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In recent years, the research of artificial neural networks based on fractional calculus has attractedmuch attention. In this paper, we
proposed a fractional-order deep backpropagation (BP) neural network model with 𝐿2 regularization. The proposed network was
optimized by the fractional gradient descent method with Caputo derivative. We also illustrated the necessary conditions for the
convergence of the proposed network.The influence of 𝐿2 regularization on the convergence was analyzed with the fractional-order
variational method. The experiments have been performed on the MNIST dataset to demonstrate that the proposed network was
deterministically convergent and can effectively avoid overfitting.

1. Introduction

It is well known that artificial neural networks (ANNs)
are the abstraction, simplification, and simulation of the
human brains and reflect the basic characteristics of the
human brains [1]. In recent years, great progress has been
made in the research of deep neural networks. Due to
the powerful ability of complex nonlinear mapping, many
practical problems have been successfully solved by ANNs in
the fields of pattern recognition, intelligent robot, automatic
control, prediction, biology, medicine, economics, and other
fields [2, 3]. BP neural network is one of the most basic
and typical multilayer forward neural networks, which are
trained by backpropagation (BP) algorithm. BP, which is an
efficient way for optimization of ANNs, was firstly introduced
by Werbos in 1974. Then, Rumelhart and McCelland et al.
implemented the BP algorithm in detail in 1987 and applied
it to the multilayer network version of Minsky [4–6].

The fractional calculus has a history as long as the integral
order calculus. In the past three hundred years, the theory of
fractional calculus hasmade great progresses [7–11]. Its basics
are differentiation and integration of arbitrary fractional
order. Nowadays, fractional calculus is widely used in diffu-
sion processes [12–14], viscoelasticity theory [15], automation
control [16–18], signal processing [19–21], image processing
[22–25], medical imaging [26–28], neural networks [29–
37], and many other fields. Due to the long-term memory,
nonlocality, and weak singularity characteristics [29–37],

fractional calculus has been successfully applied to ANNs.
For instance, Boroomand constructed the Hopfield neural
networks based on fractional calculus [37]. Kaslik analyzed
the stability of Hopfield neural networks [30]. Pu proposed
a fractional steepest descent approach and offered a detailed
analysis of its learning conditions, stability, and convergence
[38]. Wang applied the fractional steepest descent algorithm
to train BP neural networks and proved themonotonicity and
convergence of a three-layer example [33]. However, there are
three limitations in the proposed fractional-order BP neural
network models in [33]. First, the neural network in [33] just
had 3 layers, which was actually a shadow network and was
not proper to demonstrate its potential for deep learning.
Second, the fractional order V of this model was restricted to(0, 1]without reasonable analysis.Third, the loss function did
not contain the regularization term, which is an efficient way
to avoid overfitting, especially when the training set has small
scalar. Overfitting means that the model has high prediction
accuracy on training set but has the low prediction accuracy
on testing set. This makes the generalization ability of the
model poor, and the application value is greatly reduced.

In this paper, we proposed a deep fractional-order
BP neural network with 𝐿2 regularization term, and the
fractional-order V could be any positive real number. With
the fractional-order variational method, the influence of 𝐿2
regularization on the convergence of the proposed model
was exploited. The performance of the proposed model was
evaluated on the MINST dataset.
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The structure of the paper is as follows: in Section 2, the
definitions and simple properties of fractional calculus are
introduced. In Section 3, the proposed fractional-order mul-
tilayer BPneural networks are given in detail. In Section 4, the
necessary conditions and the influence of 𝐿2 regularization
for the convergence of the proposed BP algorithm are stated.
In Section 5, experimental results are presented to illustrate
the effectiveness of ourmodel. Finally, the paper is concluded
in Section 6.

2. Background Theory for Fractional Calculus

In this section, the basic knowledge of fractional calculus
is introduced, including the definitions and several simple
properties used in this paper.

