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ABSTRACT: Obligate intracellular chlamydiae diverged into pathogenic and environmental chlamydiae 0.7-1.4 billion years ago. While
pathogenic chlamydiae have adapted to a wide range of vertebrates, environmental chlamydiae inhabit unicellular amoebae, the free-living
Acanthamoeba. However, how and why this divergence occurred remains unclear. Meanwhile, giant viruses consisting of protozoa-related and
protozoa-unrelated viruses have been discovered, with the former group being suggested to have more influenced environmental chlamydiae
during their evolution while cohabiting host amoebae. Against this background, we attempted to visualize genes of giant viruses in chlamydial
genomes by bioinformatic analysis mainly with comparative genome and phylogenic analysis, seeking genes present in chlamydiae that are
specifically shared with protozoa-related giant viruses. As a result, in contrast to protozoa-unrelated giant viruses, the genes of protozoa-
related giant viruses were significantly shared in both the chlamydia genomes depending on the giant virus type. In particular, the prevalence
of Mimiviridae genes among the protozoa-related giant virus genes in chlamydial genomes was significantly high. Meanwhile, the prevalence
of protozoa-related giant virus genes in pathogenic chlamydia genomes was consistently higher than those of environmental chlamydiae; the
actual number of sequences similar to giant virus was also significantly predominant compared with those in the environmental chlamydial

genomes. Among them, the most prevalent of giant virus was in the case of chlamydiae with Megavirus chiliensis; total of 1338 genes

of the chlamydiae were found to be shared with the virus (444 genes specific to environmental chlamydiae, 892 genes shared between

both chlamydiae, only two genes in the pathogenic chlamydiae). Phylogenic analysis with most prevalent sets (Megavirus chiliensis and
Protochlamydia EI2 or Chlamydia trachomatis L2 434Bu) showed the presence of orthologs between these with several clustered. In addition,
Pearson’s single regression analysis revealed that almost the prevalence of the genes from the giant viruses in chlamydial genomes was
negatively and specifically correlated with the number of chlamydial open reading frames (ORFs). Thus, these results indicated the trace of
lateral gene transfer between protozoa-related giant viruses of family Mimiviridae and chlamydiae. This is the first demonstration of a putative
linkage between chlamydiae and the giant viruses, providing us with a hint to understand chlamydial evolution.
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Introduction
Obligate intracellular chlamydiae separated into the environmental
chlamydiae (eg, Parachlamydia, Protochlamydia, Neochlamydia) and
the pathogenic chlamydiae (eg, Chlamydia trachomatis, C. pneumo-
niae) 0.7-1.4 billion years ago.! Pathogenic chlamydiae, which are
the causative agents of human infectious diseases including sexu-
ally transmitted diseases and pneumonia, have adapted to a wide
range of vertebrates.>* In contrast, environmental chlamydiae
inhabit unicellular amoebae, the free-living Acanthamoeba, in a
symbiotic relationship, being distributed across a huge range of
environments, including soil, ponds, and places where people live
and work.! However, it remains unclear whether the amoebal
symbiotic chlamydiae can also cause infectious diseases in
humans.%” Meanwhile, ancestral amoebae are thought to have
emerged 1 billion years ago, corresponding to the time at which the
chlamydial ancestor diverged into two types,® which presumably
occurred in a setting that facilitated chlamydial evolution.

