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Abstract

Purpose of Review—Ketamine produces rapid (within hours) antidepressant actions, even in 

patients considered treatment resistant, and even shows promise for suicidal ideation. Here, we 

review current research on the molecular and cellular mechanisms of ketamine and other novel 

rapid-acting antidepressants, and briefly explore gender differences in the pathophysiology and 

treatment of MDD.

Recent Findings—Ketamine, an NMDA receptor antagonist, increases BDNF release and 

synaptic connectivity, opposing the deficits caused by chronic stress and depression. Efforts are 

focused on the development of novel rapid agents that produce similar synaptic and rapid 

antidepressant actions, but without the side effects of ketamine. The impact of gender on the 

response to ketamine and other rapid-acting antidepressants is in early stages of investigation.

Summary—The discovery that ketamine produces rapid therapeutic actions for depression and 

suicidal ideation represents a major breakthrough and much needed alternative to currently 

available medications. However, novel fast acting agents with fewer side effects are needed, as 

well as elucidation of the efficacy of these rapid-acting antidepressants for depression in women.
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Introduction

Major depressive disorder (MDD) is a chronic and debilitating neuropsychiatric illness that 

affects nearly 1/5 of the population and causes substantial social and economic 

consequences [1–4]. Depression affects nearly 300 million people worldwide, and rates of 

MDD are climbing, with an 18% increase in prevalence between 2005 and 2015 [5]. 

Traditionally, depression and closely related anxiety disorders have been treated using a 

combination of behavioral therapy and monoaminergic agents, notably, the selective 
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serotonin reuptake inhibitors (SSRIs). However, one-third of patients will require a trial-and-

error period before they find an appropriate treatment and another one-third of patients will 

not respond to multiple trials of antidepressants and are thus classified as having treatment 

resistant depression (TRD) [6]. Another serious limitation of SSRI medications is a time lag 

of weeks to months to be effective, and combined with the variable efficacy among MDD 

patients, pose significant constraints. In 2014 alone, suicide claimed the lives of more than 

42,000 people, compared to 16,000 by homicide, and suicide rates are on the rise in the 

USA, with rates 24% higher in 2014 than 1999 [7, 8].

Depression is a recurrent and pervasive disease that can affect individuals throughout life. 

However, depression is approximately twofold more common in women than men. Although 

the exact biological cause for the observed differential diagnosis remains elusive, it is known 

that women suffer from specific forms of depression-related events during periods of 

hormonal fluctuations, namely puberty, peripartum periods, and menopause. However, 

prevalence of MDD in women is higher across the lifespan, independent of hormonal stage, 

suggesting other factors that place women at a higher risk [9]. Therefore, a thorough 

understanding of the underlying mechanisms driving the sex differences in depression is 

critical for developing better treatments.

Given the extensive personal and economic consequences and anticipated rise in rates of 

MDD, more efficacious and faster acting treatments are sorely needed. Current 

pharmacological treatments, while effective for some, are largely inadequate and are 

associated with undesirable side effects. One logical step towards the development of 

effectual treatments is to better understand the etiology of the disease. Much of the work has 

focused on deficits in monoamine neurotransmitter systems, including serotonin and 

norepinephrine, and is based largely on the discovery that drugs that block the metabolism or 

reuptake of monoamines have clinical efficacy for some [10]. However, the therapeutic 

limitations of these agents, combined with a lack of evidence to support a monoamine 

deficiency hypothesis, have led to new avenues of investigation.

