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Variational Algorithms for Analyzing Noisy
Multistate Diffusion Trajectories
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ABSTRACT Single-particle tracking offers a noninvasive high-resolution probe of biomolecular reactions inside living
cells. However, efficient data analysis methods that correctly account for various noise sources are needed to realize the full
quantitative potential of the method. We report algorithms for hidden Markov-based analysis of single-particle tracking data,
which incorporate most sources of experimental noise, including heterogeneous localization errors and missing positions.
Compared to previous implementations, the algorithms offer significant speedups, support for a wider range of inference
methods, and a simple user interface. This will enable more advanced and exploratory quantitative analysis of single-particle
tracking data.
INTRODUCTION
Experimental techniques to track the conformational and
binding states of single biomolecules can offer unique
mechanistic insights into life at the molecular level but
increasingly rely on statistical computing to extract quanti-
tative and reproducible results. A simple example is super-
resolved single-particle tracking (SPT) (1), in which
changes in diffusion constant or between different modes
of motion offer a noninvasive probe of binding and unbind-
ing reactions in living cells (2–4).

Detecting and following single fluorophores can be chal-
lenging, and statistical methods to optimize the spot detec-
tion (5) and assembling of molecular trajectories in the
presence of uncertain spot detections (6) are active research
areas. Next, accurate quantitative analysis of trajectory data
requires a faithful account of localization noise, which come
in the form of localization errors and motion blur, some-
times referred to as ‘‘static’’ and ‘‘dynamic’’ errors, respec-
tively (7,8). In particular, live cell imaging often lead to
heterogeneous and asymmetric localization errors, for
example due to photobleaching, variability between and
across cells, out-of-focus motion, or the dependence of
localization errors on the diffusion constant (9,10). Several
emerging techniques for three-dimensional localization
also give different precision in the axial and lateral direc-
tions (11).
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A fundamental unknown in many live cell SPT studies is
the number of underlying molecular states, e.g., binding
states, which may differ in diffusion constant. Counting
diffusive states in SPT data presents a statistical model se-
lection problem that has so far only been solved with simpli-
fied noise models (2), which may be inappropriate in many
live cell applications (10,12).

Here, we extend our previous hidden Markov model
(HMM) analysis (10) by deriving and implementing varia-
tional algorithms that increase computational speed by
more than an order of magnitude, allow statistical model se-
lection using Bayesian or information-theoretic methods,
and can be generalized to a wider class of localization error
models. The methods are available in a user-friendly open
source software suite.
METHODS

Variational diffusive HMM

The starting point for our analysis is a standard model for camera-based

SPT that includes a combination of averaging (motion blur) and localiza-

tion errors, in which the detected positions xt are related to the underlying

particle trajectory yðtÞ through

xt ¼
Z Dt

0

f ðt0Þyðt þ t0Þdt0 þ ffiffiffiffi
vt

p
xðxÞt : (1)

Here, vt is the localization error (variance) in frame t, and x
ð,Þ
t are inde-

pendent unit normal random variables. The shutter function f ðtÞ describes
how the image acquisition is distributed throughout the frame, e.g.,

f ðtÞ ¼ 1=Dt for continuous exposure and acquisition (8).
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Variational Algorithms for Diffusion
We model the particle motion yðtÞ as free diffusion, with a time-depen-

dent diffusion constant governed by a hidden Markov process st with N

discrete states.

For a fast variational algorithm, we seek a model in the exponential fam-

ily of probability distributions (13), which yield variational algorithms of a

particularly simple form that are often analytically tractable (14). This is

achieved by modeling the two terms in Eq. 1 separately, i.e., keep both

the true hidden path yt and the true exposure-averaged positions zt (the in-

tegral in Eq. 1) as explicit variables. In discrete time, this leads to the

following model:

ytþ1 ¼ yt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DstDt

p
xðyÞt ; (2)

z ¼ ð1� tÞy þ ty þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2D Dt

p
xðzÞ; (3)
t t tþ1 st t

x ¼ z þ ffiffiffiffi
v

p
xðxÞ; (4)
t t t t

where t and b are blur coefficients that depend on the shutter function (10).

With f ðtÞ ¼ 1=Dt for continuous illumination, we get t ¼ 1=2 and

b ¼ 1=12 (for details, see Supporting Materials and Methods, Section

S1). Position coordinates in two- or three-dimensional trajectories are

treated independently, which means that we neglect possible correlations

between localization errors in different directions. As detailed in Support-

ing Materials and Methods, this model allows variational algorithms for

both maximal likelihood estimation and variational Bayes inference (VB)

(13,15). Missing positions due to, e.g., fluorophore blinking, are handled

by formally setting vt ¼ N, which eliminates contributions from Eq. 4

for those points.

