile molecular marks (DNA methylation and gene expression) throughout the human 
genome to determine the associations between childhood stress exposure and gene regulation. To do 
so, we collected saliva tissue from prepubertal girls (mean age 10.9 ± 1.26 years) who had experienced 
different levels of childhood adversity, ranging from mild to severe. We found 122 differentially 
methylated genes (FDR P-value < 0.05) associated with high childhood stress exposures that affect 
brain development. Of these differentially methylated genes, 12 also differed in gene expression. To 
further investigate the potential effects of stress exposure on gene regulation, we examined the DNA 
sequences flanking all the differentially methylated loci. This analysis revealed enrichment of known 
binding sites for transcription factors, suggesting that DNA methylation may regulate gene expression 
by mediating transcription factor binding on these genes. Together, these findings indicate a possible 
neuromolecular mechanism linking children’s social experiences with risk for anxiety and depressive 
disorders.

Individuals who experience severe early life stress, such as physical abuse or neglect, are at heightened risk for 
a myriad of mental and physical health problems, including the development of emotional regulatory prob-
lems such as mood, anxiety, or aggressive disorders1. For these reasons, the impact of stress on young children’s 
biobehavioral development represents a major public health concern. Emerging research indicates that social 
environments can produce changes in gene expression. In this manner, life experiences can effectively “turn on” 
and “turn off ” genes, leading to cascades of downstream changes in biology and behavior. Here, we examine 
environmental influences on gene expression that may reveal critical molecular mechanisms linking extreme 
childhood stress with the development of a host of health problems.

Epigenetic modifications, such as DNA methylation, are environmentally sensitive components in the reg-
ulation of gene expression. Therefore, this experience-dependent silencing or expression of genes, without 
changes in DNA sequence itself, may help account for behavior changes that have been observed in individuals 
who have endured early life stress. DNA methylation is a covalent modification that can occur on the DNA 
base cytosine when it is located next to guanine in the CpG dinucleotide2. This modification is less common in 
CpG-rich regions, known as CpG islands, which are located in the promoter region of many genes. Studies of 
adult post-mortem brain tissue support a role for DNA methylation in the development of emotion regulatory 
problems3–8. Our recent studies in young monkeys, as well as studies in humans, identified differentially methyl-
ated genes that are implicated as risk factors for anxiety and depressive disorders9,10.

A growing body of literature supports the hypothesis that DNA methylation has an important role in the risk 
to develop behaviors associated with early life stress, using sample sizes that ranged from 10–56 participants10–18. 
For example, alterations in DNA methylation abundance at the promoter of the glucocorticoid receptor gene are 
associated with abuse during childhood19, and disruptions in DNA methylation on the serotonin transporter gene 
functions as a biomarker of life adversity in humans20. These studies support a role for DNA methylation in the 
response to an early life adversity and warrant a deeper investigation at the genome-level.
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Most of the extant research with humans has targeted single, specific genes, such as the glucocorticoid recep-
tor. But given the complexity of human behavior, it is likely that many genes and gene regulatory sites (e.g., CpG 
dinucleotides) need to be considered to understand the link between stress and behavioral pathologies. Therefore 
we examined genome-wide alterations among stress-exposed children across nearly half a million sites through-
out the human genome. We then tested which changes in DNA methylation were related to changes in gene 
expression, and whether the regulation of expression in these genes may be mediated by altered transcription 
factor binding.

Method
Participants.  Twenty-two girls between 9 and 12 years of age (mean = 10.9 years, sd – 1 year, 2 months) 
participated in this study. Half of the children experienced normative levels of child stress exposure (average 
age = 11.23, SD = 1.34 years) and the other half had experienced extremely high levels of stress exposure (average 
age = 10.61, SD = 1.14 years). Children were recruited from a previous study about stress and hormone regula-
tion21. Approximately half of the participants self identify their race to be Caucasian (13/22), and the number of 
participants from each race was not statistically different in each group. For gene expression analysis, children 
provided additional salivary samples. Four participants could not provide these samples, reducing the sample size 
for expression analysis to 18 (10 control, 8 high stress). All parents and participants gave informed consent/assent 
for the study and the University of Wisconsin–Madison Institutional Review Boards approved all procedures; all 
methods were carried out in accordance with the approved guidelines.

