1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Biosystems. Author manuscript; available in PMC 2019 July 01.

-, HHS Public Access
«

Published in final edited form as:
Biosystems. 2018 July ; 169-170: 20-25. doi:10.1016/j.biosystems.2018.05.008.

A Portable Structural Analysis Library for Reaction Networks

Yosef Bedaso?, Frank T. Bergmann®, Kiri Choi?2, Kyle Medley?2, and Herbert M. Sauro@

aDepartment of Bioengineering, William H. Foege Building, Box 355061, Seattle, WA, USA,
98195-5061

bBioQuant/COS, Heidelberg University, Heidelberg, Germany

Abstract

The topology of a reaction network can have a significant influence on the network’s dynamical
properties. Such influences can include constraints on network flows and concentration changes or
more insidiously result in the emergence of feedback loops. These effects are due entirely to mass
constraints imposed by the network configuration and are important considerations before any
dynamical analysis is made. Most established simulation software tools usually carry out some
kind of structural analysis of a network before any attempt is made at dynamic simulation. In this
paper, we describe a portable software library, 1ibStructural, that can carry out a variety of
popular structural analyses that includes conservation analysis, flux dependency analysis and
enumerating elementary modes. The library employs robust algorithms that allow it to be used on
large networks with more than a two thousand nodes. The library accepts either a raw or fully
labeled stoichiometry matrix or models written in SBML format. The software is written in
standard C/C++ and comes with extensive on-line documentation and a test suite. The software is
available for Windows, Mac OS X, and can be compiled easily on any Linux operating system. A
language binding for Python is also available through the pip package manager making it simple to
install on any standard Python distribution. The bulk of the source code is licensed under the open
source BSD license with other parts using as either the MIT license or more simply public domain.
All source is availle on GitHub (https://github.com/sys-bio/Libstructural).

Keywords
Simulation; Structural Analysis; Software; Systems Biology

Correspondence to: Herbert M. Sauro.

Authors contributions

HMS conceived the idea and FTB implemented the methods, testing, and documentation. YB build the distributions, the Python
bindings, documentation, and testing. KC and KY advised YB on builds and bindings and help create the CMake files. Everyone
contributed to the manuscript.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


https://github.com/sys-bio/Libstructural

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bedaso et al. Page 2

Background

One of the most fundamental processes in living organisms is the chemical reaction where
molecules combine, decompose, change configuration or exchange molecular subunits. A
network of chemical reactions will obey mass-conservation resulting in properties of the
network that are independent of the underlying reaction kinetics. In this paper, we describe a
new portable software library that provides many facilities for analyzing the topological
properties of reaction networks as a result of mass-conservation.

When describing multiple reactions in a network, it is convenient to represent the
stoichiometric coefficients in a compact form called the stoichiometry matrix, N [16]. This
matrix is a /7 row by 72 column matrix where m is the number of species and 77the number of
reactions. The columns of the stoichiometry matrix correspond to the distinct chemical
reactions in the network, the rows to the molecular species, one row per species. The
intersection of a row and column in the matrix indicates the stoichiometric coefficient.

The stoichiometry matrix represents the connectivity of the network and contains important
information on the network’s structural characteristics. These characteristics fall into two
groups, relationships among the species as indicated by dependencies in the rows of the
stoichiometry matrix and relationships among the reaction rates due to dependencies among
the columns [21]. In this paper, we will describe a software library called lIibStructural
that provides a wide variety of functions to analyze both row and column dependences in a
stoichiometry matrix. libStructural is not concerned with with constraint-based modeling [2]
or metabolic flux analysis [13]. Instead it focuses on the structure of the stoichiometry
matrix.

Moiety Conservation Laws

One of the characteristics of biological network models is the conservation of certain
molecular subgroups, termed moieties [17]. A typical example of a conserved group in a
model is the conservation of the adenine nucleotide moiety, i.e. the total amount of ATP,
ADP, and AMP is constant during the evolution of the model.

