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A B S T R A C T

There is an ever-increasing wealth of knowledge arising from basic cognitive and clinical neuroscience on how
speech and language capabilities are organised in the brain. It is, therefore, timely to use this accumulated
knowledge and expertise to address critical research challenges, including the ability to predict the pattern and
level of language deficits found in aphasic patients (a third of all stroke cases). Previous studies have mainly
focused on discriminating between broad aphasia dichotomies from purely anatomically-defined lesion in-
formation. In the current study, we developed and assessed a novel approach in which core language areas were
mapped using principal component analysis in combination with correlational lesion mapping and the resultant
‘functionally-partitioned’ lesion maps were used to predict a battery of 21 individual test scores as well as aphasia
subtype for 70 patients with chronic post-stroke aphasia. Specifically, we used lesion information to predict
behavioural scores in regression models (cross-validated using 5-folds). The winning model was identified
through the adjusted R2 (model fit to data) and performance in predicting holdout folds (generalisation to new
cases). We also used logistic regression to predict fluent/non-fluent status and aphasia subtype. Functionally-
partitioned models generally outperformed other models at predicting individual tests, fluency status and
aphasia subtype.

1. Introduction

Left hemisphere stroke often results in disrupted speech and lan-
guage processes (aphasia). Under the single umbrella term of ‘aphasia’
there are considerable variations in patients' language and cognitive
presentation, in both the pattern and severity of impairment to different
language activities (e.g., comprehension, naming, reading, writing,
speech, etc.). The consequence of this significant diversity is that in-
dividual patients will need very different types of intervention and
clinical management (e.g., patients with primary comprehension or
phonological deficits). By utilising fMRI in healthy participants (Price,
2010, 2012) and voxel-lesion symptom mapping (Bates et al., 2003) in
aphasic patients, cognitive and clinical neuroscience has made con-
siderable strides in mapping language performance and the under-
pinning cognitive mechanisms to different brain regions. Despite being
a crucial step for clinical application, the reverse mapping – using
neuroimaging results to predict individual aphasic profiles or types –
has only been attempted by a limited number of studies. The key aim of
this investigation, therefore, was to embark on using new methods to
generate lesion-based models which are able to predict both the

detailed language profile of individual patients as well as their aphasia
classification. For clarity, in this study we use prediction-based in-
ference to determine how neural data can predict the current beha-
vioural status using a k-fold cross validation approach. Future studies
will be able to test whether similar models can offer accurate prediction
in the temporal sense (using neural data to predict future behaviour).
Indeed, the chronic stroke lesion is apparent long before patients' long-
term language and cognitive abilities have stabilised (the partial, gra-
dual recovery that most patients demonstrate extends to at least nine to
twelve months post onset). Accordingly, accurate lesion-based predic-
tion models would have considerable clinical utility, including im-
provements in the type of information that can be offered to patients
and carers, enhanced clinical management planning, and appropriate
patient stratification to treatment plans.

Studies using neural lesion information to predict behavioural out-
comes have yielded inconsistent results. For example, earlier studies
reported little advantage of using lesion information in improving
predictions (Hand et al., 2006; Johnston et al., 2002; Johnston et al.,
2007; Lazar et al., 2008; Willmes and Poeck, 1993). In contrast, more
recent studies have found that models, designed to predict a single
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feature of aphasic performance or aphasia type, can be improved by
including lesion information (Hope et al., 2013; Saur et al., 2010;
Schiemanck et al., 2006; Thijs et al., 2000; Yourganov et al., 2015). For
example, Hope et al. (2013) developed a predictive model using basic
demographic information (age, gender, etc.) and structural lesion in-
formation obtained from a high-resolution T1-weighted image (lesion
size and atlas-based lesions) to predict a composite speech production
score (and its constituent individual speech test results), with the
winning model containing time post-onset, lesion volume and 35 atlas-
based predictors. They showed that the model could predict patients'
composite speech production score over the first 200months post-
stroke. In addition, the same group used anatomical regions to predict
22 subtests scores of the Comprehensive Aphasia Test (Swinburn et al.,
2005) for mono-/bi-lingual patients (Hope et al., 2015). Another study
used ridge regression in order to predict behavioural scores across
seven domains (left/right motor, language, attention bias, verbal
memory and spatial memory) in acute stroke cases (< 2weeks)
(Corbetta et al., 2015) - though, language was identified in a broad
sense and thus the study did not allow for predictions of specific lan-
guage deficits. Other groups have used support vector machines (SVM)
trained on atlas-based lesion parcellations to predict six out of ten
pairwise binary contrasts between aphasia subtypes at above chance
levels (Yourganov et al., 2015). Saur et al. (2010) also used SVMs in
order to predict patients' chronic outcome status (a binary classifica-
tion; good/bad) as well as the type of improvement from the acute to
chronic stage (good/bad). They found that age and a composite lan-
guage recovery score (LRS) achieved above chance classification (62%).
It is important to note that this particular study made use of fMRI
measurements and showed that the fMRI data within targeted language
areas improved prediction accuracy improved significantly (~86%),
suggesting that functionally- as well as neuroanatomically-partitioned
maps might be critical in improving predictive models. Furthermore,
we also know that white matter connectivity (or disconnection) plays
an important role in understanding behavioural deficits (Catani and
ffytche, 2005; Catani et al., 2005). A recent study has shown that da-
mage to white matter pathways that converge into a bottleneck, for
example in the posterior temporal lobe, are critical in predicting mul-
tiple behavioural deficits such as speech fluency, naming and auditory
semantic decisions (Griffis et al., 2017).