Assessment of Childhood Stress Exposure.  The Youth Life Stress Interview (for use with children) was 
derived from the UCLA Life Stress Interview, which was developed for use with adults. All items are open-ended 
interview questions administered separately to children and their parents. The interview is scored by an inde-
pendent team of trained investigators. The interviewer does not participate in the scoring, so raters were unaware 
of the participant’s identity and childhood stress status. Children and their parents each separately completed 
portions of the Youth Life Stress Interview (YLSI; Rudolph et al., 2000) to elicit information about the adolescent’s 
life history. Graduate-level research staff administered this semi-structured interview after extensive training 
from Dr. Rudolph. A panel of trained raters then rated the extent of behavioral problems using a 5-point scale. 
Higher scores reflected more severe stress exposure. This measure demonstrates high reliability (average intr-
aclass correlation = 0.96)22. In addition to the LSI, noted above, children completed the Children’s Depression 
Inventory23, the Revised Children’s Manifest Anxiety Scale24, the Child Behavior Checklist (CBCL)25.

DNA Extraction and Methylation Detection.  Saliva samples were collected using simple passive drool 
and Oragene kits for DNA methylation analysis (DNA Genotek, Canada). DNA was extracted following the 
manufacturers protocol. Genomic DNA samples were resolved on a 1% agarose gel, to verify the DNA was of 
high molecular weight, and quantified using Qubit (Qiagen, USA). DNA methylation levels were determined 
using the HumanMethylation450 array and beta values were obtained using R package minfi26. Beta values 
were background and control normalized, followed by subset-quantile within array normalization. CpGs were 
removed from analysis if they measured methylation at a SNP, contained a SNP within the probe, were known to 
be cross-reactive, or had at most one sample with a detection P-value > 0.01.

Identification of Differentially Methylated Loci.  Beta values were converted to M-value and R pack-
age limma27 was used to identify differentially methylated loci with a model using lifetime including score as a 
continuous variable and adjusting for age and beadchip. CpGs were ordered by chromosome and position, and 
P-values from limma were transformed to z-scores. A Hidden Markov Model was used to adjust for local index 
of significance (aLIS) using R package NHMMfdr28 with all parameters set to default. This model was employed 
for these studies for two reasons: 1) because mean methylation levels are strongly correlated across the genome 
and statistical power can be increased by ‘borrowing’ strength across adjacent measurements and 2) because 
the family-wise error rate is far too conservative when examining methylation data; instead, determining false 
discovery rates is a more appropriate way to analyze these data. Finally, CpGs were considered differentially 
methylated if the aLIS P-value was <0.05 (N = 550 differentially methylated loci [DMLs]). A Pearson’s correlation 
was identified for each DML. All methylation data was subjected to a surrogate variable analysis (R package sva) 
and zero surrogate variables were found in the data, suggesting that variables used in our model (e.g., LSI score, 
age) accounted for much of the observed variance, while latent confounders (e.g., cell type/count and ethnicity) 
were not present/sources of noise. Notably, all probes containing a single nucleotide polymorphism (SNP) were 
removed from the analysis. In addition, CpG IDs from all significant probes were placed into the mQTL database 
(http://www.mqtldb.org/search.htm), which utilized the MatrixEQTL database for association between SNPs and 
CpG ID. The developmental time point was set to “Childhood” and the distance was set to 200 base pairs.

RNA Extraction, Sequencing, and Differential Analysis.  Saliva samples were collected using simple 
passive drool and Oragene kits for RNA analysis (DNA Genotek, Canada). RNA was extracted following the 
manufacturers protocol. Total RNA for each sample was quantified using a bioanalyzer. Sequence libraries were 
prepared following the manufacturer’s guidelines (Illumina). In brief, first strand cDNA was end-repaired and 
ligated to unique adapters to generate sequence libraries. Library quality and quantity was determined on a bio-
analyzer before sequencing on the Illumina HiSeq.2500 for 100-cycle paired-end sequencing. To identify differ-
ential whole-gene and/or isoform expression, FASTQ files from each sample were aligned to the human genome 
(hg19 assembly) using the GENCODE Human release 19 reference genome annotation. RSEM29 which utilized 
Bowtie (v0.12.7), was used to align reads to the genome, calculate read counts, and generate two separate data 
matrices, one for whole-gene read counts and one for isoform read counts. Read counts were log-transformed 
and quantile normalized using R package preprocessCore30. Differential expression was identified using R package 
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limma and whole-genes/isoforms were considered significantly differentially expressed if the achieved P-value 
was <0.05 (N = 1,405 unique genes).