The seminal findings showing rapid and sustained antidepressant effects of acute ketamine 

infusions has revolutionized the way the field understands both the pathophysiology of and 

potential treatments for depression [11, 12]. While the underlying etiology and 

pathophysiology of depression remain incomplete, clinical and basic research studies are 

beginning to provide evidence that depression is associated with atrophy of neurons in 

cortical and limbic brain regions that control mood and emotion [13, 14]. The discovery that 

antagonists of the N-methyl-D-aspartate (NMDA) receptor, notably ketamine, produce rapid 

improvement in depressive symptoms (within hours), even in TRD patients, has shifted 

efforts towards novel agents targeting the glutamatergic system. Importantly, rodent studies 

demonstrate that ketamine rapidly increases synaptic connections in the prefrontal cortex 

(PFC) and reverses the deficits caused by chronic stress [15, 16]. This pioneering work on 

ketamine has launched investigations into a variety of rapid agents that act at different 

NMDA sites or within the glutamate system. A number of non-glutamatergic drugs, such as 

the muscarinic acetylcholine inhibitor scopolamine, are also under investigation for their 

rapid antidepressant effects. However, ketamine also produces transient dissociative and 

psychotomimetic effects, and is a drug of abuse, limiting its wide spread use. The ultimate 
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goal of drug development efforts is to identify rapid acting agents that reverse the stress-

induced neuronal deficits caused by stress and depression, but with fewer side effects.

The purpose of this review is to present the fields current understanding of the 

pathophysiology of depression and the mechanisms and potential of rapid-acting 

antidepressants. Furthermore, we will discuss how sex differences impact our understanding 

of the pathophysiology and treatment of depression.

Pathophysiological Consequences of Stress and Depression

The adverse effects of MDD extend well beyond perceptible behavioral deficits, as decades 

of research have begun to elucidate the cellular and molecular changes that contribute to the 

underlying pathophysiology of depression and stress-related illnesses. Clinical and pre-

clinical studies have focused on the neural circuits that are altered following prolonged bouts 

of stress and depression. Although not exclusive, the PFC, hippocampus, NAc, and 

amygdala are a few brain regions disrupted in depression. These studies have furthered our 

understanding of the pathophysiology of MDD and can help direct the rational design of 

novel antidepressants that correct the disrupted synaptic and circuit level alterations.

Stress and depression cause neuronal atrophy

MDD has been characterized by reduced blood flow and glucose metabolism, a proxy for 

neural activity, in the PFC, and is attributed to the episode-dependent reductions in volume 

in depressed patients [17, 18]. Furthermore, rodent models of stress and depression and post-

mortem MDD studies report decreased synapse numbers in the PFC [16, 17]. Synapses are 

the key connections linking neurons, and reductions in synaptic number can decrease neural 

communication. Reduced activity and connectivity in the PFC is believed to underlie 

impairments in executive function observed in patients with MDD [14], and could also lead 

to loss of top down control of other brain regions, such as the amygdala and NAc that 

underlie anxiety, emotion, motivation, and reward.

Preclinical studies in rodent models demonstrate that chronic stress can result in symptoms 

of depression, including helplessness/despair and anhedonia, as seen in the forced-swim test 

(FST) and sucrose preference test (SPT), respectively [16]. The behavioral deficits of 

chronic stress are associated with reduced number and function of spine synapses in the 

medial PFC (mPFC) [16, 19–21]. Evidence of a direct link between PFC synapse number 

and behavior is provided by a recent report that an inhibitor of mammalian target of 

rapamycin complex 1 (mTORC1) signaling, REDD1 (regulated in development and DNA 

damage responses 1) that decreases synapse number causes helpless and anhedonic behavior 

in rodents in the absence of stress exposure [22]. Together, these human and rodent studies 

of PFC indicate that depression can be viewed as a mild neurodegenerative disease, 

characterized by neuronal atrophy and that treatments should target neural repair systems 

and reversal of the observed atrophy. Although depression should be considered a system-

wide disorder, the PFC is an ideal target for treatments as it receives and sends substantial 

projections throughout the brain to both cortical and subcortical regions that have been 

implicated in depression.
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Role of BDNF in Stress and Depression

Individual differences in stress resilience and susceptibility have been linked to the 

expression of brain-derived neurotrophic factor (BDNF) genetic polymorphisms, particularly 

the Val/Met polymorphism at codon 66 (Val66Met). When compared with Val/Val 

homozygotes, Met-allele carriers exhibit heightened levels of anxiety and depression [23]. 