The present study advances this handful of existing prediction
models in two novel and important ways – namely, (a) how patients'
lesions are partitioned (before they are used as predictors) and (b) in
the nature and detail of what is being predicted. Our approach to both
research aims was informed by a new, emerging conceptualisation of
the aphasia phenotype and underlying brain systems. There is a long-
standing tradition in aphasiology to categorise patients into different
aphasia types according to clusters of behavioural deficits (e.g., Broca,
Wernicke, conduction, etc.). These classifications provide an approx-
imate descriptive shorthand for communicating and comparing cases
across clinics/research institutions, and influencing treatment options
(Horn et al., 2005). There is increasing agreement, however, that
aphasia classifications have strong limitations because (a) there is
considerable variability amongst patients within each category and (b)
there are fuzzy boundaries between categories. Indeed, it is often dif-
ficult to place patients within a single category, leading to the diagnosis
of “mixed aphasia”. An alternative approach moves away from cate-
gorisation and clustering towards considering each patient as a point in
a multidimensional space, where each dimension corresponds to a
primary computational-brain system (Butler et al., 2014; Chase, 2014;
Halai et al., 2017). In this conceptualisation, each patient's pattern of
aphasia reflects a different weighting of the impairments to these pri-
mary systems. Likewise, each language activity (e.g., naming, com-
prehending, repeating, etc.) is not localised to a single brain region but
rather reflects the joint action of the underpinning primary systems
(Patterson and Lambon Ralph, 1999; Seidenberg and McClelland, 1989;
Ueno and Lambon Ralph, 2013; Ueno et al., 2011). A simple analogy is

that of the arrangement of different colour hues (cf. patients) across the
red, green and blue (RGB) colour space. Whilst it is possible to de-
marcate and label (cf. categorise) approximate areas in the space as
yellow (e.g., Broca), blue (Wernicke), etc., there are in fact many dif-
ferent kinds of each colour and the boundaries between them are fuzzy.
Likewise, when presented with individual hues it is not always obvious
which colour category they fall into (e.g., teal, maroon, indigo; cf. how
to categorise a patient with mixed aphasia). Thus, like aphasia classi-
fications, colour labels provide approximate albeit limited information
about the underlying graded differences. This is sufficient to commu-
nicate broad distinctions between cases (e.g., blue vs. yellow; Broca vs.
Wernicke) but not finer variations (the overlapping variations of orange
vs. yellow; conduction vs. Wernicke). An alternative and more precise
approach is to represent each hue (patient) in terms of its position along
the RGB dimensions (cf. patients' performance in terms of the under-
lying primary language-cognitive systems).

With sufficient breadth of assessments (to sample the full spectrum
of language activities) and patient numbers, it is possible to use sta-
tistical approaches such as principal component analysis (PCA) to un-
cover the underlying dimensions (Lambon Ralph et al., 2002; Lambon
Ralph et al., 2003). Recent applications of this approach have not only
recovered the same set of orthogonal dimensions (phonology, seman-
tics, executive skills, speech quanta) but have found that each one is
associated with damage to discrete brain regions (Butler et al., 2014;
Halai et al., 2017). Importantly, for the present study, very similar or
identical behavioural dimensions and lesion correlates have been ob-
served across independent studies both in patients with chronic (Lacey
et al., 2017; Mirman et al., 2015a; Mirman et al., 2015b) and acute
aphasia (Kümmerer et al., 2013), indicating the robustness of these core
underlying factors.

The ramifications of this aphasia conceptualisation on generating
prediction models are as follows. In terms of prediction targets, the
ultimate aim is to predict the full behavioural profile of each patient
from the neuroimaging data. Thus, rather than focussing on individual
language activities, in this study we predicted each patient's scores
across the full range of assessments. Given the strong tradition of using
aphasia classifications, we also generated a predictive classification
model but rather than focussing on pairwise discrimination between
pairs of aphasia types, we required the model to discriminate simulta-
neously between all major types (thus providing a full albeit coarse-
coding of the aphasic multidimensional space). Secondly, in terms of
deriving the best predictors for inclusion in these models, we utilised
the finding that the core underlying ‘primary’ dimensions (phonology,
semantics, etc.) have been associated with discrete lesion correlates. As
such, one might expect the status of each of these key regions to be a
strong predictor of the patients' performance across the full range of
tests. Accordingly, each patient's lesion was functionally-partitioned
according to the overlap with these primary language regions and the
resultant four component model was used to predict each patient's in-
dividual test scores as well as aphasia classification.

2. Materials and methods

2.1. Participants

Seventy post-stroke patients (53 males, mean age ± standard de-
viation [SD]=65.21 ± 11.70 years) were recruited in the chronic
stage (minimum 12months post onset; mean=56.6,
SD=50.17months). A subset of cases (31/70) was the same as re-
ported in two previous studies (Butler et al., 2014; Halai et al., 2017).
The mean years in education was 12.11 (SD=2.20). All cases were
diagnosed with aphasia (using the Boston Diagnostic Aphasia Ex-
amination, BDAE), having difficulty with producing and/or under-
standing speech. No restrictions were placed according to aphasia type
or severity (spanning from global to minimal aphasia). All subjects were
right handed (premorbidly) using the Edinburgh Handedness Inventory
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(Oldfield, 1971), native English speakers and had only one known
stroke to the left hemisphere. We excluded cases with damage to the
right hemisphere or those that had multiple strokes. Data from 22
healthy age and education-matched controls (10 female, 12 male) were
used to determine abnormal regions of the T1 weighted brain scan (see
Neuroimaging analyses section for details). All participants gave
written informed consent with ethical approval from the local ethics
committee.