Our focus in this work is the case in which the localization variances vt
are input data estimated from the localization of single spots (10). However,

one could also treat vt as model parameters, for example as a single average

error ðvt ¼ vÞ, dependent on the hidden state ðvt ¼ vstÞ, and/or varying with
coordinate dimension. These modified models remain in the exponential

family and thus allow similarly efficient variational algorithms that differ

only in details compared to our main case.
Simulated Trajectories

For the model selection experiments in Fig. 1 and Fig. S1, we used synthetic

trajectories simulated using the analysis model, Eqs. 2, 3, and 4. We simu-

lated a three-state model with the following parameters: diffusion constants

D1 ¼ 0:1mm2s�1,D2 ¼ 6mm2s�1, andD3 ¼ 3mm2s�1. The kinetic model

is an irreversible cycle D1/D2/D3/D1/. with exponentially

distributed waiting times with average 100 ms (see Fig. 1 b). The positions

are simulated according to Eqs. 2, 3, and 4, with time step Dt ¼ 5 ms, and

motion blur corresponding to an exposure time of tE ¼ 1:5 ms (t ¼ 0:15,

b ¼ 0:0775). Trajectories were confined to
���zðzÞt

���< 500 nm using a trajec-

tory-wise method of images, i.e., reflecting trajectory parts outside this in-

terval back in again (z
ðzÞ
t is the z component of zt).

For the static localization errors vt, we use a simple model of spot

widening due to defocus Dz (9),

sðDz;DÞ2 ¼ s2
0

 
1þ

�
Dz

Lz

�2
!

þ a2

12
þ 1

3
DtE; (5)

with minimal spot width s0 ¼ 100 nm, Lz ¼ 240 nm (approximating l ¼
638 nm, NA ¼ 1:4, in water), and a ¼ 80 nm. The a2 term approximates

the effect of finite pixel size (16) and theDtE term spot-widening due to mo-

tion blur (9). We then compute vt for use in Eq. 4 from the approximate

Cramer-Rao lower bound (16):
vt ¼ 2
s
�
z
ðzÞ
t ;Dst

�2
Nphot:

0
B@16

9
þ
8pb2s

�
z
ðzÞ
t ;D

�2
Nphot:a2

1
CA; (6)

with Nphot: ¼ 200 photons per spot. This gave 14 nm<
ffiffiffiffi
vt

p
< 41nm. Fig. 1 b

shows the curve for D ¼ 6mm2s�1. We analyzed the x and y components of

xt and chose trajectory lengths to be exponentially distributed with mean

length 25Dt, but discarded trajectories with length below 5Dt. For the

statistical model selection study (Fig. 1; Fig. S1), we sampled data sets

of various sizes (50 data sets with up to 32,000 steps, 24 data sets

with 60,000 steps) from a large data set of several hundred thousand

positions such that all model selection techniques used the same set of

trajectories.
Simulated microscopy

Simulated video-microscopy images for transfer-RNA (tRNA) tracking

was generated using the SMeagol simulation software (12) with the spatial

reaction-diffusion model illustrated in Fig. 4. We simulated uniform expo-

sure during 1.5 of the 5 ms sampling time. Camera noise was generated

using a high-gain approximation of electron-multiplying charge-coupled

device noise (16) with offset 200, gain 77, and Gaussian readout noise

with standard deviation 20. We used 80 nm pixels and a uniform back-

ground fluorescence that decayed from two to one photon/pixel with a

decay rate of 2 s�1. For the optics, we used a Gibson-Lanni point-spread

function (PSF) model (17) generated by PSFgenerator (18) with

l ¼ 680 nm and NA ¼ 1:49. This is a spherically symmetric PSF suitable

for isotropic emitters or fluorophores with high rotational mobility.