BDNF Val/Met transgenic mice have provided additional insight into the role of BDNF in 

the development and treatment of depression. Rodents carrying the Met-allele show reduced 

spine and dendrite complexity in the hippocampus and PFC [24, 25], as well as diminished 

synaptic plasticity in the medial PFC and reduced dendritic secretion of BDNF in the 

hippocampus [26, 27]. The BDNF Met-allele blocks the processing and activity dependent 

release of mature BDNF, which are required for activity dependent synaptic plasticity and 

which could explain the deficit in synapse number in mice carrying the Met-allele. 

Additionally, preclinical studies further emphasize the importance of BNDF in treatment 

response as neither SSRIs nor ketamine are effective in Met/Met mice [25, 28]. Together, 

studies over the past decade have established support for a role of BDNF in the etiology and 

treatment of depression.

Excitation-Inhibition (E:I) Imbalance and MDD

The neocortex in mammals gives rise to and supports a diverse set of cognitive functions, 

making it a primary target of investigations in depression. Explorations into the connections 

and function of microcircuits in the neocortex are critical for understanding how the system 

works in both healthy and diseased states. In the PFC, glutamatergic and GABAergic 

signaling work in concert to control complex cognitive behaviors and executive control. 

Historically, pyramidal neurons have been the focus of studies targeting the PFC, but over 

the past decade, research has broadened to include the inhibitory interneurons and their 

extensive projections onto pyramidal cells. At the level of neurotransmitters and their 

receptors, individuals with MDD exhibit profound deficits in GABAergic signaling that is 

believed to be either a causal or a contributing factor in MDD. Inhibitory neurons maintain 

control over the activity of neighboring excitatory neurons through the release γ-

aminobutyric acid (GABA), which binds to postsynaptic ionotropic GABAA receptors and 

increases the membrane Cl− permeability that hyperpolarizes neurons [29]. In patients with 

MDD, it has been reported that there are reduced concentrations of GABA [30–32], 

expression of GABAA receptors [33], and expression of glutamic acid decarboxylase 

(GAD), a key GABA synthetic enzyme [33, 34]. Accompanying these GABAergic deficits 

are disruptions in functional glutamatergic activity. Some MDD studies report a decrease in 

glutamatergic transmission [35] as well as reduced number and function of NMDA receptors 

[36], as well as deficits in the number of glutamate synapses.

Disruption to the E:I balance in the PFC is believed to underlie the regional hypotrophy and 

deficits in executive functioning that characterize MDD [14]. Human neuroimaging studies 

show reduced activity and volume in the PFC [17, 18], and both studies in human MDD 

post-mortem and pre-clinical models of stress and depression report reduced spine number 

and function [16, 17]. Prolonged stress and depression leads to atrophy and loss of function 

in the PFC, which is attributed to the adverse homeostatic-like reductions in both GABA 

[30–34, 37] and glutamate [35, 36, 38] as a result of prolonged stress and depression. 
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Furthermore, rodents with reduced levels of GABAAR function show a depressive and 

anxiety-like phenotype that is reversed following ketamine administration [39•].

Human findings on the relationship between MDD and an E:I imbalance are supported by 

causal studies in rodents. Mice with reduced GABAAR function show a depressive and 

anxiety-like phenotype that is reversed following chronic treatment with an SSRI [40]. 

Ketamine also rapidly reverses the depressive-like phenotype observed in these mice, 

possibly due to its potentiation of inhibitory synapses in the mPFC [39•]. Furthermore, 

ketamine’s effects were stronger in the mice with GABA deficits compared to WT controls. 

These studies suggest that impaired GABA synaptic activity in the mPFC could underlie 

depression-related brain states and is a promising target for antidepressant treatments. 

Ultimately, the local circuit is becoming disorganized from within and disconnected from 

regional circuits involved in controlling mood.