2.2. Neuropsychological assessment (dependent variables)

All participants underwent a large neuropsychological battery of
tests to assess a range of language and cognitive abilities (Butler et al.,
2014; Halai et al., 2017). These included subtests from the Psycho-
linguistic Assessments of Language Processing in Aphasia (PALPA)
battery (Kay et al., 1992): auditory discrimination using non-word
(PALPA 1) and word minimal pairs (PALPA 2); and immediate and
delayed repetition of non-words (PALPA 8) and words (PALPA 9). Tests
from the 64-item Cambridge Semantic Battery (Bozeat et al., 2000)
were included: spoken and written versions of the word-to-picture
matching task; Camel and Cactus Test (pictures); and the picture
naming test. To increase the sensitivity to mild naming and semantic
deficits we used The Boston Naming Test (BNT) (Kaplan et al., 1983)
and a written 96-trial synonym judgement test (Jefferies et al., 2009).
The spoken sentence comprehension task from the Comprehensive

Aphasia Test (CAT) (Swinburn et al., 2005) was used to assess senten-
tial receptive skills. Speech production deficits were assessed by coding
responses to the ‘Cookie theft’ picture in the BDAE, which included
tokens (TOK), mean length of utterance (MLU), type/token ratio (TTR)
and words-per-minute (WPM) (see Halai et al., 2017 for more details).
The additional cognitive tests included forward and backward digit
span (Wechsler, 1987), the Brixton Spatial Rule Anticipation Task
(Burgess and Shallice, 1997), and Raven's Coloured Progressive Ma-
trices (Raven, 1962). Assessments were conducted with participants
over several testing sessions, with the pace and number determined by
the participant. The scores reflect the performance of each individual
for each test and all scores were converted into percentage; if no
maximum score was available for the test we used the raw score.

The neuropsychological measures were entered into a PCA with
varimax rotation (SPSS 22.0). Factors with an eigenvalue exceeding 1.0
were extracted and then rotated orthogonally. Following varimax ro-
tation, the loadings of each test allowed a clear behavioural inter-
pretation of each factor. Individual participants' scores were obtained
using the regression method for each extracted factor and used as target
values in the prediction models.

2.3. Acquisition of neuroimaging data

High resolution structural T1-weighted Magnetic Resonance
Imaging (MRI) scans were acquired on a 3.0 Tesla Philips Achieva

Fig. 1. Axial slices illustrating the lesion overlap across 70 patients (threshold 1–56). Maximum overlap at [−38 −9 24] which corresponds to the central opercular
cortex and left long segment and [−20 −12 26] which corresponds to the left cortico-spinal tract.
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scanner (Philips Healthcare, Best, The Netherlands) using an 8-element
SENSE head coil. A T1-weighted inversion recovery sequence with 3D
acquisition was employed, with the following parameters: TR (repeti-
tion time)= 9.0 ms, TE (echo time)= 3.93ms, flip angle= 8°, 150
contiguous slices, slice thickness= 1mm, acquired voxel size
1.0×1.0×1.0mm3, matrix size 256×256, FOV=256mm, TI (in-
version time)= 1150ms, SENSE acceleration factor 2.5, total scan ac-
quisition time=575 s.

2.4. Neuroimaging analyses

Structural MRI scans were pre-processed with Statistical Parametric
Mapping software (SPM8: Wellcome Trust Centre for Neuroimaging,
http://www.fil.ion.ucl.ac.uk/spm/). The images were normalised into
standard Montreal Neurological Institute (MNI) space using a modified
unified segmentation-normalisation procedure optimised for focal le-
sioned brains (Seghier et al., 2008b). Data from all participants with
stroke aphasia and all healthy controls were entered into the segmen-
tation-normalisation. This procedure combines segmentation, bias
correction and spatial normalisation through the inversion of a single
unified model (see Ashburner and Friston, 2005 for more details). In
brief, the unified model combines tissue class (with an additional tissue
class for abnormal voxels), intensity bias and non-linear warping into
the same probabilistic models that are assumed to generate subject-
specific images. The lesion of each patient was automatically identified
using an outlier detection algorithm, compared to a group of healthy
controls, based on fuzzy clustering. The default parameters were used
apart from the lesion definition ‘U-threshold’, which was set to 0.5 to
create a binary lesion image. We modified the U-threshold from 0.3 to
0.5 after comparing the results obtained from a sample of patients to
what would be nominated as lesioned tissue by an expert neurologist.
The images generated for each patient were individually checked and
visually inspected with respect to the original scan, and were used to
create the lesion overlap map in Fig. 1 (2mm3 MNI voxel size). The
binary lesion mask was then used to determine the predictor variables
(see below). We selected the Seghier et al. (2008b) method as it is
objective and efficient for a large sample of patients (Wilke et al.,
2011), in comparison to a labour intensive hand-traced lesion mask.
The method has been shown to have a DICE overlap> 0.64 with
manual segmentation of the lesion and> 0.7 with a simulated ‘real’
lesion (where real lesions are superimposed onto healthy brains;
Seghier et al., 2008b). All images were visually inspected and manually
edited if required. We should note here, explicitly, that although
commonly referred to as an automated ‘lesion’ segmentation method,
the technique detects areas of unexpected tissue class – and, thus,
identifies missing grey and white matter but also areas of augmented
cerebrospinal fluid (CSF) space.