Gene Ontological Analysis.  Genes associated with DMLs were investigated for gene ontological enrich-
ment of biological processes using R package clusterProfiler. The gene universe was used as background for 
enrichment (N = 21,232). A P-value of <0.05 cutoff was used on gene ontological terms with the addition of a 
fold-enrichment cutoff of >1.5 relative to the background. Gene ontologies were conducted using similar meth-
ods for differentially expressed genes.

Transcription Factor Motif Discovery.  The DNA sequences flanking DMLs (+/−250 bp) were used to 
identify enriched motifs using the DREME suite31. An E-value cutoff <10e-5 was used to identify motifs and 
putative binding factors were predicted using SpaMo directly from the DREME suite software package.

Statistical analysis for molecular testing.  Permutation testing was conducted to identify any significant 
over- or under-representation of DMLs at standard genic structures, in relation to CpG islands, and across chro-
mosomes. The number of times that DMLs fell within each genomic structure was tallied and termed the “actual 
number” for each genomic structure. Notably, as some CpGs are associated with multiple genomic structures, 
each structure was used in permutation testing for each CpG. Next, genomic structures from all tested CpGs 
were obtained (N = 804,173) and the same number of structures as those from the DMLs were randomly selected, 
tallied, and termed the “permutated number” for each genomic structure. This calculation was generated 10e4 
times. Each time the permutated number exceeded that of the actual number was tallied and divided by 10e4 to 
achieve the permutated P-value for each genomic structure. Similar methods were used for permutation testing of 
CpGs in relation to CpG islands. For permutation testing of chromosomes, similar methods were used, however, 
to correct for multiple testing (i.e., 22 autosomes and the X chromosome), proportions of DMLs that fell on each 
chromosome were calculated and the “actual proportion” of each chromosome was compared with the “permu-
tated proportions” of any chromosome for each permutation. Separate permutations were utilized for all DMLs, 
positively-correlated DMLs, and negatively-correlated DMLs.

To identify significant enrichment for neuronal/immunological-related terms, a Pearson’s chi-square test with 
Yates’ continuity correction was conducted in R using a published list of neuronal/immunological-related gene 
ontological terms (N = 3,071)32.

Relations to known stress-related genes: A chi-square test was used to compare DML-associated genes 
(N = 122), differentially expressed genes (N = 1,405), and genes tested in the gene universe that are known 
stress-related genes extracted from the GeneCards database using the following terms: anxiety; bipolar; fear; 
depression; major depressive disorder; posttraumatic stress disorder; psychosis; schizophrenia; stress; and trauma 
(N = 4,286 (DNA methylation analysis); N = 3,070 (gene expression analysis)). Notably, the gene universe used 
for the chi-square test consisted of all the genes associated with the tested CpGs, that were tested for gene expres-
sion after filtration, or all genes tested in both analyses for the overlap between the two datasets (N = 20,741 (DNA 
methylation analysis); N = 13,585 (gene expression analysis); N = 23,407 (overlap)).

Results
Behavioral Phenotypes.  As expected, children with high levels of life stress exposure were experiencing 
more behavioral problems (assessed via the Child Behavior Checklist), R2 = 0.28; P-value < 0.006. The specific 
symptoms expressed by children are presented in Table 1.

Genes Showing Differential Methylation.  To determine the extent to which early childhood stress 
exposure was associated with DNA methylation levels, we analyzed each CpG dinucleotide using a regression 
model and the lifetime stress (LSI) score as the explanatory variable. This analysis identified 550 genomic posi-
tions (loci) that were differentially methylated based on the children’s level of stress exposure. These differentially 
methylated loci (DMLs) were distributed across all chromosomes and had some preferences for specific genomic 
and gene structures (FDR P-value < 0.05; Fig. 1; Supplementary Fig. 1; Dataset 1). The relationships between 
stress exposure and DNA methylation included both positive (positive-DMLs; N = 357) and negative correlations 
(negative-DMLs; N = 193). To test if underlying genetic polymorphisms might explain these stress-associated 
changes in DNA methylation, we cross-reference of all the single nucleotide polymorphism (SNPs) in the mQTL 
database with the 550 differentially methylated sites and found that the majority (N = 456/550) of DMLs were 

