Skip to main content
. 2018 Jul 17;9:2767. doi: 10.1038/s41467-018-05166-9

Fig. 4.

Fig. 4

Probing the interfacial magnetism in the TI and antiferromagnet heterostructure. a Background-subtracted Mn L-edge XA spectra of a TI-capped (blue) and uncapped (red) MnTe films (300 K) alongside the representative normal incidence Mn L-edge XMCD of a capped sample (black) (15 K). The fact that the TI capping does not change the valence of Mn atoms from 2+ to 3+ suggests negligible Mn inter-diffusion. The spectra have been offset for clarity. b Comparison of Mn L-edge XMCD for capped and uncapped samples in normal incidence (15 K) probing the in-plane and out-of-plane ferromagnetic alignment of moments. The error bars are one standard deviation. c Antiferromagnetic order probed by XLD. Data give a comparison of Mn L-edge XLD for both capped and uncapped samples. The XMCD and XLD data suggest that the AFM order of the MnTe is not altered by the TI capping layer. d Fitted polarized neutron reflectometry of the TI/MnTe heterostructure measured at 7.5 K in a 700 mT in-plane applied field. e Spin asymmetry of the measurement with the fit shown in (d). Error bars represent one standard deviation. f Structural and magnetic depth profile are represented by the nuclear and magnetic scattering length densities (SLD) used to obtain the fit shown in (d) and (e). These polarized neutron reflectometry results (d, e, and f) suggest an interfacial ferromagnetic layer was induced in the TI/AFM heterostructure