Determining the conservation laws is important for several reasons. One practical advantage
is that the system equations in the form of ordinary or stochastic differential equations can
be reduced in size thus making numerical analysis more efficient. This fact is exploited in
many modern modeling platforms including but not limited to SBW[20], Copasi[7],
PySCeS[14], VCell[11], JWS Online [15], libRoadRunner [26], and the SB Toolbox [23]. A
recent review of software provision in this area can be found in Dandekar [4]. In addition to
reducing the size of the model, reduction of the number of differential equations means that
the model’s Jacobian matrix is non-singular [21], an important requirement for a number of
numerical methods including steady-state analysis and bifurcation analysis. The
conservation laws are also important for theoretical reasons because a non-singular Jacobian
is required for metabolic control analysis, stability analysis and frequency analysis [9].
Finally, conservation laws have very practical implications for perturbation studies and
targeted gene knockouts [5]. In such circumstances, the conservation laws provide hard
limits to how species levels can change, at least over the time scale of the conservation law.

Biosystems. Author manuscript; available in PMC 2019 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bedaso et al.

Page 3

The conservation relationships can also lead to implicit regulatory effects in a network as
exemplified by the work of Markevich [12].

The IibStructural library supports the computation of L, Lo, and T matrices [17]. In
addition, the library will reorder the stoichiometry matrix rows including row labels as
appropriate.

Steady-State Flux Constraints

Whereas the rows of the stoichiometry matrix indicate dependencies among the species, the
columns of the stoichiometry matrix indicate dependencies among the reaction rates [29].
The IibStructural library supports the computation of K, N and N ;- matrices [17]. In
addition, the library will reorder the stoichiometry matrix columns including column labels
as appropriate. Figure 1 summarizes the partitioning of the matrix into the various
subdivisions.

Elementary Modes

Results

Elementary modes [30] are the simplest pathways within a metabolic network that can
sustain a steady-state and at the same time are thermodynamically feasible [1]. Depending
on the size of the metabolic network, the number of elementary modes can range from no
modes to billions of modes. The full set of elementary modes represents the complete
metabolic potential of a given metabolic network and as a result is of interest to the
metabolic analysis and engineering communities.

The IibStructural library computes elementary modes via a refactored Metatool
component [10] and includes both integer and double variants as well as a refactored geFM
library [27].

Software Implementation

The core library for 1ibStructural was originally developed by Frank Bergmann. With
the development of the C/C++ version of libRoadRunner, 1ibStructural was
subsequently integrated into libRoadRunner [26]. In this paper, we describe the separate and
reusable libStructural library.

The core of libStructural is written in 1ISO C/C++ to achieve maximum portability and
interoperability. The software can be used on Windows, Mac OS X, and Linux operating
systems. Network models can be supplied either directly as a raw stoichiometry matrix or
indirectly as an SBML model [8]. For SBML support we use the libSBML library [3]. In
order to maintain information on the row and column reorderings during the calculations, all
row and columns of matrices can be labeled. The library relies heavily on LAPACK (http://
www.netlib.org/lapack/), a standard library for linear algebra that is used to carry out
householder reflections for the QR factorization [6].

The library itself is split into two parts. One part is used to wrap and expose certain
LAPACK functions and to implement other commonly used linear algebra results not

Biosystems. Author manuscript; available in PMC 2019 July 01.


http://www.netlib.org/lapack/
http://www.netlib.org/lapack/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bedaso et al.

Page 4

directly supported by LAPACK. These include methods that can compute orthonormal null
space vectors or generate the reduced echelon forms using Gauss-Jordan matrix reduction.
The second part implements the stoichiometric network specific methods. These include
conservation analysis such as computing the link and gamma matrices (conservation matrix),
returning the reordered row stoichiometry matrix and total amounts in each conservation
law. In addition, the columns of the stoichiometric matrix are also analyzed to generate the
independent and dependent fluxes, including the K matrix. Documentation is provided
through readthedocs (https:/libstructural.readthedocs.io). The source code is licensed under
a combination of the modified BSD license, MIT (gEFM), and public domain

( libMetatool ).

For computing elementary modes there are a wide variety of published software tools.
Rather than write our own we decided to reuse existing software. We examined a wide
variety of existing tools, and we found only two, Meta-tool [10] and gEFM [27] that could
be easily reused within our C/C++/Python framework.

Metatool 4.3 is written in standard C and has a liberal open license. It is therefore very easy
to implement across different computing platforms. We refactored the code to convert
Metatool 4.3 into a reusable library we call IibMetatool. This allows Metatool to be
linked to any programming language. The refactoring was done such that 1ibMetatool can
be used independently of libStructural. The one major change to Metatool when refactoring
was to use 64-bit integer types for all calculations. This was done to improve the numerical
stability of the algorithms used by the integer version Metatool when dealing with large
models. Since the original Metatool source code is in the public domain, the refactored
Metatool source code is similarly unrestricted. In order to deal with models with fractional
stoichiometries, we also distribute the double version of Metatool and a refactored gEFM.