A number of recent studies have revealed that the genomes of

environmental chlamydiae (2.0-3.0 Mb) are more than double
“TI. W. and S.Y. equally contributed to this work.

the size of those of pathogenic chlamydiae (1.0-1.2 Mb).1*12 It
is thus clear that environmental chlamydiae still possess certain
genes that pathogenic chlamydiae have lost. Meanwhile, similar
to pathogenic chlamydiae, environmental chlamydiae undergo a
unique developmental process, consisting of two distinct forms:
the elementary body, its infectious form, and the reticulate body,
its replicative form.1213 We also found that some environmental
chlamydiae could grow in immortalized human cells.1>13 It is
thus clear that these two types of chlamydiae share similar back-
grounds. However, the environmental factors that are responsi-
ble for promoting the divergence that occurred during chlamydial
evolution and resulted in these two groups remain unknown.
During the last 10 years, giant viruses, which can be visual-
ized under a light microscope, have been discovered and shown
to have similar genes to those in other organisms, particularly
those in several types of bacteria and in eukaryotes.!*1¢ The
glant viruses consist of two distinct groups, protozoan-related
and protozoan-unrelated types. The protozoan-related giant
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viruses include the families Mimiviridae (eg, Mimivirus),
Marseilleviridae, Pandoraviridae, Pithovirus, and Mollivirus, all
of which can infect amoebae; they are ubiquitous in the envi-
ronment, including in soil and the water supply.!® The proto-
zoan-unrelated giant viruses include the families Ascovirus,
Irdovirus, and Poxvirus, all of which were isolated from verte-
brates and invertebrates.'® Meanwhile, some giant viruses have
also been isolated from patients suffering from pneumonia,
indicating their potential pathogenicity to humans, although
this remains to be confirmed.!>1718 As mentioned above, simi-
lar to environmental chlamydiae, protozoa-related giant viruses
also need to infect amoebae in order to replicate, indicating
that the giant viruses could encounter environmental chlamy-
diae during the course of their life span; this would also have
been the case for ancestral chlamydiae.

In the present study, we thus attempted to visualize genes of
giant viruses in chlamydial genomes by bioinformatic analysis
mainly with comparative genome and phylogenic analysis, seek-
ing genes present in chlamydiae that are specifically shared with
protozoa-related giant viruses. For the first time, we show a link-
age between chlamydiae and protozoan-related giant viruses.

Materials and Methods
Data sets

Chlamydiae and others (environmental chlamydiae n = 14,
pathogenic chlamydiae n = 12, protozoan-related giant viruses
n = 15, protozoan-unrelated giant viruses n = 11, others n = 1
(Escherichia coli K12)) were used for this study (Table 1).

Analysis flow

The genome (or contig) information was obtained from the
National Center for Biotechnology Information (NCBI) data-
base (http://www.ncbi.nlm.nih.gov/genome/browse/), and the
obtained sequence information was reconstructed as data sets
with functional annotations into Rapid Annotation using
Subsystem Technology (RAST) (http://rast.nmpdr.org/),
which is an open-access genomic analysis tool that acts as a fully
automated service for genomic annotation with Basic Local
Alignment Search Tool (BLAST) analysis. These recon-
structed RAST data sets with annotated amino acid sequences
are shown into Tables S1 to S4 (Table S1, protozoan-related
giant viruses; Table S2, protozoan-unrelated giant viruses; Table
S3, pathogenic chlamydiae; Table S4a and b, environmental
chlamydiae). Then, BLAST analysis was performed using the
RAST data sets with the default settings (cut-oft 10-10 identity
>10%), and these sequences were furthermore selected with
bidirectional hits and length cut-off (>30 amino acid residues).
Numbers of orthologs were normalized with genome sizes of
both chlamydiae and viruses. Specifically, the normalized num-
bers were obtained from raw numbers divided with each of the
chlamydia and virus genome sizes; it is shown as ortholog num-
bers of giant virus assumed with 1 Mbp of genome size per 1

