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Abstract

Mastering a motor skill is typified by a decrease in variability. However, variability is much more 

than the undesired signature of discoordination: structure in both its distributional properties and 

temporal sequence can reveal control priorities. Extending from the notion that signal-dependent 

noise corrupts information transmission in the neuromotor system, this review tracks more recent 

recognitions that the complex dynamic motor system in its interaction with task constraints creates 

high-dimensional spaces with multiple equivalent solutions. Further analysis differentiates these 

solutions to have different degrees of noise-sensitivity, goal-relevance or additional costs. Practice 

proceeds from exploration of these solution spaces to then exploitation with further channeling of 

noise. Extended practice leads to fine-tuning of skill brought about by reducing noise. These 

distinct changes in variability are suggested as a way to characterize stages of learning. 

Capitalizing on the sensitivity of the CNS to noise, interventions can add extrinsic or amplify 

intrinsic noise to guide (re-)learning desired behaviors. The persistence and generalization of 

acquired skill is still largely understudied, although an essential element of skill. Consistent with 

advances in the physical sciences, there is increasing realization that noise can have beneficial 

effects. Analysis of the non-random structure of variability may reveal more than analysis of only 

its mean.

Variability and Noise in Skill Learning: Bad or Good?

Learning new motor skills is quintessentially human. Over our lifetime we learn to eat with 

knife and fork, ride a bicycle, and dance salsa, going far beyond the fundamental locomotory 

and reaching behaviors that all animals display. How can the neuromotor system achieve 

such extraordinary plasticity, flexibility, and creativity? Over the last decades there has been 

relatively little research in motor neuroscience on the acquisition of novel motor skills, in 

favor of research on more constrained movements under highly controlled conditions. For 
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example, a widely used experimental platform has been reaching of a 2-link arm in the 

horizontal plane with meticulously designed perturbations that introduce force fields or 

visuomotor mappings to induce adaptation1,2. When neuroimaging is involved, the tasks 

necessarily have to be further reduced to small finger and hand movements. While 

experimental reduction and control has a long history in motor neuroscience and is core to 

any empirical science, the perennial risk is that the real problems are “controlled away”. One 

such phenomenon that is intentionally attenuated by experimental control is variability. This 

review aims to draw attention to the fact that variability and noise in motor performance is 

not only a nuisance, but is a ubiquitous and informative biological feature that has meaning 

in itself, not only to the performer but also to the scientist who aims to understand movement 

control and coordination.

Trying to understand skill learning inevitably has to face variability. Mastering a new motor 

skill implies performing with increasing accuracy and diminishing variability, or “with 

maximum certainty and a minimum outlay of time or energy”3–6. Similarly, recent work 

showed that skill improvement manifests in a shift of the speed-accuracy trade-off 

function7,8: skilled individuals become less variable, while keeping the same tempo, or they 

can move faster without increasing variability. And yet, not even Olympic athletes ever 

perform with total certainty - like robots. In fact, this is what makes competitive sports 

interesting to watch. Why are humans not perfect? The complex neuromotor system has 

abundant noise and fluctuations at all levels9,10, and even deterministic physiological 

processes at lower levels may manifest in overt unstructured “noise”. Hence, skill cannot, 

and probably should not completely suppress noise. Rather, it should “make noise matter 

less”11,12, i.e., have little or no effect on task success. Further, variability is necessary when 

exploring solutions for a novel task. So, can noise be beneficial? The plethora of roles and 

meanings of variability is also reflected in a variety of seemingly similar and overlapping 

terms (see Table 1). While there are no strict definitions, the table attempts to reserve 

different labels for different aspects of variability. The fact that variability and noise is a 

phenomenon that is interesting and intricate has already been recognized by many other 

physical sciences13. This review aims to demonstrate and argue that variability is rich in 

information about control priorities in skill learning and maybe even more meaningful than 

the mean.

Adaptation versus De Novo Learning

Before reviewing variability in skill acquisition, a distinction needs to be drawn between de 

novo learning and adaptation: Evidently, not every movement is a novel skill that needs 

practice to be mastered. Adaptation of well-established behaviors such as postural control, 

locomotion or reaching to altered environmental demands epitomizes an essential behavioral 

capacity ubiquitous in daily life. Adaptation has received much attention over recent decades 

in experimental paradigms such as prism, visuomotor, or force-field adaptations. However, it 

should not be confused with de novo learning as its behavioral manifestations are markedly 

different, suggesting different underlying processes. Figure 1A illustrates how adaptation 

occurs at a relatively short time scale: in laboratory experiments few trials are sufficient to 

approximate the new target and in real life it has to happen almost instantly and accurately, 