2.5. Predictor variables

We used the automated binary lesion mask for each subject and
calculated a percentage overlap with the whole left hemisphere, giving
a value of overall left hemisphere damage (referred to as the lesion
volume [LV] model). We used the same binary lesion to obtain per-
centage lesion overlap for three critical discrete principal language-
related clusters identified using a PCA voxel based correlational
methodology; phonology, semantics and speech quanta (clusters taken
from Halai et al., 2017), which provided three additional predictor
variables (percentage of damage to each cluster based on the in-
dividuals' lesion profile) and were used in conjunction with the residual
left hemisphere LV variable (referred to as the LV-PCA model). In ad-
dition to the neural predictors, we used basic demographic information
as predictors including: age at testing (age), years in education (edu)
and months post stroke onset (onset).

2.6. Prediction analysis

For the following section we used prediction-based inference to
determine how well each model performed. To clarify, we used neural
information from chronic T1-wieghted images to predict the patients'
current chronic behavioural profile and we are not performing any
predictions in the temporal sense. In order to make sure our models and
predictions remained unbiased we implemented a 5-fold cross-valida-
tion procedure throughout the following analyses. Our pipeline was as
follows: 1) randomly split the data into 5 folds (N= 14 per fold), 2)
perform a PCA on the behavioural data on training set (4 folds), 3)
determine neural correlates with PCA factor scores using voxel based
correlational methodology (VBCM), 4) obtain predictor variables (as
outlined above) for each cluster related to phonology, semantics and
speech quanta, 5) create regression models for each neuropsychological
test, and 6) use the regression to predict the holdout fold and determine
the correlation between predicted data and known targets. The analyses
presented in the paper are split into three parts. First, we outline the
model fit (using a different combination of predictor variables) to a
range of behavioural scores (measured by adjusted R2). The second
analysis focused on the prediction accuracy to ‘new’ cases that were
held out during the model building stage (measured by correlation). We
identified the winning model by comparing the average model fit and
ability to predict holdout cases across models. These evaluation mea-
sures were computed for two types of model: the first type consisted of
the non-partitioned left-hemisphere lesion (LV) plus the demographic
variables; and the second type of model consisted of the four-part
functionally-partitioned lesion (LV-PCA predictors) plus the same de-
mographic variables. To evaluate the statistical significance of each
model (against chance) we undertook a Monte Carlo analysis.
Specifically, to obtain a null distribution for each model of each be-
havioural test, the dependent variable (test score for each model) was
randomised (N=10,000) and the same model-fit analysis as above was
performed, providing a means to test the real data against chance levels
(p < 0.05). In addition, we also compared the real models directly
using a Wilcoxon test (p < 0.05). In order to determine specific cases
that were poorly predicted, we calculated the mean square root residual
sum of squares across all test scores (sum(observed-predicted)2)1/2. Any
cases that were two SD away from the mean group were considered
poor predictions.

Finally, a logistic regression analysis was used to determine if the
winning version of the non-partitioned LV or functionally-partitioned
LV-PCA models could predict aphasia type for all subjects: 1) at a coarse
level, by splitting the patients into fluent/non-fluent groups based on
BDAE criteria; and 2) the specific BDAE aphasia classification. In order
to obtain a null distribution for each model, the dependent variable
(fluent/non-fluent or subtype code) was randomised (N=10,000) and
for each iteration a logistic regression analysis was performed. The
corresponding percentage correct was recorded for each model. The
threshold was set at p < 0.05 to reject the null hypothesis.

3. Results

3.1. Neuropsychological and lesion profiles

Table 1 provides demographic details on the cases included in the
study (a subset of 31 cases were reported in Butler et al., 2014; Halai
et al., 2017) and overall lesion volume (note that the cases are ordered
according to their Boston naming test scores). Table 2 provides a
summary of the participants' scores on all neuropsychological tests
(dependent variables) and is ordered according to patients' scores on
the Boston naming test (note that values are displayed as integers but
all decimal values used in the analyses). A lesion overlap map for all
cases is provided in Fig. 1, and primarily covers the left hemisphere
area supplied by the middle cerebral artery (Phan et al., 2005). The
maximum number of participants who had a lesion in any one voxel
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was 56 (−38, −9, 24 central opercular cortex and −20 −12 26 left
cortico-spinal tract). Fig. 2 shows the cluster overlap figure for each
behavioural component across the 5-folds for cross-validation, which
were used on each fold to determine the percentage of lesion overlap
per functionally-partitioned region.

In order to evaluate the utility of the models the results are split into
three sections. First, we summarise the adjusted R2 values for each
model across behavioural tests. Secondly, we determine which model
had the best predictive power by comparing the correlation for holdout
folds for each model across behavioural tests. Finally, we show how
well the winning models can classify patients based on fluent/non-
fluent membership and specific BDAE classification using logistic re-
gression.

3.2. Best fit to data (adjusted R2)

For a graphical depiction of the adjusted R2 values for all tests, see
Fig. 3. Table 3 shows the mean adjusted R2 values and highlights sig-
nificant differences between all model pairings. For simplicity, the
Figure only shows the adjusted R2 values for LV-all and LV-PCA-all as
these models were approximately the two best models. Overall, the fit
to data for both LV and LV-PCA models (and the variant models with
demographic information) was significantly better than chance
(p < 0.05) for almost every behavioural test (see Supplementary Table
A1 for scores on each behavioural test, values marked in bold indicate
non-significant models). Importantly, the average adjusted R2 across all
tests was significantly higher for the functionally-partitioned LV-PCA
model compared to the LV model (0.27 and 0.15, respectively) (Wil-
coxon Test: Z= 4.015, p < 0.001). There were four language assess-
ments that there were problematic for some models: A) The LV-age and
LV-edu models did not significantly fit to immediate word repetition
and Boston naming test scores; B) The LV and LV-ons models did not
significantly fit to the Brixton score; and C) The LV, LV-age, LV-edu, LV-
ons, LV-all models did not significantly fit to type/token ratio (although
it should be noted that this assessment had the lowest adjusted R2 va-
lues overall for all models). Considering the non-partitioned LV models,
the best-fitting (adjusted R2) models when adding demographic vari-
ables were LV-ons (0.17) and LV-all (0.22). The LV-all model was sig-
nificantly better than all other LV models (p's < 0.016) except LV-ons
(Wilcoxon Test: Z= 1.616, p= 0.106). The LV-ons was only sig-
nificantly better than LV (Wilcoxon Test: Z= 2.311, p= 0.021). Con-
sidering the functionally-partitioned lesion (LV-PCA) models, the best-
fitting (adjusted R2) models when adding demographic variables were
LV-PCA-all (0.323) and LV-age (0.311). The LV-PCA-all model was