We also incorporated gEFM as a library which is a more modern distribution that uses a
completely different algorithm to Metatool. The code was refactored by adding an API
(Application Programming Interface) and improved error handling and memory protection.
The addition of gEFM allows comparisons to be made between Metatool and gEFM. For
gEFM, we also provide a copy results to file method that can be used for analyzing large
models. This was to avoid returning very large arrays directly to the Python console from
gEFM. gEFM can be accessed via the Python call getgElementaryModes().

In addition to the C/C++ library, we also created Python bindings to allow users access to
the functionality of 1ibStructural via Python. We used the SWIG toolkit (http://
www.swig.org/) to generate the Python bindings and have deployed the Python enabled
libStructural via standard pip packaging.

Applications and Examples

Branched Metabolic Network

Consider a metabolic network with nine reactions and six floating species shown in Figure
2. The model was described using the Antimony syntax [25] which was then exported as
SBML.

Biosystems. Author manuscript; available in PMC 2019 July 01.


https://libstructural.readthedocs.io
http://www.swig.org/
http://www.swig.org/

1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bedaso et al. Page 5

An SBML model can be loaded by calling the 1oadSBMLFromFi le function. By default,
the library will apply QR factorization to the model.

»> import structural
»> Is = structural .Libstructural()
»> Is.loadSBMLFromFile(“branched_network.xml””)

Models can also be conveniently loaded using the Antimony syntax [25] as shown below:

import tellurium as te
import structural

r = te.loada(C”
$Xo -> x; kl1l*Xo;
X -> $X1; k2*x;

Xo = 1; k1 = 0.5; k2 = 0.15;

Is = structural _LibStructural()
Is.loadSBMLFromString (r.getSBML())
print Is_getStoichiometryMatrix()

After loading a model, a summary of the analysis can be obtained using the getSummary
method as shown below:

»> Is.getSummary()

STRUCTURAL ANALYSIS MODULE : Results

Size of Stochiometric Matrix: 6 x 9 (Rank is 6)

Nonzero entries in Stochiometric Matrix: 16 (29.6296% full)
Independent Species (6) :

D, A, C, F, E, B

Dependent Species : NONE

LO : There are no dependencies. LO is an EMPTY matrix
Conserved Entities: NONE

Specific information can be obtained by calling a variety of methods. For example, the
stoichiometry matrix is obtained as follows:

»>1s._getStoichiometryMatrix()
array(f 1., -1., -1., 0., 0., 0., 0., 0., 0.7,
ro.,1.,0., -1., 0., -1., 0., 0., 0.1,

Biosystems. Author manuscript; available in PMC 2019 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bedaso et al.

Page 6

[0.,0.,1.,0.,0., 1., -1., 0., 0.1,
[o0.,0., 0., -1., 1., 0., 0., 0., 0.1,
[0.,0.,0.,2.,0.,0., 1., -1., 0.1,
[0.,0.,0.,0.,0,1., 0., 0., -1.1D

The order of species and reactions in the rows and columns can be obtained using the
methods getFloatingSpecieslds and getReactionlds. At this stage, neither the rows
or columns have been reordered into dependent and independent rows and columns. A call
to getFul lyReorderedStoichiometryMatrix will return a stoichiometry matrix where
both rows and columns have been reordered:

»>Is._getFullyReorderedStoichiometryMatrix()
array([[ 1., -1., O., 2., 0., O., O., O., O.],

[o., 0., -1, 0., 0., -1., 0., 0., 1.7,
[-1., 0., 0., 0., 1., 1., 0., 0., 0.1,
[0.,0.,0.,0., 1., 0., 0., -1., 0.7,
[o0., 0., 0., -1., 0., 0., 1., 0., 0.1,
[0.,0., 1., -1., -1., 0., 0., 0., 0.1D

The ordering of the rows and columns can be obtained by calling getFul ly-
ReorderedStoichiometryMatrixlds. This returns two lists, the reordered row and
column labels. Reordering of only the rows can be obtained by calling
getReorderedStoichiometryMatrix.