Collectively, studies investigating the pathophysiological consequences of stress and 

depression highlight deficits in neurotropic signaling and synaptic connectivity and suggest 

an overall imbalance in E:I activity in the PFC (Fig. 1). The significant limitations of 

currently available treatments combined with the accumulation of evidence suggesting that 

MDD is a neurodegenerative disease have driven the development of novel, faster-acting 

antidepressants that work to reverse these deficits.

Rapid-acting antidepressants reverse stress-induced deficits

Ketamine, prototypical rapid acting antidepressant

Drug development rarely progresses uni-directionally from pre-clinical models up the chain 

to clinical practice. Instead, headway is recursive in nature, traversing back and forth from 

the basic sciences to clinical trials. The journey of ketamine is a perfect example of this 

process. As this review has already highlighted, ketamine has shown immense promise as a 

rapid-acting antidepressant, particularly helpful in treating TRD and suicidal ideation. A 

number of studies have shown that ketamine’s rapid antidepressant effects are dependent on 

the activation of AMPA receptors, the activity-dependent release of BDNF, and downstream 

activation of mTORC1 signaling [15, 41–43]. Other rapid-acting antidepressants (discussed 

below in more detail) have also been shown to require activation of these same pathways 

(Table 1).

A major question in the field is how an NMDA receptor antagonist leads to a rapid increase 

in synapse number and function? Early studies reported that ketamine produces a transient 

increase in extracellular glutamate [62], and glutamate activation of AMPA receptors is 

required for the synaptic and behavioral actions of ketamine in rodent models [15]. Evidence 

that ketamine initially blocks tonic firing GABA neurons, leading to a burst of glutamate, 

supported a disinhibition hypothesis [13, 63, 64] (Fig. 1). This is supported by preliminary 

studies demonstrating that knockdown of GluN2B receptors on GABA, but not glutamate 

neurons in the mPFC blocks the antidepressant actions of ketamine (Gerhard et al., 

unpublished data). There is also evidence that ketamine acts directly on excitatory neurons, 

and further studies are underway to address this question [65].
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Due to the psychotomimetic and dissociative properties of ketamine, some may find 

ketamine infusions intolerable. Furthermore, ketamine, known by many by its street name 

“Special K,” has potential for abuse following chronic use and potentially chronic treatment 

[66, 67]. To bypass these adverse side effects and achieve comparable efficacy, the field has 

begun to further explore ketamine’s actions.

Selective GluN2B Antagonists

A better understanding of the cellular mechanisms underlying ketamine can guide the 

development of more selective agents that lack side effects and are more effective by virtue 

of their selectivity. The effectiveness of ketamine has engendered a novel route of research 

for antidepressants towards effective and rapid-acting therapies rooted in modulating 

NMDAR-mediated glutamatergic transmission. Recently, studies have focused on agents 

that select for NMDA receptor subtypes [68].

GluN2B has been the focus of depression drug development studies following a clinical 

report that a selective GluN2B antagonist produces a relatively rapid antidepressant 

response. Preskorn and colleagues conducted a double-blind placebo-controlled clinical 

study of the GluN2B selective antagonist CP-101,606 (traxoprodil) and found antidepressant 

responses 5 days after drug administration, including in patients with TRD [69]. 

Furthermore, compared to ketamine, the psychotomimetic effects of CP-101,606 appear to 

be diminished, although not absent. Following these clinical findings, preclinical studies of 

another GluN2B antagonist, Ro-25-6891 have been conducted and compared with ketamine. 

Ro-25-6891 administration rapidly increases mTORC1 signaling within 1 h and elevates 

synaptic proteins in the PFC within 6 h after dosing [15]. Ro-25-6891 also produces 

antidepressant responses in the forced swim and novelty suppressed feeding tests. Another 

study reports that a single dose of Ro-25-6891 produces a rapid reversal of depressive-like 

behaviors resulting from chronic unpredictable stress, as seen in the SPT and novelty-

suppressed feeding test (NSFT) [16]. However, a phase 2 clinical trial with another GluN2B 

antagonist, CERC-301 was negative, although there was a small effect at the higher dose 

tested (Cerecor press release), and further studies are needed to confirm the antidepressant 

efficacy of this and other GluN2B antagonists.