Different from integer calculus, fractional derivative does
not have a unified temporal definition expression up to
now. The commonly used definitions of fractional derivative
are Grünwald-Letnikov (G-L), Riemann-Liouville (R-L), and
Caputo derivatives [7–11].

The following is the G-L definition of fractional deriva-
tive:

𝐺−𝐿

𝑎𝐷V
𝑥𝑓 (𝑥) ≜ lim

ℎ󳨀→0
ℎ−V[(𝑥−𝑎)/ℎ]∑
𝑘=0

(−V𝑘 )𝑓 (𝑥 − 𝑘ℎ)
≜ lim
𝑁󳨀→∞

{((𝑥 − 𝑎) /𝑁)−VΓ (−V)
⋅ 𝑁−1∑
𝑘=0

Γ (𝑘 − V)Γ (k + 1)𝑓 (𝑥 − 𝑘 (𝑥 − 𝑎𝑁 ))}
(1)

where

(−V𝑘 ) = (−V) (−V + 1) . . . (−V + 𝑘 − 1)𝑘! (2)

𝐺−𝐿
𝑎𝐷V
𝑥 denotes the fractional differential operator based on

G-L definition, 𝑓(𝑥) denotes a differintegrable function, V
is the fractional order, [𝑎, 𝑥] is the domain of 𝑓(𝑥), Γ is the
Gamma function, and [⋅] is the rounding function.

The R-L definition of fractional derivative is as follows:

𝑅−𝐿

𝑎𝐷V
𝑥𝑓 (𝑥) = 1Γ (𝑛 − V) 𝑑

𝑛

𝑑𝑥𝑛 ∫
𝑥

𝑎

𝑓 (𝑦)(𝑥 − 𝑦)V−𝑛+1 𝑑𝑦 (3)

where 𝑅−𝐿𝑎𝐷V
𝑥 denotes the fractional differential operator

based on G-L definition; 𝑛 = [V + 1]. Moreover, the G-L
fractional derivative can be deduced from the definition of
the R-L fractional derivative.

The Caputo definition of fractional derivative is as fol-
lows:

𝐶

𝑎𝐷V
𝑥𝑓 (𝑥) = 1Γ (𝑛 − V) ∫

𝑥

𝑎
(𝑥 − 𝑦)𝑛−V−1 𝑓(𝑛) (𝑦) 𝑑𝑦 (4)

where 𝐶𝑎𝐷V
𝑥 is the fractional differential operator based on

Caputo definition, 𝑛 = [V + 1].

Fractional calculus is more difficult to compute than
integer calculus. Several mathematical properties used in this
paper are given here. The fractional differential of a linear
combination of differintegral functions is as follows:

𝐷V
𝑥 (𝜆𝑓 (𝑥) + 𝛽𝑔 (𝑥)) = 𝜆𝐷V

𝑥𝑓 (𝑥) + 𝛽𝐷V
𝑥𝑔 (𝑥) (5)

where 𝑓(𝑥) and 𝑔(𝑥) are differintegral functions and 𝜆 and 𝛽
are constants.

The fractional differential of constant function 𝑓(𝑥) = C,
(C is a constant) is different under different definitions:

For the G-L definition,

𝐺−𝐿

𝑎𝐷V
𝑥𝑓 (𝑥) = lim

𝑁󳨀→∞
{((𝑥 − 𝑎) /𝑁)−VΓ (−V)

𝑁−1∑
𝑘=0

Γ (𝑘 − V)Γ (k + 1)𝐶}
= 𝐶(𝑥 − 𝑎)−VΓ (1 − V)

(6)

For the R-L definition,

𝑅−𝐿

𝑎𝐷V
𝑥𝑓 (𝑥) = 𝐶(𝑥 − 𝑎)−VΓ (1 − V) , V > 0 (7)

And for the Caputo definition

𝐶

𝑎𝐷V
𝑥𝑓 (𝑥) = 0, V > 0 (8)