R2 P-value

Incidence of Externalizing Symptoms 0.28 <0.006

Difficulties with Social Interactions 0.51 <0.0001

General Social Competence 0.39 <0.001

Reaction to Upsetting Thoughts 0.28 <0.007

Rates of Internalizing Symptoms 0.28 <0.007

Engagement in Extracurricular Activities −0.56 <0.0001

Clinical Diagnosis of Anxiety Disorder 0.31 <0.004

Overall Problems with Behavior 0.28 <0.006

Table 1.  Summary of behavioral phenotypes in children exposed to high stress (as assessed via the Child 
Behavior Checklist), at the time of saliva collection.
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located more than 200 base pairs from any reported SNP. Together, these data suggest early childhood stress 
exposure results in stable changes in DNA methylation.

Classification of the 550 stress-associated DMLs with the nearest gene revealed differential methylation asso-
ciated with early stress exposure on 122 different genes, as some genes carried more than one DML. Of these, 84 
genes were positively and 50 genes were negatively correlated with early stress exposure; 12 genes contained both 
positive- and negative-DMLs at different positions (loci) in the genes. The relationships among biological pathways 
for these 122 genes contained a significant enrichment of biologically relevant terms, including the regulation of 
neurotransmitter levels and neurotransmitter secretion (χ2 P-value < 0.05; Dataset 1). In addition, we compared 
the DML-associated genes to a list of known stress-related genes using the GeneCards database and found that 31 
of the 122 genes had well-documented roles in response to stress (Fig. 2; Dataset 1). Together, these data suggest 
that stress-associated changes in DNA methylation target biologically relevant genes throughout the genome.

DNA Methylation Differences Associated with Gene Expression.  To determine if the stress-associated  
DNA methylation differences that we found have functional significance, we examined the extent to which 
these methylation changes were related to altered gene expression levels, using RNA sequencing (RNAseq). 
Comparison of transcript levels, using a linear regression model and the lifetime stress (LSI) score, revealed 1,405 

Figure 1.  Characterization of DMLs across the human genome. Modified manhattan plot of CpG dinucleotides 
examined in this study (dots) reveals differentially methylated loci (DMLs) to be distributed across the entire 
genome. Positively and negatively correlated DMLs are displayed with the −log10 of the aLIS P-value. While 
all loci examined alternate between black and gray dots, to indicate each chromosome, significant DMLs are 
displayed outside of the dashed lines (aLIS P-value < 0.2).

Figure 2.  Overlap of differentially methylated and expressed genes. Venn diagram of the overlap between 
differentially methylated genes (N = 122) and differentially expressed genes (N = 1,405) with known stress-
related genes tested within the gene universe (yellow; N = 4,327). An asterisk indicates that the overlap is 
significant (Chi-square P-value < 0.05).



www.nature.com/scientificreports/

5SCieNtifiC Reports |  (2018) 8:10785  | DOI:10.1038/s41598-018-29107-0

unique genes that were differentially expressed at the whole-gene and/or isoform level (P-value < 0.05; Fig. 2; 
Dataset 2). Notably, 349 of the 1,405 differentially expressed genes previously have been implicated in stress 
regulation, suggesting that the remainder genes (N = 1056) have a novel role following early life stress exposure 
(χ2 P-value < 0.05; GeneCard database; Dataset 2). Similar to the differentially methylated genes, the differen-
tially expressed genes also had a significant enrichment of biologically relevant relationships among them, which 
included the terms neuron projection regeneration and axon regeneration (χ2 P-value < 0.05; Dataset 2).

While genes that are both differentially expressed and differentially methylated represent an independent 
validation of stress-induced molecular changes, these associations also reveal candidate sites of functional DNA 
methylation, which may have a direct role in gene regulation. Overlaying the differentially methylated genes with 
the differentially expressed genes revealed 12 genes that harbor potentially functional DNA methylation changes 
linked to early-life stress exposure (Dataset 1). Two of these genes (FHL3 and NPC2) are biologically relevant, 
with known roles in response to stress (see discussion).

We next examined whether the stress-related changes in DNA methylation levels were enriched with tran-
scription factor (TF) binding sites31. This analysis revealed a significant enrichment of three sequences that pref-
erentially bind to five transcription factors, some of which have links to stress-related processes (e.g., TBX21; 
Fig. 3)33. Together, these data suggest that differential methylation levels may modulate transcription factor bind-
ing, which in turn alters gene expression, following exposure to early-life stress.