Antidepressant Efficacy of (R, S)-Ketamine Enantiomers and Metabolites

Despite the potential for abuse and toxicity, ketamine represents a compelling therapeutic 

agent as well as prototype for drug discovery, and clinical studies of ketamine are currently 

underway. This has sparked further investigation into the chemical makeup of ketamine in 

the hopes of discovering a more specific and efficacious treatment for the clinic. The parent 

compound (R, S)-ketamine is a racemic mixture of the (R)- and (S)-enantiomers. Due to its 

higher affinity for the NMDA receptor, (S)-ketamine has been considered the active isomer 

and thus the leading contender as a rapid-acting antidepressant [70]. In support of this 

hypothesis, a recent clinical study reported rapid-acting (within 2 h) antidepressant effects of 

(S)-ketamine compared to placebo [44]. However, it is important to note that a saline 

placebo was used instead of an active placebo like midazolam, thus treatment condition may 

not have been fully blinded. Furthermore, (S)-ketamine injections produce adverse effects 

similar to the racemic mixture. Nevertheless, (S)-ketamine, formulated as a nasal spray 
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application, has fast-track designation for the treatment of depression and suicide ideation by 

the FDA.

Recent studies in rodents suggest that, contrary to original hypotheses, (R)-ketamine 

produces rapid-acting antidepressant effects that are comparable to (R, S)-ketamine but 

without side effect behaviors, including prepulse inhibition and conditioned place 

preference, measures of sensory gating, and drug abuse potential, respectively [45, 47, 49••]. 

A rodent study using repeated administration of corticosterone to induce depressive-like 

behavior found that acute injections of either (R, S)-ketamine or (R)-ketamine, but not (S)-

ketamine, was sufficient to produce long-lasting antidepressant effects, as measured by the 

FST and tail suspension test (TST) 24 and 48 h after injection, respectively [48]. However, 

there has yet to be a comprehensive investigation of (R)-ketamine in clinical trials, studies 

that are critical for validating the efficacy and side effect profile of this enantiomer. 

Interestingly, a recent study found that (S)-ketamine’s antidepressant effects are mTOR-

dependent whereas ERK signaling appears to be key to the antidepressant effects of (R)-

ketamine [46]. The observed divergence in signaling pathways may explain the differential 

efficacy and side effect profiles reported in rodent studies.

The parent drug (R, S)-ketamine is metabolized into an array of metabolites, and the 

contribution of these individual metabolites to the antidepressant effects of ketamine has 

largely been unknown. New evidence suggests that an active me-tabolite of ketamine, (2R,

6R)-hydroxynorketamine (HNK), exerts antidepressant-like effects in mice, but without side 

effect behaviors (i.e., no effect in prepulse inhibition or conditioned place preference [49••]. 

Similar to ketamine, preliminary research suggests that HNK’s effects are BDNF- and 

mTOR-dependent (Fukumoto et al., unpublished data). Furthermore, the study concludes 

that (2R,6R)-HNK does not act at any known NMDA sites and the binding site is currently 

unknown. Like (R)-ketamine, clinical trials are required to determine the efficacy and side 

effect profile of (2R,6R)-HNK as findings in rodent models do not always translate to the 

clinical setting.

Antidepressant Efficacy of GLYX-13 (Rapastinel)

The binding site for the co-agonist glycine is located on the GluN2B subunit, making it a 

unique target for the treatment of depression, since, as discussed, this subunit had been 

under investigation. One compound of note is GLYX-13 (Rapastinel), a tetrapeptide and 

functional glycine-like partial agonist, specifically at GluN2B containing NMDARs [50]. 