According to (6), (7) and (8), we can know that for the
G-L and R-L definition, the fractional differential of constant
function is not equal to 0. Only with the Caputo definition,
the fractional differential of constant function equals to 0,
which is consistent to the integer-order calculus. Therefore,
the Caputo definition is widely used in solving engineering
problems and it was employed to calculate the fractional-
order derivative in this paper. The fractional differential of
function 𝑓(𝑥) = (𝑥 − 𝑎)𝑝, (𝑝 > −1) is as follows:

𝑑V (𝑥 − 𝑎)𝑝𝑑𝑥V = Γ (𝑝 + 1) (𝑥 − 𝑎)𝑝−VΓ (𝑝 − V + 1) (9)

3. Algorithm Description

3.1. Fractional-Order Deep BP Neural Networks. In this
section, we introduce the fractional-order deep BP neural
network with L layers. 𝑛𝑙, 𝑙 = 1, 2, . . . , L, is the number
of neurons for the 𝑙-th layer. W𝑙 = (𝑤𝑙𝑗𝑖)𝑛𝑙+1×𝑛𝑙 denotes the
weight matrix connecting the 𝑙-th layer and the (𝑙 + 1)-th
layer. 𝑓𝑙 denotes the corresponding activation function for
the 𝑙-th layer.𝑋𝑗 and𝑂𝑗 are the input and the corresponding
ideal output of the 𝑗-th sample and the training sample set is{𝑋𝑗, 𝑂𝑗}𝐽𝑗=1. 𝑍𝑙 = (𝑧𝑙1, 𝑧𝑙2 . . . , 𝑧𝑙𝑛𝑙+1) denotes the total inputs of𝑙-th layer. If neurons in the 𝑙-th layer are not connected to any
neurons in previous layer, these neurons are called external
outputs of the 𝑙-th layer, denoted as 𝐴𝑙1. On the contrary, if
neurons in the 𝑙-th layer are connected to every neuron in
previous layer, these neurons are called internal outputs of 𝑙-
th layer, denoted as 𝐴𝑙2. 𝐴𝑙 = (𝑎𝑙1, 𝑎𝑙2 . . . , 𝑎𝑙𝑛𝑙) denotes the total
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outputs of 𝑙-th layer.The forward computing of the fractional-
order deep BP neural networks is as follows:

𝐴𝑙2 = 𝑓𝑙 (𝑍𝑙) (10)

𝐴𝑙 = [𝐴𝑙1𝐴𝑙2] (11)

𝑍𝑙+1 =W𝑙 ⋅ 𝐴𝑙 (12)

Particularly, external outputs can exist in any layer except
the last one. With the square error function, the error
corresponding to 𝑗-th sample can be denoted as:

𝐸𝑗 = 12 󵄩󵄩󵄩󵄩󵄩𝐴𝐿𝑗 − 𝑂𝑗󵄩󵄩󵄩󵄩󵄩2 = 12
𝑛𝐿∑
𝑖=1

(𝑎𝐿𝑗𝑖 − 𝑜𝑗𝑖)2 (13)

where 𝑎𝐿𝑗𝑖 denotes the 𝑖-th element of 𝐴𝐿𝑗, 𝑜𝑗𝑖 denotes the 𝑖-th
element of 𝑂𝑗.

The total error of the neural networks is defined as

E = 𝐽∑
𝑗=1

𝐸𝑗 = 12
𝐽∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩𝐴𝐿𝑗 − 𝑂𝑗󵄩󵄩󵄩󵄩󵄩2 = 12
𝐽∑
𝑗=1

𝑛𝐿∑
𝑖=1

(𝑎𝐿𝑗𝑖 − 𝑜𝑗𝑖)2 . (14)

In order to minimize the total error of the fractional-
order deep BP neural network, the weights are updated by the
fractional gradient descent method with Caputo derivative.
Let 𝑖 = 1, 2, ..., 𝑛𝑙. The backpropagation of fractional-order
deep BP neural networks can be derived with the following
steps.