e.g. when grasping a cup that is fuller than expected. The process reduces an externally 
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induced error back to zero-error performance, probably reducing sensory prediction errors, 

modeled by linear time-invariant systems14. This fast change contrasts to the weeks and 

months of practicing and fine-tuning a new skill, such as handwriting or learning to dance 

salsa (Figure 1B). An even longer process is motor development unfolding over the 

timescale of years15,16. Several essential elements of skill acquisition play only a 

subordinate role in adaptation: Exploration of new solution spaces is relatively modest (see 

below17); generalization, essential for any learning, tends to be limited as adaptation occurs 

fast in new situations18,19; adapted behaviors quickly vanish when the perturbation 

disappears20, despite savings upon renewed exposures. For skills long-term retention is 

essential and any intervention not only aims to accelerate the slow process of improvement 

but also achieve retention (Figure 1C). Unlike in adaptation, variability plays many different 

roles in skill learning and is an umbrella term for a plethora of conceptually distinct 

observations that are non-constant and non-stationary (see Table 1).

This review focuses on acquisition of perceptual-motor behaviors that are novel, demanding 

and complex with inherent redundancy that offers a space of multiple solutions that need to 

be explored and learned. The review begins with the traditional notions of noise as unwanted 

signal corruption to more recent perspectives how motor variability can reveal the structure 

of control, and can characterize stages of learning, and finishes with how noise may be 

leveraged in training interventions.

Noise as Nuisance

Dating back to Woodworth21 in the late 1900’s and a prominent concept since the advent of 

information theory22 in the 1950’s, noise has been regarded central to understand 

communication in signal and symbol processing systems, such as the brain and the 

neuromotor system. Undisputedly, neural signals in the body have noise that can corrupt the 

information transmission. To assure veridical information transmission, it is necessary to 

minimize noise and thereby increase the signal-to-noise ratio. Directly motivated by 

information theory, Fitts’ seminal study showed how an increase in speed engendered higher 

variability and, where possible, variability is traded off against speed23. Fitts’ Law was 

explicitly derived as an information-theoretic formulation, even though later research 

brought forth variations and new interpretations of the same observations24. The view that 

signal-dependent noise is detrimental is pervasive and foundation to much current 

theorizing. For example, Wolpert and colleagues showed how reduction of signal-dependent 

noise and optimizing endpoint error/precision can produce several core features in motor 

control25,26. While this perspective remains valid, noise is more than just a nuisance. As 

many other physical sciences have revealed, noise can have structure that is informative and 

beneficial (see Table 2 for a brief summary of different scientific directions). Capitalizing on 

these insights and developments, also research in motor control has adopted new 

perspectives where noise and variability started to play important roles.

Variability and Stability in Complex Dynamical Systems

With the rise of nonlinear dynamics in the 1980’s in the physical sciences, a dynamical 

systems perspective was also applied to biological systems27 and movement coordination in 

particular28–30. Initially centered on bimanual rhythmic coordination, the focus of attention 
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broadened and stability and variability became core concepts for theorizing about movement 

coordination31–34. Variability can reflect the stability of a coordinative structure and 

fluctuations can induce phase transitions, i.e. discontinuous changes in behavior35. Of 

central importance is that the dynamical system is high-dimensional and has redundancy 

such that any task goal can be achieved in multiple ways; this was introduced as the 

Bernstein problem36–38. Figure 2 illustrates the different redundancies that arise in a motor 

task, here using Bernstein’s original example of hammering on an anvil. Intrinsic 

redundancy is defined by the redundant mapping of the joint degrees of freedom of the body 

onto the endpoint, e.g. the tip of the hammer. Extrinsic redundancy is defined by the 

multiple trajectories that can all hit the anvil at the same point. Further, the task can also 

offer redundancy as the anvil is not a single point but an area and allows an infinite set of 

successful hits. With these nested redundancies, the sensorimotor system does not have to 

select unique optimal solutions, but rather has families of solutions that achieve a task goal. 

In Bernstein’s words, there is “repetition without repetition”. Even at a highly skilled level, 

no movement is ever the same: there is always variability.

As a consequence, variability no longer only represents corruptive noise, but rather the 

expression of flexibility and choice of the central nervous system and a motor for the self-

organization in a dynamical system. Noise may have self-similar, fractal structure and it can 

be “colored”, characterized as power laws in its spectrum39. These features take noise far 

beyond the well-understood normal or Gaussian distribution, quantified by its mean and 

standard deviations, as frequently included in simple models. Variability in a high-

dimensional system is multi-dimensional and its extent can differ in different dimensions, 

i.e. be anisotropic. This structure, both in its spatial distribution and its temporal evolution, is 

informative. In motor neuroscience, it may inform about control priorities of the central 

nervous system and its relation to task constraints.