Recent preclinical work has explored antidepressant models and found that a single dose of 

GLYX-13 is sufficient to produce a rapid antidepressant response, including reversal of 

anhedonia resulting from chronic unpredictable stress exposure [51, 52]. Similar to 

ketamine, GLYX-13 increases spine synapse formation in the PFC, and its antidepressant 

effects are AMPAR-, BDNF-, and mTORC1-dependent [51, 53, 54]. However, unlike 

ketamine, GLYX-13 does not influence responding in prepulse inhibition or conditioned 

place preference, or 5-HT2A induced head-twitch response of impulsivity in a serial reaction 

time task [51].

Phase II trials in depressed patients have also demonstrated that GLYX-13 produces rapid 

antidepressant action, but without the dissociative and psychotomimetic effects of ketamine 
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[55•]. Preliminary, but unpublished, research on NRX-1074 (Naurex, Inc.), report rapid and 

robust antidepressant effects following a single infusion [unpublished data available at: 

www.naurex.com/pipeline/nrx-1074]. Furthermore, an orally bioavailable analogue of 

GLYX-13 underwent Phase I trials, but data has yet to be published on the safety and 

tolerability of the drug candidate [ClinicalTrials.gov Identifier: NCT02366364].

Scopolamine, Acetylcholine Muscarinic Antagonist with Rapid Acting Antidepressant 
Actions

Non-glutamatergic agents have also come under investigation for their rapid acting 

antidepressant actions. Recent studies demonstrate that a single dose of scopolamine, a 

nonselective muscarinic acetylcholine (ACh) receptor (mAChR) antagonist, produces rapid 

antidepressant actions within days, not as fast as ketamine [56–58]. Like ketamine, 

scopolamine treatment results in a rapid and transient burst of glutamate in the mPFC and 

increases the number of spine synapses [59]. The antidepressant effects of scopolamine in 

rodent models have recently been shown to be mediated through M1-AChR, specifically on 

somatostatin interneurons in the mPFC, and are dependent on activity-dependent release of 

BDNF [60, 61]. These studies provide evidence that scopolamine, via blockade of M1-

AChR on GABA interneurons increases glutamate through a disinhibition mechanism 

similar to ketamine blockade of GluN2B receptors on GABA interneurons.

Sexual Dimorphism in MDD

Most of the preclinical studies on ketamine and other rapid-acting agents have been 

performed in male rodents, and most of the clinical studies do not provide sex-specific 

effects of treatment response. While both males and female patients are diagnosed with 

MDD, females are twice as likely to suffer from depression [71], and it is well known that 

drugs can have differential efficacy in males and females [72, 73]. For example, a meta-

analysis of 15 randomized, placebo-controlled trials on six different commonly prescribed 

SSRIs or SNRIs found that female MDD patients had significantly greater responses to 

SSRIs than men [74].

Over the years, great effort has gone towards identifying differences in neuroendocrine 

responses, circulating hormones, and cognitive control circuits to explain the sexual 

dimorphism observed in MDD [9, 75, 76]. However, MDD is a heterogeneous disease with a 

multifactorial etiology. Although there may be comparable and conserved deficits across 

individuals with MDD, the variability in the expression and experience of the disease is 

likely accounted for by the interplay of numerous factors. Thus, a better understanding of 

how all of the parts (genetics, hormones, circuitry, early life experiences) produce the whole 

(depression) is vital to developing more personalized, and therefore effective, treatments.

A recent study has started to explore differences in gene expression that could further 

explain the observed sexual dimorphism in MDD [77••]. The study reports on sex-specific 

disease-associated modules identified in postmortem brains of depressed male and female 

subjects. Not only does this study find sexual dimorphism in the levels of differential 

expressed genes in individuals with MDD compared to healthy controls, but the results also 

demonstrate sex-specific depression-associated modules. For example, expression of Dusp6, 
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a dual specificity MAP kinase phosphatase, is decreased in the vmPFC of females while the 

transcription factor EMX1 was increased in the vmPFC in males. Further exploration of 

these interconnected hub genes in both clinical and rodent studies and a more thorough 

understanding of the development of these sex-specific modules in MDD will be of great 

value to the field [78].