Firstly, we define that

𝛿𝑙𝑖 = 𝜕𝐸𝜕𝑧𝑙𝑖 . (15)

According to (13), we can know that

𝛿𝐿𝑖 = 𝜕𝐸𝜕𝑧𝐿𝑖 =
𝐽∑
𝑗=1

(𝑎𝐿𝑗𝑖 − 𝑜𝑗𝑖) 𝑓󸀠𝐿 (𝑧𝐿𝑖 ) . (16)

Then the relationship between 𝛿𝑙𝑖 and 𝛿𝑙+1𝑖 can be given by

𝛿𝑙𝑖 = 𝜕𝐸𝜕𝑧𝑙𝑖 =
𝑛𝑙+1∑
𝑗=1

𝜕𝐸𝜕𝑧𝑙+1𝑗
𝜕𝑧𝑙+1𝑗𝜕𝑧𝑙𝑖 =

𝑛𝑙+1∑
𝑗=1

𝛿𝑙+1𝑗 ⋅ 𝑤𝑙𝑗𝑖𝑓󸀠𝑙 (𝑧𝑙𝑖)
= 𝑓󸀠𝑙 (𝑧𝑙𝑖)(𝑛

𝑙+1∑
𝑗=1

𝛿𝑙+1𝑗 ⋅ 𝑤𝑙𝑗𝑖) .
(17)

Then, according to the chain rule and (17), we have

𝐷V
𝑤𝑙𝑗𝑖
E = 𝜕𝐸𝜕𝑧𝑙+1𝑗 ⋅ 𝐷V

𝑤𝑙𝑗𝑖
𝑧𝑙+1𝑗 = 𝛿𝑙+1𝑗 ⋅ 𝑎𝑙𝑖 ⋅ (𝑤𝑙𝑗𝑖)

1−V

Γ (2 − V) . (18)

The updating formula is

(𝑤𝑙𝑗𝑖)𝑡+1 = (𝑤𝑙𝑗𝑖)𝑡 − 𝜂𝐷V
𝑤𝑙𝑗𝑖
𝑡E (19)

where 𝑡 ∈ N denotes the 𝑡-th iteration and 𝜂 > 0 is the
learning rate.

3.2. Fractional Deep BP Neural Networks with 𝐿2 Regulariza-
tion. Fractional-order BP neural network can be overfitted
easily when the training set has small scalar. 𝐿2 regularization
is a useful way to avoid models to be overfitted without mod-
ifying the architecture of network. Therefore, by introducing
the 𝐿2 regularization term into the total error, the modified
error function can be presented as

𝐸𝐿2 = 𝐸 + 𝜆2 ‖𝑊‖2 (20)

where ‖𝑊‖2 denotes the sum of squares of all weights and𝜆 ≥ 0 denotes the regularization parameter.
By introducing (18), we have

𝐷V
𝑤𝑙𝑗𝑖
𝐸𝐿2 = 𝐷V

𝑤𝑙𝑗𝑖
E + 𝜆(𝑤𝑙𝑗𝑖)2−VΓ (3 − V) . (21)

The updating formula is

(𝑤𝑙𝑗𝑖)𝑡+1 = (𝑤𝑙𝑗𝑖)𝑡 − 𝜂𝐷V
(𝑤𝑙𝑗𝑖)
𝑡𝐸𝐿2 (22)

where 𝑡 ∈ N denotes the 𝑡-th iteration and 𝜂 > 0 is the
learning rate.

4. Convergence Analysis

In this section, the convergence of the proposed fractional-
order BP neural network is analyzed. According to previous
studies [39–42], there are four necessary conditions for the
convergence of BP neural networks:

(1) The activation functions 𝑓𝑙, (𝑙 = 1, 2, . . . , 𝐿) are
bounded and infinitely differentiable on R and all of their
corresponding derivatives are also continuous and bounded
on 𝑅. This condition can be easily satisfied because the
most common sigmoid activation functions are uniformly
bounded on 𝑅 and infinitely differentiable.

(2) The boundedness of the weight sequence {(𝑤𝑙𝑗𝑖)𝑡} is
valid during training procedure and Ω ∈ 𝑅∑𝐿−11 𝑛𝑙⋅𝑛𝑙+1 is the
domain of all weights with certain boundary.