Table 1
Participant background information and amount of neural damage to four
partitions of the brain (percentage values) (independent variables). Cases or-
dered according to their score on the Boston naming test.

ID BDAE
classification

Sex Age (years) Education
(years)

Months
post
stroke

Lesion
volume
(voxels at
2mm3)

1 Broca m 85 10 46 11,393
2 Broca m 54 13 35 18,632
3 Global m 79 11 64 23,860
4 Global m 72 11 42 27,054
5 Mixed

nonfluent
m 67 11 44 31,317

6 Global m 72 11 155 32,981
7 Global m 58 13 57 33,239
8 Global m 52 11 73 37,822
9 Mixed

nonfluent
m 68 12 50 41,379

10 Conduction m 67 17 14 6557
11 Global m 74 11 18 19,500
12 Mixed

nonfluent
m 58 13 32 14,625

13 Global m 66 11 12 14,890
14 Broca m 62 11 104 27,242
15 Mixed

nonfluent
m 64 11 29 33,239

16 Conduction m 67 11 13 4879
17 Mixed

nonfluent
f 75 11 160 12,057

18 Mixed
nonfluent

m 63 12 42 31,599

19 Conduction m 68 11 37 4773
20 Mixed

nonfluent
m 78 13 36 34,242

21 Conduction f 77 16 34 6843
22 TSA m 63 12 24 5822
23 Broca m 61 11 16 3528
24 Conduction f 46 16 21 3897
25 Broca m 51 12 34 20,043
26 Mixed

nonfluent
m 79 11 63 33,678

27 Mixed
nonfluent

f 52 11 99 40,313

28 Broca m 59 13 37 13,080
29 Mixed

nonfluent
m 81 11 69 28,144

30 Broca m 50 12 16 26,218
31 Anomia f 53 11 47 1526
32 Broca m 82 10 13 12,131
33 Mixed

nonfluent
m 73 11 23 22,732

34 TMA f 73 11 46 23,863
35 Anomia m 51 13 72 22,948
36 Broca f 48 12 16 5273
37 Anomia f 69 19 39 9159
38 Mixed

nonfluent
m 76 11 192 42,568

39 Anomia f 51 11 66 6975
40 Broca f 77 11 56 13,577
41 Mixed

nonfluent
m 73 11 114 36,877

42 Broca m 80 12 65 18,163
43 Anomia m 65 10 85 6607
44 Anomia m 44 11 40 8437
45 Anomia m 86 9 17 8528
46 Anomia m 59 11 34 16,433
47 Anomia f 44 13 37 18,948
48 Anomia m 68 11 21 3311
49 Anomia m 75 11 11 1481
50 Anomia m 87 12 35 8238
51 Anomia m 66 11 126 15,492
52 Mixed

nonfluent
m 67 11 120 26,097

53 Conduction m 84 9 35 7854
54 Anomia m 85 10 69 21,489

Table 1 (continued)

ID BDAE
classification

Sex Age (years) Education
(years)

Months
post
stroke

Lesion
volume
(voxels at
2 mm3)

55 Mixed
nonfluent

f 67 14 176 26,283

56 Anomia m 65 17 25 4806
57 Anomia m 68 11 14 8788
58 Anomia m 52 17 33 11,915
59 TMA m 76 11 116 11,239
60 Anomia m 45 11 25 10,409
61 Anomia m 50 19 16 4538
62 Anomia f 58 11 278 12,699
63 Anomia m 67 11 60 10,073
64 Broca m 58 11 135 18,392
65 Anomia m 56 16 17 6974
66 Anomia f 73 11 89 8921
67 Anomia f 68 16 22 8118
68 Anomia f 52 12 76 9767
69 Anomia f 43 16 15 175
70 Anomia m 63 12 10 18,639
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significantly better than LV-PCA, LV-PCA-edu and LV-PCA-ons (p's <
0.03) but not different to LV-PCA-age (Wilcoxon Test: Z= 0.539,
p=0.590). The LV-PCA-age model was not different to LV-PCA-edu
but was trending towards significance against LV-PCA and LV-PCA-ons
(Wilcoxon Test: Z= 1.894, p=0.058).

In order to compare the relative power of these models further, we
summed the number of assessment tests for which each model had the
best fit for the four models identified above. The functionally-parti-
tioned models were the best for the vast majority of individual tests: LV-
ons (0/21), LV-all (0/21), LV-PCA-age (13/21) and LV-PCA-all (8/21).