These disease-associated and sex-specific modules for depression and the molecular circuits 

they give rise to may be instrumental in establishing the E:I imbalance. A number of studies 

report on deficits in GABA-mediated inhibition in MDD [32, 79–81]. While these deficits 

emerge in both sexes, down-regulation of somatostatin (SST), a marker of a GABA neuron 

subtype, is significantly greater in women with MDD [9]. Furthermore, a gene co-expression 

network analysis in healthy controls finds that SST and GAD67 are co-regulated by X-

chromosome genetic polymorphisms, providing additional mechanistic insight into the 

observed sexual dimorphism in MDD.

Considering Sex When Treating Depression

While additional research is needed to unravel and understand how gender-differences effect 

the etiology and pathophysiology of MDD, ongoing pre-clinical and clinical studies are 

needed to further our understanding of treating these sex-differences. A clinical trial 

investigating the antidepressant efficacy of scopolamine found that both males and females 

show a rapid antidepressant response but females had a higher magnitude of response [58]. 

Furthermore, only the females showed an anti-anxiety response. To our knowledge, this is 

the only clinical trial using a rapid-acting antidepressant to have performed gender-specific 

analyses on antidepressant response. More studies like this are sorely needed to address the 

higher rates of depression in women.

Moving forward, it is important to perform these same studies and all future studies in 

women and female mice. A rodent study comparing male and female responses to ketamine 

found that female mice responded to lower doses of ketamine (3 mg/kg) than males and that 

following chronic mild stress females were more reactive to ketamine, yet the effects lasted 

longer in males [82•]. A recent study examined the pharmacokinetic profiles of ketamine 

and its metabolites in the brains of male and female mice and found that while levels of 

ketamine and norketamine were similar, females had threefold higher levels of the 

metabolite (2S,6S;2R,6R)-HNK, which may explain the observed enhanced responses to 

ketamine in females (Gerhard et al., unpublished data).

Male and female rats exposed to a chronic social isolation paradigm used to induce 

depressive-like symptoms exhibited conflicting effects to ketamine treatment (during estrous 

cycle for females) [83•]. While male rats showed both anhedonia and depressive-like 

symptoms (i.e., helplessness in FST and anhedonia in SPT) following 8 weeks of isolation 

that were reversed by a 5 mg/kg dose of ketamine, female rats only showed depression-like 

behaviors (not anhedonia), which were reversed by both the 2.5 and 5 mg/kg doses. 

Furthermore, although both male and female rats exhibited significant reductions in spine 

density and levels of synaptic proteins following chronic isolation, only male rats had a 

reversal in these deficits following ketamine treatment. This study went on to show that 
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spine density is higher for females in the proestrous than the estrous stage. It has long been 

known that increased levels of estrogen, such as during the proestrous stage, increases apical 

dendritic spine density on CA1 pyramidal cells and that these fluctuations in estrogen levels 

may affect cognitive performance across hormonal change [84–86].

Another study reported that female rats also responded to lower doses of ketamine and also 

found that these effects were completely abolished in ovariectomized females but restored 

when supplemented with physiological levels of estrogen and progesterone [87]. 

Interestingly, a recent study looking at the long-term effects of ketamine abuse found that 

women, but not men, reported higher depression scores and showed increased functional 

connectivity between the subgenual anterior cingulate cortex and the dorsal medial PFC 

[88]. Collectively, these studies further highlight how gender differences may affect the 

development and possibly the treatment of depression.