Mbp of chlamydial genome. Also, the cut-off value (>1.48%) as

a background was defined by the prevalence of genes from
Mimiviridae (Cafeteria roenbergensis virus, Megavirus (Iba and
chiliensis), Moumouvirus, Mimivirus) in the genome of
Escherichia coli K12, which has never adapted to protozoa (mean
+ 28D: 1.28 + 0.2%) (Table S5). The identity of the extracted
genes was finally determined by Simple Modular Architecture
Research Tool (SMART; http://smart.embl-heidelberg.de/),
which is a domain research tool.2? Functional annotation was
also performed using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (http://www.genome.jp/kegg/)*' or the
Universal Protein Resource (UniProt) (http://www.uniprot.
org/).?> Annotated functions were classified into “Metabolic
process” (associated with the metabolism of proteins, lipid,
DNA, RNA, and so on), “Regulation/modification” (associated
with DNA/RNA repair, homologous recombination, chaper-
ones and folding catalysts, protein-protein interaction, and so
on), “Structure” (flagella, outer membrane protein, and so on),
and “Others” (associated with structure and including those
with an unknown function). Phylogenic analysis was performed
with a maximum parsimony method by using MAFFT version

7 (https://mafft.cbre.jp/alignment/software/).?3

Statistical analysis

Comparison of the prevalence of giant virus genes between
pathogenic and environmental chlamydiae was performed by
Mann-Whitney’s U test. The presence of a correlation between
the prevalence of genes from giant viruses within chlamydial
genomes and annotated chlamydial ORF numbers was deter-
mined by Pearson’s single regression analysis. A correlation
coefficient value of >0.5 or <-0.05 with a P-value of less than
.05 was considered significant. Calculations were performed in
Excel for Mac (2011) with Statcel3C.

Results and Discussion
Several genes of protozoa-related giant viruses of

the family Mimiviridae are significantly conserved
in the genomes of both chlamydiae

To explore the traces of an encounter with giant viruses in
chlamydiae, the prevalence of genes from giant viruses in
chlamydiae was assessed by BLAST analysis using RAST with
genomic information from multiple species from each group
(environmental chlamydiae n = 14, pathogenic chlamydiae n =
12, protozoan-related giant viruses n = 15, protozoan-unrelated
giant viruses n = 11)(see Table 1). To ensure a uniform annota-
tion of all the genes, pre-existing annotations in the database
were re-annotated by RAST (http://rast.nmpdr.org/), which is
an open-access genomic analysis tool that acts as a fully auto-
mated service for genomic annotation with BLAST analysis.
Also, the cut-off value (>1.48%) as a background was defined
by the prevalence of genes from Mimiviridae in the genome of
Escherichia coli K12, which has never adapted to protozoa (see
Table S5). As a result, in contrast to protozoa-unrelated giant
viruses, the genes of protozoa-related giant viruses were
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Figure 1. Comparisons of the prevalence rates of giant virus genes in chlamydial genomes and of the trend of dispersion on the prevalence of giant virus
genes between pathogenic and environmental chlamydiae. Panels (A) and (B) show protozoa-related giant viruses and protozoa-unrelated giant viruses,
respectively. Blue and red bars show the prevalence of giant virus genes in environmental and pathogenic chlamydial genomes, respectively.
Comparisons of the prevalence rate were conducted using Mann—Whitney’s U test. Stars show a significant difference (P < .05) between the prevalence
values of environmental and pathogenic chlamydiae. Green circles show a significant difference in the prevalence rate of giant virus genes with values
more than cut-off. Cut-off (1.48%) as a background value (dashed line) was defined by the prevalence of genes from Mimiviridae (Cafeteria roenbergensis
virus, Megavirus chilensis, Megavirus Iba, Mimivirus, Moumouvirus) in the Escherichia coli K12 genome (1.28 + 0.19%) (see Table S5).