(3) The learning rate 𝜂 > 0 has an upper bound.
(4) Let 𝑊 denote the weights matrix that consists of all

weights and 𝜙 = {𝑊 | 𝐷V
𝑊𝐸𝐿2 = 0} be the V-order stationary

point set of the error function. One necessary condition is
that 𝜙 is a finite set.

Then, the influence of 𝐿2 regularization on the conver-
gence is derived by using the fractional-order variational
method.

According to (20), 𝐸𝐿2 is defined as a fractional-order
multivariable function. The proposed fractional-order BP
algorithm is to minimize 𝐸𝐿2. Let 𝑈 denote the fractional-
order extreme point of𝐸𝐿2 and 𝜉 denotes an admissible point.
In addition,𝑈 is composed of𝑈1, 𝑈2, . . . , 𝑈𝐿−1 where𝑈𝑙 (𝑙 =1, 2, . . . , 𝐿 − 1) denotes the weights matrix between the 𝑙-th
and (𝑙 + 1)-th layer when 𝐸𝐿2 reaches the extreme value. 𝜉
is composed of 𝜉1, 𝜉2, . . . , 𝜉𝐿−1 where 𝜉𝑙 corresponds to 𝑈𝑙.
The initial weights are random values, so the initial points
of weights can be represented as 𝑈 + (𝛼 − 1)𝜉, where 𝛼 is a
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vector that consists of small parameters 𝛼1, 𝛼2, . . . , 𝛼𝐿−1, and𝛼𝑙 corresponds to 𝑈𝑙 and 𝜉𝑙. If 𝛼 = 1, it means 𝛼𝑙 = 1(𝑙 =1, 2, . . . , 𝐿 − 1), then 𝑈 + (𝛼 − 1)𝜉 = 𝑈, and 𝐸𝐿2 reaches the
extreme value. Thus, the process of training the BP neural
networks from a random initial weight𝑊 to U can be treated
as the process of training 𝛼 with a random initial value to𝛼 = 1.

The fractional-order derivative of 𝐸𝐿2 on 𝑈 + (𝛼 − 1)𝜉 is
given as

𝐷V
𝛼𝛿𝐸𝐿2󵄨󵄨󵄨󵄨𝛼=1 = 𝐷V

𝛼 [𝛿1 (𝛼) + 𝛿2 (𝛼)]󵄨󵄨󵄨󵄨𝛼=1
= 𝐷V
𝛼𝐸 (𝑈 + (𝛼 − 1) 𝜉) + 𝐷V

𝛼

𝜆2 󵄩󵄩󵄩󵄩𝑈 + (𝛼 − 1) 𝜉󵄩󵄩󵄩󵄩2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼=1

= 0
(23)

where V is the fractional order, which is a positive real
number.

From (23), we can see that when 𝛼 = 1, if the V-order
differential of 𝐸(𝑈 + (𝛼 − 1)𝜉) with respect to 𝛼 is existent,𝛿1(𝛼) has a V-order extreme point and we have

𝐷V
𝛼𝛿1 (𝛼)󵄨󵄨󵄨󵄨𝛼=1 = 𝐷V

𝛼𝐸 (𝑈 + (𝛼 − 1) 𝜉)󵄨󵄨󵄨󵄨𝛼=1 = 0. (24)

In this case, the output of each layer in the neural
networks is still given by (10) and (11) and the input of each
layer is turned into the following:

𝑍𝑙+1 = (𝑈𝑙 + (𝛼𝑙 − 1) 𝜉𝑙) ⋅ 𝐴𝑙. (25)

When 𝛼𝑙 = 1, we have
𝑍𝑙+1 = 𝑈𝑙 ⋅ 𝐴𝑙. (26)

Without loss of generality, according to (18), for the 𝑙-th
layer of the networks, the V-order differential of𝐸with respect
to 𝛼𝑙 can be calculated as