A better understanding of the pathophysiology of depression in both males and females 

could help reveal novel and more therapeutic pharmaceutical targets. However, beyond 

understanding sex differences in the etiology, pathophysiology, and treatment of MDD, 

women suffering from depression present additional compounding variables for the 

treatment equation, including postpartum and peri-menopausal depression. Thus, further 

studies are needed to determine the safest and most effective treatments for not only men vs. 

women, but also women vs. pregnant women vs. women undergoing menopause.

Conclusions

The finding of ketamine’s rapid-acting antidepressant effects is possibly the most important 

discovery in depression research in the past 60 years. Despite ketamine’s efficacy, especially 

for TRD and suicidality [89], it also has negative or undesirable side effects and has the 

potential for abuse. Furthermore, for most patients, the antidepressant effects are short-lived 

following infusions. This necessitates further investigation into ketamine’s mechanism of 

action to guide the development of more selective treatments that lack these effects and are 

safe for chronic use.

We explore how neuronal atrophy and E:I imbalances inform our understanding of both the 

etiology and treatment of MDD, and then how rapid-acting agents help to repair the long-

term sequelae of stress and depression. Although there are some discrepancies in the 

literature as to the exact neuro-chemical alterations in the mPFC accompanying depression, 

it is clear that disruptions are ongoing in the mPFC circuity, likely explained by the brain’s 

attempt to reach homeostasis amid the atrophy. Beyond reversing stress-induced behavioral 

deficits, the aim of rapid-acting antidepressants in rodent studies has been to reverse 

observed neuronal atrophy and increase release of BDNF, two hallmark indicators of 

depression and rapid-acting antidepressant efficacy. In addition to the parent compound 

ketamine, preliminary studies in rodents demonstrate the potential of ketamine’s 

enantomers, (R)- and (S)-ketamine, and more recently, one of ketamine’s metabolites, (2R,

6R)-HNK. It will be exciting to see if the success of these agents in rodent models of 

depression translates to clinical efficacy. Beyond ketamine, other agents have been found to 

produce comparable rapid-acting antidepressant effects through mechanisms much the same 
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to ketamine. However, Glyx-13 is hypothesized to be a glycine-like partial agonist whereas 

scopolamine achieves these ketamine-like effects by antagonizing AChR-M1.

Most of the field’s understanding of the underlying cellular and molecular changes 

following both conventional SSRI and rapid-acting antidepressant treatments is markedly 

driven by rodent studies in males and clinical studies that often fail to report male and 

female cohorts separately. Although clinical trials are often constrained by sample size, 

additional analyses exploring the effects of gender, and even age x gender, could greatly 

benefit preclinical studies and possibly have more immediate impacts in the clinic. 

Depression has a recurrent trajectory and is described as a neuroprogressive disease where 

with each recurring episode, patients experience increasing severity, reduced therapeutic 

response, and shorter remission period, thus identifying and successfully treating MDD 

during early onset is essential [90–92]. In modeling trajectories of relapse, a recent study 

found that female gender significantly increased the odds of membership in the relapse 

trajectory [93]. While sex is an important factor in determining the optimal treatment for an 

individual, it is not the only variable. Age, concurrent medications and illnesses, and 

pregnancy are only a few factors that accompany an MDD diagnosis and further confound 

our understanding of the pathophysiology of MDD and the best course of treatment. Despite 

these challenges, new rapid acting, highly efficacious agents like ketamine provide important 

alternatives for depression and suicide and mark a new era in the treatment of depression.
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Fig. 1. 
Pathophysiological consequences of stress and depression and reversal following acute 

treatment with rapid-acting antidepressants. Chronic stress and depression result in neuronal 

atrophy and an E:I imbalance in the PFC. These deficits are reversed by rapid-acting 

antidepressants like ketamine. Low-dose ketamine triggers a rapid and transient burst of 

glutamate in the mPFC, possibly through disinhibition of pyramidal neurons, which then 

activates post-synaptic AMPARs. Activity-dependent release of BDNF and activation of 

TrkB receptors initiates an mTOR-dependent intracellular signaling cascade that regulates 

synaptogenesis
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