significantly shared in both the chlamydia genomes depending
on the giant virus type (Figure 1). In particular, the prevalence
of Mimiviridae genes among the protozoa-related giant virus
genes in chlamydial genomes was significantly high, exceeded

the cut-off value (Figure 1A, green circles into Mimiviridae).
Meanwhile, the prevalence of the genes of giant viruses within
chlamydial genomes varied from 0.2% to 3.5% depending on
not only the giant virus type but also the chlamydial strain
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(Figures S1 and S2). Furthermore, the prevalence of protozoa-
related giant virus genes in pathogenic chlamydia genomes was
consistently higher than those of environmental chlamydiae
(Figure 1A and B), corresponding to number of sequences nor-
malized with genome sizes of both chlamydiae and viruses
similar to giant virus that was significantly predominant as
compared with those in the environmental chlamydial genomes
(Figure S3). In addition, phylogenic analysis with most preva-
lent sets (Megavirus chiliensis and Protochlamydia EI2 or
Chlamydia trachomatis 1.2 434Bu) clearly showed that there
was several clusters, indicating the presence of orthologs
between the chlamydiae and the giant viruses (Figure 2).

As expected, we found that, in contrast to the protozoa-
unrelated viruses, several genes of protozoa-related giant
viruses, the family Mimiviridae (Megavirus chiliensis was most
prevalent) were significantly conserved in the genomes of both
the chlamydiae. Meanwhile, as compared with those of patho-
genic chlamydiae, the prevalence of Mimiviridae genes was
found to more differ among the various genera of environmen-
tal chlamydiae, being particularly high in Neochlamydia (513,
TUM1, EPS4) and Protochlamydia (UWE25, R18) and con-
trastingly low in Parachlamydia (UV-7, KNic, OEW1, Bny,
Hall’s coccus) (see Figure S1). It is possible that the selection
and maintenance of the giant virus genes occurred preferen-
tially in some environmental chlamydiae through the ongoing
interaction, presumably into cohabiting amoebae. Thus, these
findings indicated that, in contrast to the protozoa-unrelated
viruses, several orthologs of protozoa-related giant viruses, in
particular Mimiviridae, were more conserved in the genomes of
either environmental or pathogenic chlamydiae, suggesting
that chlamydiae and Mimiviridae did interact in the host cells
that both cohabited.

The prevalence of genes from protozoa-related giant
viruses in chlamydiae is negatively and specifically
correlated with chlamydial ORF numbers

If the prevalence of genes from giant viruses in chlamydial
genomes specifically revealed that chlamydiae had encountered
protozoa-related giant viruses presumably in ancestral amoe-
bae, this would also suggest that this encounter resulted in spe-
cific modifications of the chlamydial genome, such as changes
of the ORF numbers. To assess this hypothesis, the correlation
between the prevalence of giant virus genes in chlamydial
genomes and the chlamydial ORF numbers was assessed by
Pearson’s single regression analysis. The results showed signifi-
cant correlation coefficients of <-0.5 with a P-value <.05 for
almost combinations of chlamydiae with giant viruses, indicat-
ing the prevalence of the genes from giant virus in chlamydial
genomes could be a factor predicting the number of chlamydial
open reading frames (ORFs) (Table S6).

The prevalence of the genes from almost giant viruses in
each of the chlamydiae was negatively and specifically corre-
lated with the number of chlamydial ORFs. These results

suggest that these giant viruses changed the chlamydial genome
and influenced chlamydial evolution. Interestingly, studies have
shown that Protochlamydia (UWE25 or R18) can induce cell
death such as apoptosis in insect cells or human immortal
HEp-2 cells,>*20 while Neochlamydia (S13) was found to
exhibit complete loss of its ability to perform secondary infec-
tion of amoebae.?” These findings also suggest the presence of
a sympatric lifestyle between the viruses and chlamydiae and
that such selection and maintenance of the giant virus genes
were required for the successful specific adaptation of chlamy-
diae to the host niche.