The number of dependent and independent reaction rates can be obtained by calling
getNumDepReactions and getNumIndReactions. In the case of the example model,
these methods return 3 and 6 respectively. getDependent-Reactionlds and
getlindependentReactionlds will return the ids of the specific reactions in each group.
For example:

Is_getDependentReactionlds()

out[24]: (*J77, 387, 7J27)
»>1s._getiIndependentReactionlds()

Out[25]: (*J4°, °J6°, 33, *J5°, *J9’, °J1°)

In practical terms the fluxes through (*J34~, -J6~, *J3”, *J57, *J9”, ~J17)canbe
used to determine the remaining three fluxes: (*J37~, ~J8~, >J27). A full range of
methods are available to extract any of the submatrices shown in Figure 1.

Network Containing Conserved Moieties

The model shown in Figure 3 illustrates a simple reaction network that contains two
conserved moieties, Sand £. These result in two conservation laws: $; + S, + ESand £S5+
E.

Biosystems. Author manuscript; available in PMC 2019 July 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Bedaso et al. Page 7

After loading the model, calling getSummary generates the following output:

» Is.getSummary()

STRUCTURAL ANALYSIS MODULE : Results

Size of Stochiometric Matrix: 4 x 3 (Rank is 2)
Nonzero entries in Stochiometric Matrix: 8 (66.6667% full)
Independent Species (2) :

ES, S1

Dependent Species (2) :

E, S2

LO : There are 2 dependencies. LO is a 2x2 matrix.
Conserved Entities

1: + ES + E

2: + ES + S1 + S2

From the summary, we can see that there are two dependent rows (species) and two
conserved entities. Thus, the conservation matrix (gamma, I') will have two rows.

»>Is_getStoichiometryMatrix()
array([[-1-, 0., 1.1,
[1., -1., 0.1,
[1., 0., -1.7,
LO0., 1., -1.1D
»> Is.getGammaMatrix()
array([[ 1., 0., 1., 0.1,
[1., 1., 0., 1.1D

In addition, it is possible to obtain the conserved sums and conserved laws of the network by
calling getConservedLaws and getConservedSums respectively.

»>Is._getConservedLaws()

(C +ES+E’, ” +ES + S1 +S27)
»>Is.getlnitialConditions()

((’ES”, 10.0), (°S17, 10.0), (’E*, 10.0), (°S27, 10.0))
»> lIs.getConservedSums()

(20.0, 30.0)

The function getFul lyReorderedStoichiometryMatrix divides the N, matrix into
N,cand N pcmatrices as shown in Fig 2.

Biosystems. Author manuscript; available in PMC 2019 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bedaso et al.

»> Is.getFullyReorderedStoichiometryMatrix()
array([[ 1., -1., 0.1,

[O., 1., -1.],

[-1., 1., 0.1,

[-1., 0., 1.1D
»>Is._getFullyReorderedNrMatrix()
array([[ 1., -1., 0.7,

[O0., 1., -1.1D
»> Is.getNICMatrix()
array([[-1., 0.],

[1., -1.1D
»> Is.getNDCMatrix()
array([[ 1-1.

[ 0.1D

Calculating elementary modes

J1l: $Xo => A; v; J2: A => B; v;

J3: A =>C; v; J4: B + E => 2 D; v;
J5: $X1 => E; v; J6: B =>C + F; v;
J7: C => D; v; J8: D => $X2; v;

J9: F => $X3; v; Vv = 0;

»> Is.getElementaryModesinteger()
[[1.1.0.1.1.0.0.2.0.]
[ 1. 0. 1. 0. 0. 0. 1. 1. 0.]
[1.1.0.0.0.1.1. 1. 1.1]

Biosystems. Author manuscript; available in PMC 2019 July 01.

Page 8

To illustrate the evaluation of the elementary modes, consider a simple branched model. The
representation of this model using Antimony syntax makes it easy to specify whether a given
reaction is reversible or not. Reactions that are irreversible are indicated by => while

reactions that are reversible are indicated with ->.

If all reactions are irreversible, then the model admits only three elementary models. If all
reactions are reversible then ten elementary models are possible (not shown). From the
Antimony script, we can generate standard SBML which, as before, can be loaded into
libStructural. Three elementary model methods are implemented,
getElementaryModesInteger, getElementary-ModesDouble, and
getgElementaryModes. The first two call Metatool integer and double respectively and
the last method calls gEFM. For example, callling the getElementaryModesInteger
function returns the following three elementary modes.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bedaso et al.