𝐷V
𝛼𝑙
𝐸 (𝑈𝑙 + (𝛼𝑙 − 1) 𝜉𝑙)󵄨󵄨󵄨󵄨󵄨𝛼𝑙=1 = 𝜕𝐸𝜕𝑍𝑙+1 ⋅ 𝐷V

𝛼𝑙
𝑍𝑙+1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼𝑙=1

= (𝛿𝑙+1 ⋅ (𝐴𝑙)𝑇) 𝜉𝑙 (𝛼𝑙)1−VΓ (2 − V)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼𝑙=1

= 𝜉𝑙 (𝛿𝑙+1 ⋅ (𝐴𝑙)
𝑇)

Γ (2 − V) = 0.
(27)

where 𝛿𝑙 denotes the column vector𝐷1
𝑍𝑙
𝐸.

Since the value of 𝜉 is stochastic, according to variation
principle [43], to allow (24) to be set up, a necessary condition
is that for every layer of the networks

(𝛿𝑙+1 ⋅ (𝐴𝑙)𝑇)
Γ (2 − V) = 0. (28)

Secondly, without loss of generality, for 𝛿2(𝛼) we have
𝐷V
𝛼𝑙
𝛿2 (𝛼𝑙)󵄨󵄨󵄨󵄨󵄨𝛼𝑙=1 = 𝐷V

𝛼𝑙

𝜆2 󵄩󵄩󵄩󵄩󵄩𝑈𝑙 + (𝛼𝑙 − 1) 𝜉𝑙󵄩󵄩󵄩󵄩󵄩2󵄨󵄨󵄨󵄨󵄨󵄨𝛼𝑙=1
= ∑( 𝜆𝑈𝑙𝑗𝑖𝜉𝑙𝑗𝑖Γ (2 − V) + 𝜆𝜉𝑙𝑗𝑖2Γ (3 − V) − 𝜆𝜉𝑙𝑗𝑖2Γ (2 − V))
= 𝜆Γ (2 − V) Γ (3 − V) ∑(𝑈𝑙𝑗𝑖𝜉𝑙𝑗𝑖Γ (3 − V)
+ 𝜉𝑙𝑗𝑖2Γ (2 − V) − 𝜉𝑙𝑗𝑖2Γ (3 − V)) = 0

(29)

To allow (29) to be set up, a necessary condition is

𝜆Γ (2 − V) Γ (3 − V) = 0. (30)

With (28) and (30), the Euler-Lagrange equation of𝐷V
𝛼𝛿𝐸𝐿2|𝛼=1 can be written as

(𝛿𝑙+1 ⋅ (𝐴𝑙)𝑇)
Γ (2 − V) + 𝜆Γ (2 − V) Γ (3 − V) = 0. (31)

Equation (31) is the necessary condition for the conver-
gence of the proposed fractional-order BP neural networks
with 𝐿2 regularization. From (31), we can see that if 𝜆 > 0,
then (𝛿𝑙+1 ⋅(𝐴𝑙)𝑇) ̸= 0. (𝛿𝑙+1 ⋅(𝐴𝑙)𝑇) is the first-order derivative
of 𝐸 in terms of 𝑈 and can be calculated by 𝑈 and input
sample𝑋. It means that the extreme point U of the proposed
algorithm is not equal to the extreme point of integer-order
BP algorithm or fractional-order BP algorithm. 𝑈 changes
with the different value of 𝜆 and V. In addition, it is also
clear that the regularization parameter 𝜆 is bounded since the
values of input samples𝑋 and weights𝑊 are bounded and V
is a constant during the training process.

5. Experiments

In this section, the following simulations were carried out
to evaluate the performance of the presented algorithm. The
simulations have been performed on theMNIST handwritten
digital dataset. Each digit in the dataset is a 28 × 28 image.
Each image is associated with a label from 0 to 9. We divided
each image into four parts, which were top-left, bottom-left,
bottom-right, and top-right, and each part was a 14 × 14
matrix. We vectorized each part of the image as a 196 × 1
vector and each label as a 10 × 1 vector.