Structure of Variability in Redundant Solution Spaces

Since the emphasis on the human system as a multi-degree-of-freedom system, redundancy 

and the notion of null space, i.e. the manifold of task-equivalent solutions, has figured 

prominently. Starting point for analysis was variability from repeated executions with a 

focus on the shape of its distribution in the different dimensions of the solution space, i.e. its 

anisotropy. Three related methods have been developed to quantify this anisotropy of data 

sets: the Uncontrolled Manifold method (UCM), the Goal-Equivalent Manifold (GEM) 

approach, and the Tolerance, Noise and Covariation (TNC) approach. Figures 3 illustrates 

these three methods with an exemplary data distribution plotted in a schematic space 

spanned by 3 execution variables. The space may for example represent three joint angles 

mapping into one endpoint in extrinsic space, or different endpoints mapping into the task 

space. The set of executions that achieve a given result is represented by the nonlinear 

surfaces. For clarification, the three insets show a 2D section of the same data and manifold. 

While sharing a common objective, the three methods also differ in critical aspects, both 

theoretically and conceptually, as briefly summarized in the following.

The UCM approach defines skilled task performance as the ability of a time-varying 

dynamical system to maintain a relatively invariant state40,41. Standard covariance 
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(Jacobian) analysis parses variability into components parallel and orthogonal to the null 

space. In this stable or skilled state variations across repetitions show low variance in 

directions that affect the result, compared to larger variance in directions that do not affect 

the result. Figure 3A illustrates this method by showing a data set (yellow dots) and its null 

space as a plane (red grid) and the orthogonal space as a line normal to the null space (red 

line). A ratio between the variances projected onto the orthogonal and parallel directions 

captures the degree of “skill”, with more variance in the null space signifying higher skill. 

The null space is a linearization around the mean point, which can differ from the full set of 

solutions with the same result, if this is nonlinear (like the surface shown in light blue). This 

manifold can also be separate from the manifold of solutions with zero error. Note that the 

Jacobian is calculated around the mean of the data. If the mean differs from zero error, this 

goes unnoticed. In this case, there is another manifold that defines zero error (shown in dark 

blue). The inset shows a 2D section with the data mean on the light blue manifold and the 

zero-error solution as a dark blue manifold. The two lines illustrate the null space and its 

orthogonal direction.

The UCM analysis has been applied to several motor skills and has shown evidence for the 

anisotropy, but predominantly focused on identifying controlled variables, rather than 

learning processes42. While the original analysis only decomposed variability around the 

mean performance, a recent extension introduced analysis of “motor equivalence” to 

decompose changes in execution variables in response to changes in task or perturbations43. 

Note that when the UCM-method was applied to evaluate trajectories, the method requires 

the set of trajectories to be time-normalized and binned so that the UCM-analysis can be 

applied to the sets of data within each time bin. The analysis cannot deal with temporal 

evolution per se. One other caveat for this and other covariance-based variability analyses is 

that they are sensitive to the choice of coordinates44.

The GEM-approach uses the same mathematical tools of covariance analysis to steady-state 

behavior45. However, the GEM-approach also maps the observed dynamics of task 

performance onto an independently defined goal or solution space (Figure 3B). Knowing 

this goal function, small errors in execution variables can be mapped into result variables 

and the sensitivity of solution manifold can be quantified46. Figure 3B shows the same two 

nonlinear manifolds but now the solution manifold has additional error sensitivity. Similar to 

UCM, one assumption is that the data are at steady state clustered around the zero-error 

performance. The method has been applied to tasks where this assumption was justified, 

such as walking or a simple shuffleboard tasks, where subjects had reached their asymptote 

in performance.

The TNC-analysis was explicitly developed to quantify structural changes in variability 

throughout practice to identify different learning processes11,47–49. Figure 3C show the same 

initial non-Gaussian data set (yellow) that then translates towards the solution manifold over 

two days of practice. Initial changes are quantified by Tolerance-cost, defined as the change 

in location of the data in the result space. Covariation-cost quantifies the amount of 

performance improvements by covarying the dispersion with the solution manifold 

(covariation is calculated numerically and is distinct from covariance analysis). Noise-cost 

quantifies how minimizing the magnitude of stochastic dispersion achieves the best result. 
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While Tolerance-cost describes initial exploratory changes, Covariation-cost and Noise-cost 

describe processes that come to prominence later in practice. Covariation-cost in particular 

correlates with the slow decrease in performance error and variability, but both processes 

continue to change in parallel over days of practice50; however, a study on 16 days of 

practice showed that Noise-cost remained the highest cost to performance.