Availability

Methods

Page 9

The elementary modes in the output are arranged in rows. The order of the columns in the
output can be obtained by calling getReactionlds which returns the list of reaction
names. To assist in visualizing the three modes, Figure 4 highlights the reactions involved in
each of the modes. This shows there are three independent and thermodynamically feasible
pathways in the network: 1) 11 to 1y via s and vy; 2) 13 to K via b and 1g; and 3) 13 to 1y
via 13 and 4. All possible thermodynamically feasible flux patterns can be obtained by
linear combinations of these three.

LibStructural is available either as source code or as pre-compiled modules for Windows
and Mac OS X. The source code is available on GitHub (https://github.com/sys-bio/
Libstructural). CMake (https://cmake.org/) configurations are supported to generate build
systems for different compilers and platforms. SWIG (http://www.swig.org/) is necessary for
generating Python wrappers. Extensive instructions on how to build IibStructural are
available at https://libstructural.readthedocs.io.

libStructural can be installed in Python via the Python packages manager pip. Support
for Python 2.7 and 3.4+ is available and standard Python users should execute pip
install libStructural at the command line. When using Tellurium [19],
libStructural can be installed directly from the Python console via the

instal IPackage function.

Details of the algorithms can be found in [24, 28]. Much of the analysis done in
libStructural is based on Householder reflections [18] to compute the QR factorization
of the stoichiometry matrix. The QR decomposition results in a very robust numerical
scheme to extract the species and flux dependencies. We illustrate the approach using a
number of large models obtained from the BiGG repository [22] (see http://bigg.ucsd.edu//).
The results of these analyzes are shown in Table 1.

Self-Test Routines

The library includes six tests to validate the conservation laws and the general integrity of
the results. These tests need only be carried out for very large models where there the rare
possibility of errors due to rounding errors. In such situations, the library tolerance setting
can be reduced using the setTolerance method and the analysis and self-tests rerun.

Calling val idateStructuralMatrices() returns a list of a true/false values or
getTestSummary() which returns a string giving a more detailed account, for example,
getTestSummary() will yield:

Passed Test 1 : Gamma*N = O (Zero matrix)
Passed Test 2 : Rank(N) using SVD (1) is same as mO (1)
Passed Test 3 : Rank(NR) using SVD (1) is same as mO (1)

Biosystems. Author manuscript; available in PMC 2019 July 01.


https://github.com/sys-bio/Libstructural
https://github.com/sys-bio/Libstructural
https://cmake.org/
http://www.swig.org/
https://libstructural.readthedocs.io
http://bigg.ucsd.edu//

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bedaso et al. Page 10

Passed Test 4 : Rank(NR) using QR (1) is same as mO (1)
Passed Test 5 : LO obtained with QR matches Q21*inv(Q11)
Passed Test 6 : N*K = 0 (Zero matrix)

Tests for Elementary Modes

There are three tests we use to check that the software returns valid elementary modes. Due
to the current state of understanding of elementary models, it is not possible to determine
before-hand how many elementary modes to expect. Therefore it is not possible to know
with certainty whether all elementary modes have been identified. This is particularly true
for larger networks where the number of elementary modes can be extremely large. The tests
we use include:

1. All elementary modes must satisfy Ne,; = 0.
2. For a given elementary mode, e;, it must be true that:
a. The null space of the submatrix of N that only involves the reactions of

e;is of dimension one and has no zero entries (elementarity).

b. The elementary mode must be consistent with respect to the sign of the
coefficient for irreversible reactions (thermodynamic correctness). That
is, if a reaction is irreversible, its corresponding sign in e; must be
positive. A reversible reaction may be negative or positive.

The test file elementaryModes . py includes 30 models together with the required tests. All
test files, documentation and source code can be obtained at https://github.com/sys-bio/
Libstructural.

Acknowledgments

Much of the original work described in this paper is due to the generous support from the NIH grant GM081070
and more recently GM123032. We would also like to thank David Fell and Mark Poolman for constructive
discussions regarding the tests for elementary modes. We also wish to thank Soha Hassoun and coworkers for
graciously changing the usage license of gEFM to MIT license.