3.3. Predictive power (predicted R2)

The non-partitioned lesion-only (LV) model had significantly
greater correlation values between predicted and observed than chance
levels for all bar five measures (PALPA 8 immediate, PALPA 9 im-
mediate, PALPA 9 delayed, TTR, and the Brixton spatial anticipation
test). The functionally-partitioned LV-PCA only model had significantly
greater correlation values between predicted and observed scores than
chance levels for all bar two measures (PALPA 8 immediate and PALPA
9 immediate). It should be noted that most models failed to accuracy
predict PALPA 8 immediate, PALPA 9 immediate and TTR (see
Supplementary Table A2 for details on all models, values marked in
bold reflect non-significant models). Table 3 shows the mean correla-
tion between the predicted and observed values across holdout folds for
all models. Overall, the correlations were significantly higher for the
LV-PCA model than the LV model (0.41 vs. 0.32, respectively; Wilcoxon
Test: Z= 3.146, p= 0.002). We report the correlation values for: LV-
age, LV-all, LV-PCA-age and LV-PCA-all as these produced the best
models. There were a small number of behavioural tests that were not
predicted above chance-level based on these four models: the LV-age
model failed to generate better than chance predictions for PALPA 9
(delayed) and TTR measures; the LV-all model failed for PALPA 9
(immediate and delayed), PALPA 8 (immediate), forward digit span,
and TTR; the LV-PCA-all model failed on PALPA 9 (immediate) and
TTR; whilst the LV-PCA-age model did not fail on any measure.

For the non-partitioned lesion (LV) models, the highest mean cor-
relation belonged to LV-age but this was not significantly greater than
LV-all (0.385 vs. 0.369, respectively; Wilcoxon Test: Z= 0.782,
p=0.434). For the functionally-partitioned lesion (LV-PCA) models,
LV-PCA-age did produce significantly higher values than LV-PCA-all
(0.484 vs. 0.478; Wilcoxon Test: Z= 1.999, p < 0.046). Directly
comparing the LV-age and LV-PCA-age models, showed the latter model
had significantly higher correlations (Wilcoxon Test: Z= 3.736,
p < 0.001). Therefore in both model groups, adding age to the neural
information produced significantly higher correlation values than
neural information alone, as well as all demographic variables com-
bined. Fig. 4 shows the mean correlation values for all tests based on
the LV-age and LV-PCA-age models.

We identified two cases for which the predictive model performed
poorly (2/70 or 2.86%) and had residual scores more than two SD from
the mean group (Case 37 and 40). On closer inspection the model was
poor at repetition and picture naming performance for case 37 and
speech tokens for case 40. The repetition and picture naming perfor-
mance for case 37 was floor for all tests, however the lesion profile of
the patient suggests that frontal regions related to speech output were
disproportionally affected compared to regions related to phonological
processes (proportion of neural damage: LV 9.1%, phonology cluster
7.7%, semantic cluster 7% and speech quanta cluster 50.6%). The
discrepancy for case 40 was solely based on underestimating the
number of tokens produced (predicted 72 vs. 315 observed).

As with model fit (adjusted R2), we investigated the number of tests
for which each model was the best performer. The results were as fol-
lowed: LV-age (1/21), LV-all (1/21), LV-PCA-age (13/21) and LV-PCA-
all (6/21).

Finally, in order to determine the distribution and significance ofTa
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Fig. 2. Visual overlap of neural correlates using voxel based correlational methodology (VBCM) for each fold. The figure shows how many times a voxel was present
for each behavioural factor score when performing VBCM [values= 1–5 folds]. A) phonology, B) semantics, and C) fluency. Thresholded at p < 0.005 voxel height,
cluster corrected using Family-Wise Error (FWE) (p < 0.05) and including lesion volume and age as a covariate.

Fig. 3. Model fit (adjusted R2 values) across tests for the best model from the non-partitioned (LV-all) and functionally-partitioned lesion (LV-PCA-all) model groups.
Abbreviations: Minimal pairs non-word (PALPA 1), Minimal pairs word (PALPA 2), non-word immediate repetition (PALPA 8 I), non-word delayed repetition (PALPA
8 D), word immediate repetition (PALPA 9 I), word delayed repetition (PALPA 8 D), Cambridge naming test (CNT), Boston naming test (BNT), forward digit span
(Digit F), backward digit span (Digit B), spoken sentence comprehension from comprehensive aphasia test (CAT spoken), spoken word-picture matching (sWPM),
written word-picture matching (wWPM), type/token ratio (TTR), camel and cactus picture form (CCTp), 96-synonym judgement task (Synon), words-per-minute
(WPM), speech tokens (TOK) and mean length of utterances (MLU).
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the betas in the winning model we determined the model fit including
all participants across all test for the LV-PCA-age model (see
Supplementary Fig. A1).

3.4. Aphasia classification

Overall, we deemed the LV-age and LV-PCA-age models to be the
winning models in each group of models based on the model fit and
predictive capabilities. The following classification analyses were split
into two stages: fluent/non-fluent and specific subtypes. The results for
the binary classification of fluent vs. non-fluent aphasia were significant
for LV-age (80% accuracy, p= 0.043) and LV-PCA-age (88.6% accu-
racy, p= 0.003) when compared to distribution obtain using permu-
tation tests (the mean chance level was 49.75% and 49.08%, respec-
tively). The difference between the two models was at a trend, in favour
of the LV-PCA-age model (Wilcoxon Test: Z= 1.90, p=0.06). The LV-
PCA-age model classified 87.9% (29/33) fluent cases and 89.2% (33/
37) non-fluent cases correctly, compared to the LV-age model which
achieved 84.8% (28/33) and 75.7% (28/37), respectively. The coeffi-
cients in the logistic regression for the LV-PCA-age model were as fol-
lows: LV (0.048), phonology (−0.044), semantic (−0.013), fluency
(−0.096) and age (−0.036), where only fluency was significant
(p=0.003 and remaining betas had p > 0.092).

