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Transcriptional network analysis on brains 
reveals a potential regulatory role of PPP1R3F 
in autism spectrum disorders
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Abstract 

Objective:  This study aims at identifying master regulators of transcriptional networks in autism spectrum disorders 
(ASDs).

Results:  With two sets of independent RNA-Seq data generated on cerebellum from patients with ASDs and control 
subjects (N = 39 and 45 for set 1, N = 24 and 38 for set 2, respectively), we carried out a network deconvolution of 
transcriptomic data, followed by virtual protein activity analysis. We identified PPP1R3F (Protein Phosphatase 1 Regula-
tory Subunit 3F) as a candidate master regulator affecting a large body of downstream genes that are associated with 
the disease phenotype. Pathway analysis on the identified targets of PPP1R3F in both datasets indicated alteration 
of endocytosis pathway. Despite a limited sample size, our study represents one of the first applications of network 
deconvolution approach to brain transcriptomic data to generate hypotheses that may be further validated by large-
scale studies.
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Introduction
Autism spectrum disorders (ASD) comprise a set of 
highly inheritable neurodevelopmental conditions char-
acterized by impairments in social communication, 
repetitive behaviors and restricted interests [1, 2]. ASDs 
are estimated to affect 1 in 68 children in the United 
States, and boys are 4.5 times more likely than girls to 
develop ASDs [3]. Several studies showed that the herit-
ability of autistic phenotypes is estimated to be around 
90% [4, 5]. The number of genes potentially implicated in 
ASDs is rapidly growing, mainly from large-scale genetic 
studies such as next generation sequencing (NGS) 
[6–12] and genome-wide association studies (GWAS) 
[13–16]. Although these studies have substantially 
advanced our understanding of the etiology of ASDs, the 
underlying molecular mechanisms remain elusive [17]. 

Transcriptome analysis is gaining momentum as a com-
plementary approach to genetic association studies [17], 
enabling us to understand the molecular pathophysiology 
of ASDs.

A number of studies have evaluated whole-genome 
gene expression that may contribute to the onset of ASD. 
In a large-scale RNA-Seq effort, matched brain regions 
from subjects affected with ASDs and controls were uti-
lized to identify neuronal genes strongly dysregulated in 
cortical regions [17]. Utilizing microarray technology, 
Voineagu et al. [18] demonstrated consistent differences 
in transcriptome organization between autistic/normal 
human brain tissues using gene co-expression network 
analysis. However, the potential molecular drivers of co-
expressed modules have not been identified [18]. Despite 
applications of co-expression network approaches in the 
inference of regulatory machinery in ASD [19], state-
of-the-art approaches such as network deconvolution 
methods are barely adopted in this area. Network decon-
volution methods have been successfully used to study 
prostate differentiation [20] and cancers [21]. They can 
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overcome limitations of the existing methods such as 
connecting genes with indirect interactions leaving their 
mutual causal effects aside as well as suffering from the 
exponentially increasing computational cost, etc. [22]. 
These methods can illuminate the underlying transcrip-
tion circuitry of diseases and illustrate potential regula-
tion drivers. For example, with transcriptional network 
deconvolution approach, we have recently provided novel 
insights on post-traumatic stress disorder (PTSD) [23] 
by identifying several genes as drivers of innate immune 
function. In the current study, we used ARACNe (algo-
rithm for reconstruction of accurate cellular networks) 
[24] to deconvolve cellular networks. In this approach, 
gene–gene co-regulatory patterns are first identified 
using mutual information (MI), and the constructed 
networks are further pruned by removing indirect con-
nections where two genes are co-regulated through one 
or more intermediaries. Using two of the largest tran-
scriptomic datasets of postmortem brain tissues from 
ASD individuals and control subjects by Parikshak et al. 
[19] and Gupta et  al. [17], we reconstructed the tran-
scriptional networks followed by virtual protein activity 
analysis, to identify “master regulators” (MRs) that may 
differentially regulate the expression levels of multiple 
downstream genes in the cerebellum region of ASD indi-
viduals and controls.

Main text
Methods
Network construction and analysis tools are explained 
in the Additional file 1. Upon constructing the transcrip-
tional networks, we used an algorithm called VIPER (vir-
tual inference of protein-activity by enriched regulon 
analysis [21]). VIPER aims at inferring the protein activity 
of a MR by a systematic analysis of the expression pat-
terns of its targets (regulons). VIPER directly integrates 
target mode of regulation indicating whether targets are 
repressed or activated given the statistical confidence in 
regulator–target interactions and target overlap between 
different regulators in order to obtain the enrichment of 
a protein regulon in differentially expressed genes [23]. 
Compared to the existing approaches such as T-profiler 
[25], gene set enrichment analysis (GSEA) [26], and Fish-
er’s exact test [27], VIPER supports seamless integration 
of genes with different likelihoods of representing acti-
vated, repressed or undetermined targets.