References

1. Ataman M, Hatzimanikatis V. Heading in the right direction: thermodynamics-based network
analysis and pathway engineering. Current opinion in biotechnology. 2015; 36:176-182. [PubMed:
26360871]

2. Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models predict metabolic and
associated cellular functions. Nature Reviews Genetics. 2014; 15(2):107.

3. Bornstein B, Keating S, Jouraku A, Hucka M. LibSBML: an API Library for SBML.
Bioinformatics. 2008; 24(6):880. [PubMed: 18252737]

4. Dandekar T, Fieselmann A, Majeed S, Ahmed Z. Software applications toward quantitative
metabolic flux analysis and modeling. Briefings in bioinformatics. 2012; 15(1):91-107. [PubMed:
23142828]

5. Eisenthal R, Cornish-Bowden A. Prospects for antiparasitic drugs the case of Trypanosoma brucei,
the causative agent of African sleeping sickness. Journal of Biological Chemistry. 1998; 273(10):
5500-5505. [PubMed: 9488673]

6. Golub G, , Van Loan C. Matrix computations Johns Hopkins University Press; 1996

Biosystems. Author manuscript; available in PMC 2019 July 01.


https://github.com/sys-bio/Libstructural
https://github.com/sys-bio/Libstructural

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bedaso et al.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Page 11

. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U.

COPASI-a COmplex PAthway Simulator. Bioinformatics. Dec; 2006 22(24):3067-3074. [PubMed:
17032683]

. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D,

Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin |1, Hedley WJ,
Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere
N, Loew LM, Lucio D, Mendes P, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada
T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J,
Wang J. The Systems Biology Markup Language (SBML): A Medium for Representation and
Exchange of Biochemical Network Models. Bioinformatics. 2003; 19:524-531. [PubMed:
12611808]

. Ingalls BP. A Frequency Domain Approach to Sensitivity Analysis of Biochemical Systems. Journal

of Physical Chemistry B. 2004; 108:1143-1152.

Kamp Av, Schuster S. Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics.
2006; 22(15):1930-1931. [PubMed: 16731697]

Loew LM, Schaff JC. The Virtual Cell: a software environment for computational cell biology.
Trends Biotechnol. 2001; 19:401-6. [PubMed: 11587765]

Markevich NI, Hoek JB, Kholodenko BN. Signaling switches and bistability arising from multisite
phosphorylation in protein kinase cascades. J Cell Biol. 2004; 164:353-9. [PubMed: 14744999]
Morales Y, Bosque G, Vehi J, Pico J, Llaneras F. Pfa toolbox: a matlab tool for metabolic flux
analysis. BMC systems biology. 2016; 10(1):46. [PubMed: 27401090]

Olivier BG, Rohwer JM, Hofmeyr JH. Modelling cellular systems with PySCeS. Bioinformatics.
2005; 21:560-1. [PubMed: 15454409]

Peters M, Eicher JJ, van Niekerk DD, Waltemath D, Snoep JL. The JWS online simulation
database. Bioinformatics. 2017; 33(10):1589-1590. [PubMed: 28130238]

Reder C. Metabolic Control Theory: A Structural Approach. J Theor Biol. 1988; 135:175-201.
[PubMed: 3267767]

Reich JG, , Selkov EE. Energy metabolism of the cell Academic Press; London: 1981

Sauro HM. Systems Biology: Linear Algebra for Pathway Modeling Ambrosius Publishing;
Seattle: 2015

Sauro HM, Choi K, Medley JK, Cannistra C, Konig M, Smith L, Stocking K. Tellurium: a python
based modeling and reproducibility platform for systems biology. bioRxiv. 2016:054601.

Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H. Next Generation
Simulation Tools: The Systems Biology Workbench and BioSPICE Integration. OMICS. 2003;
7(4):355-372. [PubMed: 14683609]

Sauro HM, Ingalls B. Conservation analysis in biochemical networks: computational issues for
software writers. Biophys Chem. Apr; 2004 109(1):1-15. [PubMed: 15059656]

Schellenberger J, Park JO, Conrad TM, Palsson B@. Bigg: a biochemical genetic and genomic
knowledgebase of large scale metabolic reconstructions. BMC bioinformatics. 2010; 11(1):213.
[PubMed: 20426874]

Schmidt H, Jirstrand M. Systems Biology Toolbox for MATLAB: a computational platform for
research in systems biology. Bioinformatics. 2006; 22(4):514-515. [PubMed: 16317076]
Schuster S, Hilgetag C, Woods J, Fell D. Reaction routes in biochemical reaction systems:
Algebraic properties, validated calculation procedure and example from nucleotide metabolism. J
Math Biol. 2002; 45:153-181. [PubMed: 12181603]