Secondly, we used a multinomial logistic regression to determine
how well each model could classify patients simultaneously into the
seven BDAE subtypes. The models were both significantly better than
chance determined by permutation testing: LV-age (54.3% accuracy)
and LV-PCA-age (68.6%) where the mean chance levels were 36.2%
and 32.9%, respectively. The difference between the two models was
significant, in favour of the LV-PCA-age model (Wilcoxon Test:
Z= 2.36, p=0.018). The LV-PCA-age model correctly classified 77.8%
anomia, 58.3% Broca, 33.33% conduction, 42.9% global, 86.7% mixed
non-fluent, 50% TMA and 100% TSA. In comparison the LV-age model
correctly classified 85.2% anomia, 8.3% Broca, 16.7% conduction and
86.7% mixed non-fluent cases (remaining aphasia types, all 0%).
Overall, the LV-PCA-age model outperformed the LV-age model in
predicting fluent/non-fluent status and BDAE classifications.

4. Discussion

Our understanding of how our speech and language capabilities are

organised in the brain has vastly improved over the past decade (re-
flected not only in a large number of published papers but also in vi-
brant dedicated, international learned societies such as the Society for
the Neurobiology of Language: http://www.neurolang.org/). It is,
therefore, both timely and critical to use this accumulated knowledge
and expertise to address critical research challenges, including the
ability to predict the behavioural deficits experienced after brain da-
mage not only to validate the theoretical models but also to provide
improved care and clinical management. The approach taken in this
study to tackle these aims was based on a new, emerging con-
ceptualisation of the aphasia phenotype and underlying brain systems
(Butler et al., 2014; Chase, 2014; Halai et al., 2017). Specifically, rather
than relating each language activity (e.g., repetition, naming, compre-
hension, etc.) singly to the underlying neural systems, the varying
aphasia phenotype (both severity and type) is hypothesised to reflect
graded differences in the level of damage to a set of primary neuro-
cognitive systems (Patterson and Lambon Ralph, 1999; Seidenberg and
McClelland, 1989; Ueno and Lambon Ralph, 2013; Ueno et al., 2011)
and their interaction. By utilising a combination of principal component
analysis on a large and detailed behavioural dataset and voxel-symptom
lesion mapping, previous studies have shown that (a) the variable
aphasia phenotype can be considered in terms of graded differences
along a set of statistically-independent (orthogonal) dimensions (e.g.,
semantics, phonology, speech quanta, executive skill (Butler et al.,
2014; Halai et al., 2017; Kümmerer et al., 2013; Lacey et al., 2017;
Mirman et al., 2015a; Mirman et al., 2015b)) and (b) that each of these
factors is associated with increased lesion likelihood in discrete brain
regions (e.g., semantics – anterior temporal lobe; phonology – posterior
superior temporal gyrus/inferior supramarginal gyrus, etc.).

Based on this new, evolving conceptualisation of aphasia, the cur-
rent study tested a prediction model that had two important novel
features: (a) as well as predicting aphasia type or individual features of
aphasic performance (as done in the small handful of previous studies
(Hope et al., 2015; Hope et al., 2013; Saur et al., 2010; Yourganov et al.,
2015), we targeted the full spectrum of aphasia by predicting aphasia
type as well as the full range of behavioural test scores; (b) the patients'
lesions were functionally-partitioned before using them as predictors.
Specifically, we demonstrated that the functionally-partitioned (LV-
PCA) model outperformed a more general model that only incorporated
the overall lesion volume (LV model), both in terms of percentage
variance explained of the training data and correlation of predictions on

Fig. 4. Mean correlation for predicted and observed values across tests for the best model from the non-partitioned (LV-age) and functionally-partitioned lesion (LV-
PCA-age) model groups. Abbreviations: Minimal pairs non-word (PALPA 1), Minimal pairs word (PALPA 2), non-word immediate repetition (PALPA 8 I), non-word
delayed repetition (PALPA 8 D), word immediate repetition (PALPA 9 I), word delayed repetition (PALPA 8 D), Cambridge naming test (CNT), Boston naming test
(BNT), forward digit span (Digit F), backward digit span (Digit B), spoken sentence comprehension from comprehensive aphasia test (CAT spoken), spoken word-
picture matching (sWPM), written word-picture matching (wWPM), type/token ratio (TTR), camel and cactus picture form (CCTp), 96-synonym judgement task
(Synon), words-per-minute (WPM), speech tokens (TOK) and mean length of utterances (MLU).
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left out cases. By adding age to the functionally-partitioned model, we
further improved the explanatory and predictive power of the model for
the majority of behavioural tests. Furthermore, this combined (LV-PCA
plus age) model was better at classifying participants into aphasia
subtypes compared to the unpartitioned lesion plus age (LV-age) model.
Indeed, the LV-PCA-age model was able to classify a broad range of
patient subtypes. The success of the LV-PCA-age model suggests that: 1)
the a priori functional partitions (identified in previous studies using a
combination of PCA-decomposition of detailed behavioural data and
voxel-lesion symptom mapping) are suitable to capture variance across
a wide range of aphasia patients; and 2) age proved to be the best de-
mographic variable across the range of tests.