In order to identify the handwritten digits in MNIST
dataset, a neural network with 8 layers was proposed. Figure 1
shows the topological structure of the neural networks. For
the first four layers of the network, each layer has 196 external
neurons and 32 internal neurons. The outputs of the external
neurons are in turn four parts of an image and the outputs
of the internal neurons of the first layer are 1. The last four
layers have no external neurons. The fifth layer, sixth layer,
and seventh layer have 64 internal nodes and the output layer
has ten nodes. The activation functions of all neurons except



Computational Intelligence and Neuroscience 5

Table 1: Performances of the algorithms when v>2.
Size of training set V = 19/9 V = 20/9

Train Accuracy Test Accuracy Train Accuracy Test Accuracy
10000 88.65% 83.52% 76.31% 72.66%
20000 91.04% 89.52% 78.93% 75.97%
30000 93.03% 90.65% 82.51% 80.79%
40000 93.20% 90.53% 82.47% 80.61%
50000 93.02% 91.23% 82.53% 81.60%
60000 93.85% 91.71% 87.32% 86.05%

Figure 1: The topological structure of the neural networks.

the first layer are sigmoid functions, which can be given as
follows:

𝑓 (𝑥) = 11 + 𝑒−𝑥 . (32)

The MNIST dataset has a total number of 60000 train-
ing samples and 10000 testing samples. The simulations
demonstrate the performance of the proposed fractional-
order BP neural network with 𝐿2 regularization, fractional-
order BP neural network, traditional BP neural network,
and traditional BP neural network with 𝐿2 regularization. To
evaluate the robustness of our proposed network for a small
set of training samples, we set the number of training samples
to be (10000, 20000, 30000, 40000, 50000, and 60000).
Different fractional V-order derivatives were employed to
compute the gradient of error function, where V = 1/9, 2/9,3/9, 4/9, 5/9, 6/9, 7/9, 8/9, 9/9, 10/9, 11/9, 12/9, 13/9, 14/9,15/9, 16/9, 17/9, 19/9, and 20/9 separately (V = 9/9 =1 corresponds to standard integer-order derivative for the
commonBP; V ̸= 2 because if V = 2 the change ofweights after
each iteration is 0, and the weights of the neural networks
cannot be updated). The learning rate was set to be 3 and
the batch size was set to be 100. The number of epochs 𝑛
was 300. Two main metrics—training accuracy and testing
accuracy—were used to measure the performance of the
results from different networks. Each network was trained 5
times and the average values were calculated.

In order to explore the relationship between the fractional
orders and the neural network performance, the fractional-
order neural networks with different orders were trained.
Figure 2 shows the results of different networks with different
sizes of training set. We can find that when the fractional
order V exceeds 1.6, both the training and testing accuracies
declined rapidly, and when the fractional order V > 2,
the performances of the fractional BP neural networks were
much poorer than that with 0 < V < 2.The results of V = 19/9
and 20/9 were shown in Table 1 as examples. This result is
consistent with that for describing physical problems, and
usually the limitation 0 < V < 2 is adopted in the fractional-
order models.

From Figure 2, it can be observed that, with the increase
of the size of training set, the performances of the networks
were improved visibly. Furthermore, it is also obvious that
the training and testing accuracies raised gradually with
increasing fractional orders and then reached the peak while
V equaled 10/9 or 11/9 order. After that, the training and
testing accuracies began to decline rapidly.

Table 2 shows the optimal orders under training set and
testing set separately with different size of training set and it
can be noticed that the optimal orders almost concentrated in10/9 and 11/9. The only exception is that when the number
of training samples was 50000, the training accuracy of
order 1 was slightly higher than that in 10/9 or 11/9 order
case. Generally, for the MNIST dataset the performances of
fractional-order BP neural networks are better than integer
order.
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Table 2: Optimal Orders and Highest Accuracies.