Fluorescent spot intensity was set to give on average of 200 photons per

frame, and the average bleaching time was chosen to 20 frames. Using

custom MATLAB (The MathWorks, Natick, MA) scripts, we simulated

200-frame movies with �30 cells spread evenly across a 512� 130 pixel

field of view, with a few active fluorescent spots per cell. An example of

one such cell is shown in Fig. 4 c.
Spot detection and localization

We use the fast radial symmetry transform (19) for spot detection and esti-

mated spot positions and localization uncertainty using a symmetric

Gaussian spot model and maximal aposteriori estimates on 9-by-9 regions

of interests, as described by Lind�en et al. (10). Spots with
ffiffiffiffi
vt

p
> 80 nm were

discarded from the analysis.
RESULTS

Model selection

The number of diffusive states is often a biological unknown
of great interest, but because different numbers of diffusive
states correspond to statistical models with different
numbers of parameters, the counting of states is a nontrivial
problem of statistical model selection.

Bayesian reasoning, including model selection, is an
extension of formal logic to uncertain statements that
yields unique and consistent results (20). Assuming equal
prior preference for a set of candidate models with
uncertain parameters and unobserved degrees of freedom
(latent variables), the Bayesian approach uses marginali-
zation to select the model with the largest (log) evidence
Biophysical Journal 115, 276–282, July 17, 2018 277
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FIGURE 1 Statistical model selection. We generated a range of synthetic

data sets with (a) three diffusive states and (b) defocus-dependent localiza-

tion root mean-square errors, and estimated the number of states using (c)

variational maximal evidence (VB), and (d) cross-validation using varia-

tional pseudo-Bayes factors using 10% of the data in the validation set

(PBF 10%). For details, see Methods. To see this figure in color, go online.
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(13,15), which in compact notation can be written as
follows:

ln pðxjMÞ ¼ ln

Z
dn dq pðx; njq;MÞp0ðqjMÞ: (7)

Here, x denotes the observed data, M denotes the model,

n ¼ fst; yt; ztg the latent variables (summed or integrated
out as appropriate), and qM denotes the unknown parameters
with prior distribution p0ð,jMÞ for the different models M.

In our case and many others, the evidence in Eq.
7 is analytically intractable, in which case a variational
Bayes (VB) approximation can be an attractive
approach (2,13–15,21–24). VB yields a lower bound
ln L%ln pðxjMÞ usable for approximate Bayesian model
selection as well as approximate posterior distributions
(variational distributions) of parameters and hidden states
(13–15). Moreover, because it involves direct optimization
of the lower bound ln L, VB algorithms have an intrinsic
parsimony that depopulates superfluous states and can be
utilized for efficient greedy model search algorithms (2,24).

However, Bayesian inference may be statistically ineffi-
cient. In particular, the common practice of using uninforma-
tive priors to minimize bias in parameter estimates means
278 Biophysical Journal 115, 276–282, July 17, 2018
that the prior likelihood for any particular parameter value
is low. This in turn can lead to overly steep penalties against
models with many parameters, a phenomenon known as
Lindley’s paradox, which means that an unnecessarily large
amount of data is needed to resolve some feature of interest
(25–27). An alternative non-Bayesian approach that avoids
this difficulty is to rank competing models by their estimated
predictive performance (26,27). Next, we explore a predic-
tive approach to model selection for SPT analysis.

The most well-known predictive performance measure is
Akaike’s information criterion (AIC) (28), but this is only
asymptotically valid for large data sets. For small data sets,
one could instead use cross-validation, in which the data
set is divided into two parts: one for estimating model param-
eters (‘‘training’’) and one for estimating predictive perfor-
mance (‘‘validation’’). In practice, the performance is
estimated from averaging over several such divisions. We
implemented a variant of cross-validation with a Bayesian
flavor, pseudo-Bayes factors (PBF) (27), which include prior
distributions but do not suffer fromLindley’s paradox and are
easy to compute with our variational algorithm (see Support-
ing Materials and Methods, Section S2.5).

Fig. 1 compares VB and PBFmodel selection on synthetic
test data with three diffusive states and parameters that
resemble in vivo SPT experiments in bacteria (2,4) (see
Methods). Broadly, one expects predictive model selection
to avoid Lindley’s paradox and penalize complex models
less severely than Bayesian methods as the amount of data
increases. However, this comes at the expense of consistency,
i.e., there is no guaranteed convergence to the correct model
size (28,29). These expectations are qualitatively borne out in
Fig. 1, where the Bayesian VB criterion is more prone than
PBF to select too few states for small data sets, but less prone
to select too many states for large data sets.