Smith LP, Bergmann FT, Chandran D, Sauro HM. Antimony: a modular model definition language.
Bioinformatics. 2009; 25(18):2452-2454. [PubMed: 19578039]

Somogyi ET, Bouteiller M, Glazier JA, Kénig M, Medley JK, Swat MH, Sauro HM.
libroadrunner: a high performance shml simulation and analysis library. Bioinformatics. 2015;
31(20):3315-3321. [PubMed: 26085503]

Ullah E, Aeron S, Hassoun S. gefm: an algorithm for computing elementary flux modes using
graph traversal. IEEE/ACM transactions on computational biology and bioinformatics. 2016;
13(1):122-134. [PubMed: 26886737]

Biosystems. Author manuscript; available in PMC 2019 July 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Bedaso et al. Page 12

28. Vallabhajosyula RR, Chickarmane V, Sauro HM. Conservation analysis of large biochemical
networks. Bioinformatics. Feb; 2006 22(3):346-353. [PubMed: 16317075]

29. van der Heijden RTJM, Heijnen JJ, Hellinga C, Romein B, Luyben KCAM. Linear constraint
relations in biochemical reaction systems: I. Classification of the calculability and the
balancebility of conversion rates. Biotechnol Bioeng. 1994; 43:3-10. [PubMed: 18613305]

30. Zanghellini J, Ruckerbauer DE, Hanscho M, Jungreuthmayer C. Elementary flux modes in a
nutshell: properties, calculation and applications. Biotechnology journal. 2013; 8(9):1009-1016.
[PubMed: 23788432]

Biosystems. Author manuscript; available in PMC 2019 July 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Bedaso et al.

No Mo

Page 13

Figure 1.
Partitioned Reordered Stoichiometry Matrix: 7= number of reactions; /m = number of

species; N pc = partition of linearly dependent columns; N, = partition of linearly
independent columns; Nz = reduced stoichiometry matrix; Ng partition of linearly dependent

rows.

Biosystems. Author manuscript; available in PMC 2019 July 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Bedaso et al.

Figure 2.
Branched network

Biosystems. Author manuscript; available in PMC 2019 July 01.

Page 14



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Bedaso et al. Page 15

ES E

Figure 3.
Network with Two Interlinked Conserved Moieties.

Biosystems. Author manuscript; available in PMC 2019 July 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Bedaso et al.
1. 1 2. 3.
Uy l’US 1’U5
E E E
BK BK B
k¥ V, . , . v,
— A" Vs D—s» —pp” ¥ D—28 i n” e P
. A — 1\ E—— V. AE —
xc v, F Vo 3 v7*F Vo * c v ) Vo

Figure 4.
Three Elementary Modes in a Complex Pathway.

Biosystems. Author manuscript; available in PMC 2019 July 01.

Page 16



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Bedaso et al.

Table 1

Page 17

Results of analyzing a selection of large models from http://bigg.ucsd.edu/. Dep Rxns indicates the number of
dependent reactions and Ind Rxns the number of independent reactions. sp is short-hand for species and rxn

for reactions.

Model # Conserved Moieties #Dep Rxns  # Ind Rxns
RECON1 (3741 rxn, 2766 sp) 92 1067 2674
1JR904 (1975 rxn,761 sp) 18 332 743
IND750 (1266 rxn, 1059 sp) 7 284 982
1J01366 (2583 rxn, 1805 sp) 39 817 1766
iNRG857 1313 (2735 rxn, 1311sp) 60 852 1883
Y0844 (1250 rxn, 990 sp) 31 291 959
iYL1228 (2262 rxn, 1658 sp) 45 649 1613
STM v1 0 (2545 rxn, 1802 sp) 39 782 1763

Biosystems. Author manuscript; available in PMC 2019 July 01.


http://bigg.ucsd.edu/

	Abstract
	Background
	Moiety Conservation Laws
	Steady-State Flux Constraints
	Elementary Modes

	Results
	Software Implementation

	Applications and Examples
	Branched Metabolic Network
	Network Containing Conserved Moieties
	Calculating elementary modes
	Availability

	Methods
	Self-Test Routines
	Tests for Elementary Modes

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1