Previous studies that have investigated the utility neural informa-
tion for predict behavioural outcomes/deficits have had mixed results.
Earlier reports suggested that neural information does not add sig-
nificantly to predictions (Hand et al., 2006; Johnston et al., 2002;
Johnston et al., 2007; Lazar et al., 2008; Willmes and Poeck, 1993). Our
results align with the more contemporary studies that have found sig-
nificant improvements in predictions when using neural lesion in-
formation (Hope et al., 2013; Saur et al., 2010; Schiemanck et al., 2006;
Thijs et al., 2000; Yourganov et al., 2015). Currently, the existing lit-
erature has either focused on differentiating between pairs of aphasia
subtypes (i.e. Yourganov et al., 2015) or has targeted individual, im-
portant tests scores (Hope et al., 2013). There has been only one study
that has predicted the subtests within the CAT using anatomical regions
defined in pre-existing atlases (Hope et al., 2015). Our investigation
suggests that the full range of aphasia subtypes can be predicted (to
provide a ‘coarse’ picture of the nature of each patient's type and se-
verity of aphasia; see Introduction section for the limitations of these
measures) and can also predict a broad spectrum of individual assess-
ment scores (to provide a detailed picture of each patient's phenotype).

A critical characteristic of the prediction model was its use of
functionally-derived partitioning of the patients' lesions rather than the
use of anatomical parcellations (e.g. Hope et al., 2013; Yourganov et al.,
2015). It is important to note that the lesion correlations across 5-folds
produced strikingly stable results, suggesting that the core areas iden-
tified are highly reproducible. This alternative approach resonates with
a previous study by Saur et al. (2010) which found that including the
level of signal from functionally-focused regions-of-interest in patients'
acute fMRI scans, enhanced binary predictions of language outcome
and improvement (rather than aphasia types or assessment profiles).
Although we did not use fMRI data in the current study (instead de-
riving the functional partitioning from a combined PCA-lesion mapping
approach (Halai et al., 2017)), the fact that both studies found con-
siderable improvements in prediction power suggests that functionally-
related information may be a critical ingredient for successful predic-
tion models.

In clinical terms, the prediction accuracy of aphasia classification
achieved here was very good and thus high enough to begin to con-
template how this model might be used in clinical management, in-
cluding predicting language-cognitive abilities in the chronic stage from
scans collected in the acute or sub-acute phase, to guide intervention
plans and to stratify patients – in short, a form of ‘neurocognitive’
precision medicine. We stress that the current models were built and
tested on chronic neural and behavioural data and were not tested in
the temporal sense (acute to chronic) – which can be explored in future
studies (although this type of prediction has additional barriers; see
Karnath and Rennig, 2017). In contrast, whilst predictions of the spe-
cific scores across the full test battery are statistically reliable and better
than lesion-only models, further improvements of the models are re-
quired before they could be used clinically.

Future studies can explore how to improve the predictive power of
these fine-grained prediction models. It seems likely that these ex-
plorations will fall into three classes: (i) more data: like our own in-
vestigation, most studies to date have used structural (T1/T2) neuroi-
maging to predict performance – which is important given that routine

clinical scanning often only includes this type of scan. The inclusion of
other imaging modalities, such as fMRI (Saur et al., 2010), white-matter
connectivity (e.g. Corbetta et al., 2015; Griffis et al., 2017; Saur et al.,
2008) and functional-connectivity, might improve prediction models,
especially when used together (which will require sophisticated
methods for combined analyses of multimodal imaging data (Calhoun
and Sui, 2016)). Furthermore, and perhaps critically, these additional
imaging measures might provide critical insights about post-stroke
functional reorganisation which is unlikely to be reflected in the core
lesion itself but rather from changes in functional activation and con-
nectivity. (ii)More predictors: as well as developing the precision of each
existing predictor, it is likely that the models will be improved by in-
creasing the range (in terms of additional areas) and type (in terms of
modality) of neuroimaging predictors. These will include other aspects
of language processing (e.g., perhaps the differentiation of receptive
and expressive phonological abilities (Schwartz et al., 2012; Schwartz
et al., 2009)), as well as non-language functions (e.g., executive abil-
ities). The inclusion of non-language primary systems such as executive
skill may be important given that it has been shown to vary across the
aphasia population, is engaged by patients with better recovery, pre-
dicts response to therapy and forms a critical part of the aphasia phe-
notype (Brownsett et al., 2014; Butler et al., 2014; Fillingham et al.,
2005; Halai et al., 2017). (iii) Individual differences: whilst some pre-
vious studies have predicted dichotomies (e.g., contrastive aphasias or
good/bad outcomes), some like the present study have attempted to
predict the individual differences in performance (e.g. Hope et al.,
2015; Hope et al., 2013). There are, however, other sources of in-
dividual differences which may be important. First, there are premorbid
differences in how individuals achieve each language activity, in terms
of the reliance on different parts and connections within the neuro-
cognitive network that underpins the behavioural activity. Indeed, the
multiple parts and connections in these networks may promote (in-
dividually-varying) robustness to task complexity and damage (a notion
capture by the mathematical term, degeneracy (Price and Friston,
2002)). Recent explorations using fMRI in healthy participants suggest
that it may be possible to map and understand the limits of these pre-
morbid differences and, with transcranial magnetic stimulation, to
understand the likely impact following brain damage (Hoffman et al.,
2015; Kherif et al., 2008; Seghier et al., 2008a; Woollams et al., 2016).
Secondly, there are clearly individual differences in the level and type
of recovery after brain damage. Prediction models will be improved,
therefore, not only by identifying global factors that modulate the
overall level of recovery (which might, perhaps, include age and do-
main-general mechanisms such as multi-demand executive skills, see
above) but also the limits on how far key neurocognitive networks can
re-distribute function after partial damage (Keidel et al., 2010; Ueno
and Lambon Ralph, 2013; Ueno et al., 2011; Welbourne and Lambon
Ralph, 2007; Welbourne et al., 2011).

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.03.011.
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