Size of training set Optimal order of training set Optimal order of testing set Highest training accuracy Highest testing accuracy
10000 10/9 11/9 98.53% 90.31%
20000 10/9 10/9 98.84% 92.34%
30000 11/9 11/9 99.05% 93.50%
40000 10/9 11/9 99.18% 93.92%
50000 1 10/9 99.20% 94.56%
60000 11/9 11/9 99.20% 95.00%
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Figure 2: The relationship between the fractional order of gradient descent method and the neural network performance.

It also can be seen that, in each case, the training accuracy
is much bigger than testing accuracy, which means that the
BP neural networks have obvious overfitting phenomenon.
To avoid overfitting, the integer-order and fractional-order
BPneural networkswith𝐿2 regularizationwere trained.With
different sizes of training set we chose the regularization
parameter 𝜆 to be (2 × 10−5, 1 × 10−5, 5 × 10−6, 5 × 10−6,5 × 10−6, and 3 × 10−6). For the fractional-order neural
networks, we chose the fractional order V that had highest
testing accuracy in previous simulations. When the numbers
of training samples were (10000, 20000, 30000, 40000, 50000,
and 60000), we separately set the fractional order V to be
(11/9, 10/9, 11/9, 11/9, 10/9, 11/9).

The performance of the proposed fractional-order BP
neural networks with 𝐿2 regularization and the performance
comparison with integer-order BP neural networks (IOBP),
integer-order BP neural networks with 𝐿2 regularization,
and fractional-order BP neural networks (FOBP) in terms of
training and testing accuracy are shown in Table 3 and the

change of the testing accuracy with the iterations was given
in Figure 3

In Table 3 and Figure 3, it can be seen that, after the addi-
tion of 𝐿2 regularization to BP neural networks, the training
accuracy is slightly decreased but the testing accuracy sig-
nificantly increased, which indicated that adding 𝐿2 regular-
ization can effectively suppress overfitting and improve the
generalization of BP neural networks. Furthermore, it can be
noticed that after adding 𝐿2 regularization the performance
of fractional-order BP neural network is better than integer
order. One important merit of the 𝐿2 regularization is that
it gained more benefit while the training set is small. The
most possible reason is that the network trained with the
smallest number of training samples was affected most by
the overfitting. With the increase of the training samples, the
model gradually changed from overfitting to underfitting, so
the improvement of the regularization method became faint.

Then, the stability and convergence of the proposed
fractional-order BP neural networks with 𝐿2 regularization
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Figure 3: Performance comparison in terms of testing accuracy.
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Figure 4: Changes of total error 𝐸𝐿2 during the training process.
are demonstrated in Figures 4 and 5. We used the network
with optimal order, which means that the size of training set
was 60000, fractional-order Vwas 11/9, and the regularization
parameter 𝜆 was 3 × 10−6. Figure 4 shows the change of the
total error 𝐸𝐿2 during the training process. Without loss of
generality, the change of 𝐷V

𝑤520,20
𝐸𝐿2 was randomly selected

and Figure 5 shows the change of it during the training
process. It is clear to see that 𝐸𝐿2 and 𝐷V

w𝐸𝐿2 converged fast
and stably and were finally close to zero. These observations
effectively verify the proposed algorithm is deterministically
convergent.

6. Conclusion

In this paper, we applied fractional calculus and regulariza-
tion method to deep BP neural networks. Different from
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Figure 5: Changes of𝐷V
𝑤520,20

𝐸𝐿2 during the training process.

previous studies, the proposed model had no limitations on
the number of layers and the fractional-order was extended
to arbitrary real number bigger than 0. 𝐿2 regularization
was also imposed into the errorless function. Meanwhile, we
analyzed the profits introduced by the 𝐿2 regularization on
the convergence of this proposed fractional-order BP net-
work.The numerical results support that the fractional-order
BP neural networks with 𝐿2 regularization are determinis-
tically convergent and can effectively avoid the overfitting
phenomenon.Then, how to apply fractional calculus to other
more complex artificial neural networks is an attracted topic
in our future work.
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