There is no general rule for selecting training and valida-
tion subsets. HMMs also suffer from the additional compli-
cation that individual observations are correlated because of
the hidden state dynamics, which complicates cross-valida-
tion if the data is a single trajectory (30). Here, we focus on
SPT experiments that produce a large number of trajectories
(2,4) that can be used as atoms for constructing training and
validation sets. Our simulated trajectories have an average
length of 30, and Fig. 1 b uses randomly sampled validation
sets containing �10% of the data. Some other choices,
including AIC and the Bayesian vbSPT (VB for SPT)
code (2), are explored in Fig. S1, but do not perform better.
Speedup

In addition to more flexibility in modeling and inference
methods, the algorithms presented here are also considerably
faster compared to our previous implementation (10). This is
mainly because variational algorithms based on Eqs. 2, 3 and
4 are analytically tractable and hence avoid a costly numeri-
cal optimization step. However, we have also found a more



Variational Algorithms for Diffusion
efficient algorithm for partial matrix inversion (31). Fig. 2
shows the time per iteration for a three-state model on data
sets of different sizes for the algorithm presented here, that
of (10), and vbSPT (2). Compared to the former, we see
speedups of one to two orders of magnitude for experimen-
tally relevant data set sizes of 104 � 105 positions as well
as better scaling. However, vbSPT is faster still, which is ex-
pected because it is based on a much simpler model and thus
has less to do during each iterative update.
a

Finding the global optimum

Variational learning of a model and its parameters, diffusion
constants, and transition rates involves finding the overall
best fit to the data, but VB and other expectation-maximiza-
tion-type algorithms only converge toward local optima. An
additional global search is needed.

The simplest approach is to converge multiple models
from different starting points. To speed things up, we use
the built-in parsimony of the VB algorithms to start from
complex many-state models and then systematically search
for simpler ones by removing un- or low-populated states
(2). However, the extra complexity of our model compared
to standard HMMs (2) makes this approach more chal-
lenging to apply.

One attractive feature of our model is the ability to handle
long trajectories with missing positions. However, when
fitting high-dimensional models to data with missing posi-
tions, groups of superfluous states sometimes converge to-
ward identical parameters and finite occupancy associated
with the missing positions. Because this is clearly unphysi-
cal, we choose to remove such state clusters before
commencing normal model pruning.

Another challenge is related to the presence of two types
of latent variables for the discrete diffusive states ðstÞ and
uncertainty in true particle positions ðyt; ztÞ, respectively.
FIGURE 2 Speed of our variational algorithm (YZShmm) compared to

that of Ref. (10) (EMhmm) and vbSPT (2). Time per iteration versus num-

ber of steps in the data, which has three diffusive states, was measured on a

dual 6-core Intel Xeon 2.4GHz computer running MATLAB R2017a.

Linear and quadratic scaling laws are guides to the eye. To see this figure

in color, go online.
Although hard to quantify, it seems reasonable to expect
more latent variables to yield a more complex search land-
scape, with more local optima for the search to get trapped
in compared to ordinary HMMs in which the particle posi-
tions are not latent variables (2). More concretely, the vari-
ational treatment uses a threefold factorization ansatz
(parameters, hidden states, and hidden particle trajectories),
and to initialize the local optimization iterations, two of
three factors need to be initialized.

We use randomly selected parameter values and explore
different strategies to initialize either hidden states or hidden
trajectories: uniform hidden state occupancy, hidden trajec-
tories modeled directly on observed data (with no uncer-
tainty or correlations between yt and zt), and hidden
trajectory models generated by a running average in which
a pure diffusion model is fit to small windows of various
lengths. In our testing, different methods perform best on
different types of data, meaning that a wide range of initial-
ization methods are needed to maximize the chance of
finding the global optimum.

Fig. 3 shows an analysis of a data set from simulated im-
ages (see Methods) using 50 independent initializations of
model parameters with 15 states and 10 different initializa-
tions of latent variables with each parameter set. Fig. 3 a
shows the lower bounds of models originating from a single
initial parameter set, with each line corresponding to models
generated by the reductive search starting from one latent
variable initialization. We see that the initialization with
the largest number of nonspurious states does not lead to
the best overall model, and that the search lines sometimes
cross, meaning that relative ranking among the different
b

FIGURE 3 Model search with different initialization strategies. Each

color/marker combination shows the relative lower bound Dln L from the

best model of each size for different initialization strategies. (a) Model

search from a single parameter initialization is shown. (b) The best models

from 50 independent initializations are shown. To see this figure in color,

go online.
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reduction searches can change as states are removed. Look-
ing at the best models from 50 independent parameter ini-
tializations (Fig. 3 b), we again see search lines crossing
and note that the two highest-ranked model sizes originate
from different initialization methods.
Application: simulated tRNA tracking