Both datasets contain multiple regions including cer-
ebellum, which is relevant for ASDs since specific cer-
ebellar zones can affect neocortical substrates for social 
interaction and cognitive functions such as language and 
executive functions [28–30]. Abnormalities of the cer-
ebellum, which is believed to be involved in cognitive 
functions, can in part underlie autistic symptoms [31]. 

Several other brain regions, such as gyral surface of the 
anterior cingulate cortex and ventromedial prefrontal 
cortex [32], posterior superior temporal sulcus (pSTS) 
[33], amygdala, orbital frontal cortex, and fusiform gyrus 
[34] are also known to be ASD-relevant. We reasoned 
that in the same brain region, there should be highly 
active proteins whose expression regulates a large set of 
target genes and such patterns should be replicated in an 
independent dataset. Our preliminary finding indicates 
PPP1R3F (Protein Phosphatase 1 Regulatory Subunit 3F) 
as a potential master regulator (MR). The framework of 
the in silico experiments is illustrated in Fig. 1. Influence 
of dysregulation of this gene on ASD pathogenesis was 
then examined.

Results and discussion
We first used the data from Parikshak et al. [19] to con-
struct the regulatory networks. This data is part of a 
large RNA-Seq repository on post-mortem human 
brain tissue (39 cases vs. 45 controls) from cerebellum, 
frontal cortex, temporal cortex, prefrontal cortex, and 
visual cortex. During the process of network deconvo-
lution (see Methods in Additional file  1), pairwise MI 
between all of the available transcripts were obtained. 
Next, the constructed network was trimmed to remove 
genetic intermediaries, resulting in potential direct con-
nections between MRs and their targets (we used the 
recommended P value threshold of 10−8, as a measure 
of confidence of regulatory relationships between two 
genes [24]). This analysis yielded a repertoire of 672,973 
interactions, 23,935 regulators, and 24,847 targets in the 
constructed network using the dataset from Parikshak 
et al. [19]. We similarly analyzed the second dataset from 
Gupta et al. [17], a RNA-Seq data of post-mortem brain 
tissues with more samples of cerebellum region than 
other brain regions. Using the same network construc-
tion settings on this dataset [17] containing 24 cases and 
38 controls, we deconvolved a network of 297,870 inter-
actions containing 12,040 regulators and 12,529 targets. 
Both constructed networks are provided in Additional 
files 2 and 3.

After applying VIPER, we compared the list of sig-
nificant MRs at FDR ≤  0.05. We identified PPP1R3F as 
the only MR shared between the two datasets. Given 
the small sample size of the data, it is possible that our 
analysis was underpowered and may have missed other 
relevant MRs in ASDs. Figure  2 illustrated how down-
regulation of this MR influences the expression of its 
regulons in the constructed networks of both data sets. 
PPP1R3F was significantly downregulated in Parikshak 
et  al. data (FDR from one-sided t test: 0.029) as well as 
Gupta et al. data (FDR = 3.58 × 10−4).
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PPP1R3F is one of the type-1 protein phosphatase 
(PP1) regulatory subunits. Protein phosphorylation is a 
key mechanism by which cells regulate signaling trans-
duction pathways, and PPP1 family enzymes are associ-
ated with dephosphorylation of several proteins such 
as TGF-ß cascade [35]. PPP1R3F has been found to be 
important to neuronal activities [36]. A systematic rese-
quencing of X-chromosome synaptic genes in a group 
of individuals with ASD (122 males and 20 females) has 
identified a rare non-synonymous variant in PPP1R3F 
that can predispose to developing ASDs [36]. This poten-
tially damaging variant, c.733T > C, was observed in a boy 
with a diagnosis of asperger syndrome and was transmit-
ted from a mother who suffered from learning disabilities 
and seizures [36].

Further, we examined the overlaps between PPP1R3F 
regulons and known candidate genes implicated in 
ASD and its related disorders (Table  1). The most sig-
nificant overlap was found with SFARI gene list [37] 
(P = 8 × 10−4), followed by overlap with an intellectual 
disability database gene list (P = 0.072) [38]. The overlaps 
with other ASDs candidate gene lists also showed trends 
towards to being significant. These results suggest the 

potential relevance of the predicted PPP1R3F network to 
ASDs.

Since PPP1R3F is a sex-linked gene, we accounted for 
differences between its expression in male and female 
samples with ASDs. In the Parikshak et  al. data set 
(from Ref. [19]) there were 32 males and 7 females with 
ASDs while there were 39 male controls compared to 6 
female controls. The gender information is not avail-
able on the Gupta et al. dataset [17]. We found no differ-
ence of PPP1R3F expression between male and female 
samples with ASDs in the Parikshak et  al. dataset [19] 
(FDR = 0.644; two-sided t test), although this may be due 
to the small sample size. Nevertheless, to account for 
possible sex effects on the structure of the constructed 
network, we re-constructed the regulatory network 
using only male samples in the Parikshak et  al. dataset 
[19] (i.e., 32 cases and 39 controls). Following the vir-
tual protein activity analysis, we observed that PPP1R3F 
remained as a significant MR (VIPER enrichment P 
value = 0.0186). We note that constructing a network by 
using only female samples is significantly underpowered 
and leads to an unreliable network with a large number 
of false positive connections. These suggest that PPP1R3F 