In contrast to the pathogenic chlamydiae, the
environmental chlamydiae specifically possess genes
conserved among the Mimiviridae (Megavirus
chiliensis)

Since information on the specific genetic material that was
shared would be critical for understanding the forces driving
the evolution and divergence of chlamydiae, we explored the
specific genes of chlamydiae commonly shared with proto-
zoa-related giant viruses, the Mimiviridae. Meanwhile,
because of most prevalent, Megavirus chiliensis as a represent-
ative virus was used for this analysis. As shown in Figure 3
and Table S7, a total of 1,338 genes of the chlamydiae were
found to be shared with the virus (444 genes specific to envi-
ronmental chlamydiae, 892 genes shared between both
chlamydiae, only two genes in the pathogenic chlamydiae).
Although these genes were classified into the categories of
“Metabolic process,” “Regulation/modification,” “Structure”,
and “Others”, almost genes (approximately 60%) were
assigned to “Metabolic process” regardless of pathogenic or
environmental chlamyidae (Figure 3, pie charts in the center).
Meanwhile, as well as some genes of “Metabolic process”, the
genes assigned to “Structure” (surface protein Surl, phage tail
fiber protein, outer membrane lipoprotein Blc, flagellar hook-
length control protein FliK) was specifically seen into envi-
ronmental chlamydiae (Figure 3 and Table S3). Furthermore,
few genes were multiply conserved in almost all of the
environmental chlamydiae used in this study (Figure 3 and
Table S3).

Thus, these findings indicated that, in contrast to the patho-
genic chlamydiae, the environmental chlamydiae specifically
possessed functional genes conserved among the Mimiviridae
responsible for “Metabolic process” or “structure” presumably as
a platform for survival into harsh natural environments and as
a trace of ongoing interaction of the chlamydiae with giant
viruses. It is possible that because of the presence of genes from
Mimiviridae presumably with adverse effects, the loss of such
genes in chlamydiae may have been a critical event required for
adaptation to mammalian cells. Furthermore, a large number of
protozoa-related giant virus genes shared between both
chlamydiae. It appeared that the some giant virus genes were
passed down through the generations and became fixed evenly
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Figure 2. Phylogenic analysis with most prevalent sets (Megavirus chiliensis and Protochlamydia E|2 or Chlamydia trachomatis L2 434Bu) showing
several clusters. Trees (A) and (B) show Megavirus chiliensis (MegaVirus) with Protochlamydia EI2 (Proto_EI2) and with Chlamydia trachomatis L2
434Bu (Chlt_L2), respectively. Additional numbers (peg) show gene ID numbers assigned by RAST (see Table S1 to S4b). Black circles show these
chlamydial genes. Phylogenic trees were constructed with a maximum parsimony method by using MAFFT version 7 (https://mafft.cbrc.jp/alignment/

software/).23

in both environmental and pathogenic chlamydiae, implying
before dividing two chlamydial lineages, ancestral chlamydiae
had encountered giant viruses. Interestingly, only two genes

specific to the pathogenic chlamydiae were detected into
Megavirus chiliensis. The results revealed that in contrast to
environmental chlamydiae, ongoing interaction of pathogenic
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(Megavirus chilensis). The genes shared between protozoa-related giant viruses in the Mimiviridae (Megavirus chilensis) and each of the chlamydiae
were extracted, from a comparative genome analysis with RAST (see filter conditions into Material and Methods). Functional annotation was performed
using the Kyoto Encyclopedia of Genes and Genomes (KEGG)?? or the Universal Protein Resource (UniProt).2* Upper panel: specific to environmental
chlamydiae; Middle panel: shared between both chlamydiae; Lower panel: specific to pathogenic chlamydiae. Colors show distinct gene functions
annotated by KEGG or UniProt. Pie charts in the center show the prevalence of genes classified into the categories of “Metabolic process,” “Regulation/

modification,” “Structure,” and “Others.”

chlamydiae with giant viruses may be minimal, presumably
prompting pathogenic chlamydial genome reduction.?®

Conclusions
Altogether, our study showed a putative linkage between
chlamydiae and protozoa-related giant viruses, in particular

Mimiviridae. These results indicated the trace of lateral gene
transfer between protozoa-related giant viruses of family
Mimiviridae and chlamydiae. This is the first demonstration
of the linkage, providing us with a hint to understand
chlamydial evolution via encounters with giant viruses in
host niche.
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