Quantitative live cell SPT is complex, and errors may arise
during measurement, spot detection, localization, trajectory
building, and trajectory analysis. Comprehensive tests of the
whole analysis chain are needed to validate quantitative in-
terpretations of the experiments under particular conditions.
To evaluate the capabilities of our trajectory analysis only,
we seek test data with known ground truth and sufficient re-
alism to be experimentally relevant. We use simulated video
microscopy (12) to produce realistic test data and run spot
detection and localization using our standard methods (see
Methods) but use our knowledge of the simulated ground
truth to produce trajectories free from false positives and
linking errors that may lead to bad performance that does
not reflect the intrinsic quality of the trajectory analysis.
We allow at most three consecutive missing positions before
starting a new trajectory.

As a test problem, we consider tracking tRNA molecules
in Escherichia coli cells (4,32) (see Fig. 4), which presents
several interesting difficulties. At least three discernible
diffusive states may be expected: a ribosome-bound state
(B, slow diffusion), an unbound state (U, fast diffusion),
and a ternary complex (TC, intermediate diffusion). The
ribosome-bound state further displays spatial structure in
the form of nucleoid exclusion (32) as well as nonexponen-
tial waiting times (33) because tRNA goes through several
reaction steps before dissociating from the ribosome (34).
We constructed a simplified kinetic and spatial model incor-
porating these features and generated synthetic fluorescent
microscopy data with a 200 Hz frame rate (12) (see
a

c

b

FIGURE 4 Model for simulated tracking of fluorescent tRNA molecules.

(a) Shows the cross section of the simulation geometry, which consists of

concentric cylinders with spherical end-caps, represents the nucleoid

(blue) floating in the cytoplasm (red). Scale bars, (black) 1 mm. (b) Shows

the simulated kinetic model of the tRNA cycle. Two states B1;B2 with low

diffusion coefficients represent ribosome-bound states and are excluded

from the nucleoid, whereas the unbound (U) and ternary complex (TC)

states are free to roam the whole cell. (c) Shows a simulated frame with

two fluorophores in a single cell, with cell outline (red) and particle tracks

(yellow) added. Pixel size, 80 nm. To see this figure in color, go online.
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Methods). We simulated a range of rate constants corre-
sponding to a total bound state mean dwell time of
tB ¼ 2=ku between 50 and 400 ms, whereas the steady-state
occupancy is kept fixed at 20=30=50 (B/U/TC).

Not all estimated parameters have direct simulated coun-
terparts. For example, nucleoid exclusion means that the
TC/B reaction cannot take place in the nucleoid region,
lowering the effective value of kb. Nucleoid exclusion also
distorts the state occupancy of the detected spot population
because defocused spots are more difficult to detect, and
with our simulated focus in the cell midplane, the bound
states are relatively enriched in defocused regions (4).
Fig. 5 shows comparisons in which these complications
are minimal, which means that we ignore overall occupancy
and transitions out of the TC state.

The true model contains three diffusion constants but four
kinetic states. Startingwith the number of states (Fig. 5 a), we
see mostly three states and note that the VB and PBF model
selection agree half the time and that the PBF favors more
states in cases of disagreement. Plotting the diffusion con-
stants fromVB-selectedmodels (Fig. 5 b), we see that it finds
diffusion constants close to the true values, although for the
fastest kinetics ðtB ¼ 50msÞ, the high-D states are biased
toward each other, probably because the faster dynamics
produces more short events that make it more difficult for
the HMM to distinguish the two fast states correctly. There
is also a general downward bias in the highest diffusion con-
stant, most likely a confinement artifact (see Fig. S2).

Regarding the kinetics, a detailed look at the four-state
model for the fastest kinetics (Fig. 5 c) shows a striking
resemblance to the true rate model in Fig. 5 d. The unidirec-
tional cycle is clearly visible in the estimated parameters, and
the transition probabilities corresponding to ku and ktc closely
resemble the underlying ground truth. The mean dwell times
of this model are comparable to the average trajectory length
of �0.12 s. For models with slower kinetics, the bound state
dwell time is well captured (Fig. 5 e, black), but otherwise,
the kinetics is not as well reproduced. Only one bound state
is identified, the unbound dwell times (Fig. 5 f) are not close
to the truevalues, and the transitionmatrices (data not shown)
do not resemble the cyclic pattern of the underlying model.
However, even the more limited ability to measure the
mean dwell time of a slow or immobile state when that dwell
time exceeds the average trajectory length could be of biolog-
ical interest, for example to study the interactions of small
molecules such as tRNA or proteins interacting with larger
structures such as ribosomes or DNA (4).
DISCUSSION