Fig. 1  The overall process of network construction and virtual protein activity analysis to identify a master regulator
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likely acts independently from potential sex-based gene 
expression differences, and our observation of PPP1R3F 
as a MR was unlikely to be a sex-related artifact. Addi-
tionally, we conducted the same analyses on the gene 
expression data from prefrontal cortex, and did not find 
PPP1R3F as a significant MR (activity FDR = 0.1364). We 
should note that the number of samples from other brain 
regions were too small to be used for network analysis. 
Our finding thus suggests a potential role of PPP1R3F in 
developing ASDs by modulating a large body of genes in 
the cerebellum region.

We next conducted pathway enrichment analysis on the 
PPP1R3F regulons from both networks. We found that 
the gene targets are enriched for endocytosis pathway 
in both the Parikshak et al. dataset [19] (FDR = 5 × 10−3, 
fold enrichment = 8.26) and the Gupta et al. dataset [17] 
(FDR = 8 × 10−4, fold enrichment = 8.42). “Endocytosis” 
is the only significantly enriched pathway on both data 
sets. Combining both sets of gene targets (n = 177) (Sup-
plementary Fig.  1 in Additional files 4 and 5) yielded a 
more significant enrichment of the endocytosis pathway 
(FDR = 4.85 × 10−4, fold enrichment = 8.97).

Fig. 2  Gene set enrichment analysis (GSEA) of PPP1R3F targets in the constructed networks using the data by a Parikshak et al. [16] and b Gupta 
et al. [14]. Black bars in the both figures depict the rank of the PPP1R3F targets in terms of correlation with the phenotype among the entire list of 
genes in the both datasets

Table 1  The overlap between the identified PPP1R3F regulons from both datasets (n = 177 genes) and several candidate 
gene lists of ASDs and ID (intellectual disability)

P values are calculated by two-sided Fisher’s exact test
a  We have removed de novo mutations in intergenic and intronic regions

Source of gene list # Genes in the gene 
list

Overlap P value Fold enrichment References

SFARI gene list (v 2.0) 881 17 0.0008 2.4 [37]

Intellectual disability database, University of 
Colorado Denver

1095 11 0.268 1.2 [41]

Intellectual disability database, University of 
Chicago

1969 22 0.072 1.4 [38]

Intellectual disabilities (IDS v. 1.0) 897 11 0.097 1.5 [42]

ASD de novo mutation list (v. 1.5)a 1248 11 0.124 1.1 [43]
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Since ASDs are commonly recognized as brain disor-
ders, we further examined whether the identified MR is 
mainly expressed in the brain. We looked up PPP1R3F 
in GTEx consortium portal [39], and found that com-
pared to other tissues, PPP1R3F is predominantly 
expressed in various brain regions such as frontal cor-
tex and cerebellum (Supplementary Fig. 2 in Additional 
file 4). We also checked BrainSpan Atlas of the Devel-
oping Human Brain (http://brain​span.org) where we 
found that PPP1R3F is not expressed until 37  weeks 
post-conception. While remaining unexpressed in 
some brain regions, it is modestly expressed in 4 month 
postnatal stage in some brain regions including cerebel-
lum. We further probed the expression of each of the 
177 targets of PPP1R3F in GTEx and identified the tis-
sues in which they are highly expressed. We found that 
89 out of the 177 target genes of PPP1R3F are highly 
expressed in various brain regions compared to other 
tissues (P= 5.51 × 10−5, Fisher’s exact test; number 
of protein coding genes in GTEx = 20,900, number 
of protein coding genes highly expressed in the brain 
in GTEx = 7528). The enrichment of the expressed 
PPP1R3F target genes for those highly expressed in 
the brain supports the pathophysiological relevance of 
PPP1R3F to ASDs.

Conclusions
In this study, we performed exploratory analysis on 
two small-scale RNA-Seq data sets, and used a net-
work deconvolution algorithm to construct regulatory 
networks. Applying virtual protein activity analysis 
on both networks, we identified PPP1R3F as a MR of 
177 targets genes. Gene set enrichment analysis on the 
PPP1R3F regulons suggested that PPP1R3F may exert 
its functional effects through regulating endocytosis, 
a pathway that has been previously implicated in neu-
ropsychiatric disorders [40].

Limitations
We acknowledge that our study is limited by the small 
sample size (due to the scarcity of brain tissues), and the 
results thus need further replications. Nonetheless, our 
study generates a testable hypothesis that may be vali-
dated by large-scale studies in the future. Additionally, 
further experimental validation of the regulatory effects 
of PPP1R3F on its downstream targets as predicted by 
our network analysis may provide novel insights on 
possible pathophysiological role of PPP1R3F as a MR of 
ASD gene network.
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