Discussion
Here we present evidence that extremely high early life stress exposure in children is associated with changes in 
saliva DNA methylation levels, and that some these methylation changes are linked to gene expression. Of the 122 
differentially methylated genes we detected, 31 have been implicated in stress-related functions, including genes 
involved in neurotransmission (e.g., social-related neuropeptides: OXT and a serotonin receptor: HTR3A)34–39. 
The other ninety-one genes not previously linked to stress may represent novel stress-sensitive genes involved in 
development. Further study of how and why childhood stress exposure alters the distribution of DNA methyla-
tion on these genes can improve our understanding of stress response and interventions aimed at recovery.

The overlay of methylome and transcriptome data found genes with potentially functional differential methyl-
ation, providing evidence that changes in DNA methylation regulates stress-induced gene expression. We identi-
fied 52 potentially functional differentially methylated sites that are associated with twelve differentially expressed 
genes (some genes had more than one differentially methylated sites). Two of these genes were previously linked 
to stress, FHL3 and NPC2. FHL3 (Four and a half LIM domain 3) proteins are members of the LIM protein super-
family that can function as co-activators of CREM/CREB transcription factors and the androgen receptor40–42. 
While the exact role of FHL3 is not well understood, the data reported here warrants further investigation into 
its role in response to stress. Mutations in NPC2 (Niemann-Pick type C2) lead to cholesterol accumulation in 
late endosomes and impaired cellular cholesterol homeostasis. Over recent years, it has become apparent that 
increased cholesterol in brain mitochondria can affect mitochondrial function, leading to more sensitivity to 
oxidative stress and decreased rates of ATP synthesis under certain conditions43–45. Thus, these data are consistent 
with the view that cerebral energy metabolism is part of social behavior, and points to mitochondrial function as 
a component of mood disorders46.

Transcription factors function to activate or repress gene expression upon binding to genes. The majority 
(7/12) of the differentially methylation sites that were correlated to altered gene expression contained DNA 
sequences that facilitate transcription factor binding. These data suggest that the functional role for stress-induced 
changes in DNA methylation might involve the modulation of transcription factor binding/function. It is nota-
ble that the transcription factor binding sites identified in this study recruit transcription factors implicated in 
stress-related disorders33. Together, these data support previous studies47–49 and suggest that DNA methylation 
may modulate transcription factor binding on developmentally important genes in the brain. It will be important 
that future studies verify this link using in vitro approaches.

Figure 3.  Characterization of the potential role(s) of DMLs on gene expression. The logo plots are shown for 
the enriched DNA sequence motifs that were predicted by the DREME suite using sequences from all DMLs (E-
value < 10e-3). The transcription factors predicted to bind to each motif is shown to the right of each logo plot.
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A limitation to this study is the examination of a peripheral tissue in brain-related disorders. However, recent 
reports have shown correlations between DNA methylation levels in peripheral tissue and brain, including 
saliva50–52. Thus, DNA methylation content in peripheral tissues may be relevant, perhaps as a biomarker that 
could be used for diagnosis of early-life stress. Finding that ninety-four DMLs are within 200 base pairs of a 
reported mQTL suggests that at least some of these changes in DNA methylation are driven by genotype. Future 
studies may consider functional approaches to determine the genetic influence of these SNPs in the context of 
early life stress. It should be noted that while independently validated genes (i.e., both differentially methylated 
and expressed) represent top candidates of stress-induced molecular changes, the remaining differentially meth-
ylation genes are of interest and only await formal validation. Since epigenetic marks can be cell-type specific, it 
will be important for future studies to characterize the developmental timing of behavior-related effects on the 
epigenome and transcriptome in a biologically relevant cell-type (e.g., GABAergic interneurons) to improve early 
therapeutic interventions. Future studies might incorporate longitudinal designs to examine the origins of these 
and other molecular changes by profiling earlier developmental time-points.

The molecular factors underlying children’s vulnerability to environmental stressors have, thus far, been elu-
sive. Epigenetic mechanisms are emerging as an important window into how early life experiences can affect 
developmental biology. A clearer understanding of the molecular mechanisms regulating the expression of the 
genes reported here may index modifiable molecular substrates that could ultimately be targeted to prevent the 
onset of some forms of psychiatric-related disorders.

Data Access.  We have submitted the methylation and expression data from this study to the Gene Expression 
Omnibus (GEO), which can be found under the Gene Series: GSE112314.
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