Together with methods to extract both positions and position
uncertainty from images of single spots (10), the variational
algorithm we present here makes it possible to significantly
decrease analysis artifacts associated with variable localiza-
tion quality due to, for example, out-of-focus motion,
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FIGURE 5 Analysis of simulated microscopy data. The different ground

truth models are denoted by their total bound state dwell times: tB ¼ 0:05,

0:1, 0:2, and 0:4s, respectively. (a) Shows the number of states selected by

the VB and PBF criteria. (b) Shows diffusion coefficients for the VB-

selected models. Dashed colored lines indicate the true diffusion constants

of the U, TC, and B1;2 states. For the 0:05 s model, two states near

0.1 mm2s�1 are found. (c) VB-estimated parameters and (d) ground truth

parameters of the four-state 0:05 s model are shown with transition proba-

bilities per time step below 10�8Dt�1 suppressed. States are named and

colored according to the obvious similarity with the true scheme in (c).

(e) Bound and (f) unbound state mean dwell times, computed from the tran-

sition probability matrix. For the 0:05s model, we added the dwell times of

the two B states. Dashed lines indicate the true mean dwell times. Error bars

indicate bootstrap SEs. In (f), missing error bars indicate where not all boot-

strap replicas gave finite mean dwell times. All data sets contain �16,000

steps. To see this figure in color, go online.
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gradual bleaching or stage drift, or fast fluorophore blinking.
We are curious to see how these tools will help researchers
make more nuanced interpretations of their in vivo
SPT data.

Compared to our previous implementation (10), the algo-
rithms presented here are significantly faster and support
maximal likelihood as well as VB inference. This makes
exploratory analysis of large data sets practical and allows
a more comprehensive statistical analysis. We compared
model selection by the purely Bayesian VB approach
(14,15) to two methods based on predictive performance,
the AIC (28), and a variational implementation of cross-vali-
dation using PBFs (27). Although nomethod avoided overfit-
ting completely in our challenging synthetic data set, VB
overfitted the least, and we recommend that for applications.

However, in light of the theoretical arguments against a
purely Bayesian approach for some model selection prob-
lems (25,26), we think the non-Bayesian methods merit
further study. For example, corrections to AIC have been
derived for Markov switching regression models (35) and
might be generalized to our class of HMMs as well. It is
also possible that the PBFs would perform better when eval-
uated with Monte Carlo methods (27) than with the varia-
tional approximations we used here.

There are many interesting directions to further optimize
and expand these types of analysis and algorithms.

The complex statistical model used here makes it
possible to tackle complex data but computationally diffi-
cult to find the globally best model. We use a brute force
approach with randomly initialized greedy search for
easy parallelization. This is computationally costly, and
the total analysis time with our code can be 10–100 times
slower than a simplified analysis with vbSPT (2) on the
same trajectory set. More sophisticated global optimization
schemes in which the different search processes communi-
cate may be more efficient, for example by avoiding redun-
dant efforts when multiple initializations converge to the
same model.

Another interesting direction for further development
may be to incorporate other types of heterogeneity, such
as variability in the underlying diffusion constants or
other model parameters (23) or explicit models of spatial
structure (36).

Third, more complex motion or kinetic models could be
used. Our diffusive HMMmay be extended in several useful
ways within the exponential family of models that enable
efficient variational algorithms (14); localization errors
could be treated as model parameters rather than external
observations, possibly depending on the chemical state
or coordinate dimension (see Supporting Materials and
Methods, Section S5). There are also combinations of
directed motion and confinement in harmonic potentials
that still lead to Gaussian motion models (3,37). Introducing
explicit termination rates could correct bias that arises from
correlations between chemical states and trajectory termina-
tion (38), for example when fast-diffusing molecules move
out of focus faster than slow-diffusing ones (39).
Software

Our algorithms are freely available as open sourceMATLAB
code from https://github.com/bmelinden/vbSPTu. The
vbSPTu software suite includes a GUI to run a simple stan-
dard analysis, support for scripting large analysis tasks, and
low-level tools for creating customized analysis.
Biophysical Journal 115, 276–282, July 17, 2018 281
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SUPPORTING MATERIAL

Supporting Materials and Methods and two figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(18)30665-9.
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