Unlike UCM and GEM, the TNC-analysis uses numerical tools that evaluate the entire result 

space (shown by different color shades in the inset of Figure 3C). Hence, sensitivity or 

tolerance is known for all locations in the result space, which is the basis for the cost 

calculations. The disadvantage of the numerical procedure is that it can become cumbersome 

for higher-dimensional spaces. Further, the goal function, i.e., the mapping between 

execution and result variables should be known or has to be approximated via regression. 

The most important conceptual difference to UCM and GEM, which analyze the data 

distributions in the space of the execution variables, is that the TNC-method projects the 

data into the space of the result variables and quantifies the costs in these units. Due to this 

projection, execution variables can have different units, such as position and velocity for the 

studied throwing task. Therefore, the analysis is in principle applicable to multi-modal 

problems. In contrast, the covariance methods of UCM and GEM require a metric, which 

necessitates the same units in the execution variables or some appropriate normalization.

In sum, despite the differences, all three methods concur in that variability consists of 

deterministic and stochastic processes and its structure reveals control processes in 

performance and learning. Skill learning is a multi-stage process of finding a stable solution 

where detrimental effects of the intrinsic neuromotor noise onto performance is reduced.

Sensitivity to Errors and Noise

While revealing, these analyses remain descriptive of the observed behavior if they are not 

supplemented by synthesis with a model that generates the observed structure of variability. 

One approach towards a generative model is to analyze the trial-to-trial changes in the space 

of execution variables51. Dingwell et al51 examined reaching tasks where different speed-

amplitude profiles defined different GEMs. Analysis of trial-by-trial fluctuations in 

directions parallel and orthogonal to the solution manifold showed that subjects actively 

corrected deviations perpendicular to the manifold faster than deviations parallel to the 

manifold. With a focus on learning, Abe and Sternad52 analyzed a throwing task and 

quantified persistence and anti-persistence in successive throws over 6 days of practice. 

Subjects clearly became more sensitive to the direction of the execution space and the 

solution manifold. An iterative learning model replicated these results, although the most 

pronounced persistence and anti-persistence did not coincide exactly with the parallel and 

orthogonal directions. Testing different types of scaling of the embedding coordinates 

illustrated how such coordinate choices – or the coordinate of the CNS - might skew the 

direction in solution space.

Complementing studies on the same throwing task focused on the hand trajectory and the 

timing of ball release. A range of task variations showed that the hand trajectory increasingly 

aligned with the solution manifold, thereby creating longer timing windows for ball releases 

that all lead to task success53–56. These error-tolerant timing windows relaxed the necessity 
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to accurately time the ball release to achieve a good hit. Interestingly, this error- and noise-

tolerant hand trajectory developed after the timing accuracy had reached a plateau. Similar 

trajectory changes were also observed in children with severe dystonia who thereby may 

have compensated for their high motor variability57. A mathematical analysis of a simplified 

throwing task by Mahadevan and Venkasedan58 demonstrated how the dynamics of the 

physical task and noise propagation from initial conditions to projectile landing determines 

error-sensitivity and thereby optimal throwing strategies. This analysis underscores how the 

task dynamics constrains control strategies before making any assumptions about the 

neuromotor system.

While all these studies focused on a throwing skill that involved an external degree of 

freedom, the ball, and a singular moment that determined task success, the release, 

sensitivity to noise and errors was also examined in a continuous reaching task that required 

navigating around an obstacle59,60. Detailed analyses of the chosen paths and their error 

sensitivity in kinematics, inertia or admittance of a simple arm model revealed that humans 

favored paths around the obstacles that were less sensitive to error or at risk to collide with 

the obstacle. These studies on the modulation of reaching underscores the central role of 

sensitivity to errors and noise in coordination.

Variability for Exploration of the Solution Space

A topic conceptually distinct from the variability due to differential sensitivity of 

performance is the variability at the early stages of practice, typically labelled “exploration”. 

In a redundant solution space in addition to intrinsic redundancy in the effectors, it is not 

surprising that the learner needs to “experiment” to find the best possibilities for action. 

Spurred by this recognition of high-dimensional solution spaces and advances in 

reinforcement learning, exploration in learning has garnered recent interest again61–64. 

Smith and colleagues examined learning in a series of reaching tasks, where either typical 

error feedback was provided or reward to shape a specific desired path65. Several metrics 

computed at the end effector differentiated between task-specific and total variability and 

showed that subjects consistently reshaped the structure of their motor variability in a 

manner that promoted learning. Most noteworthy was that motor variability was correlated 

with the individual’s learning rate and therefore seemed to predict learning rate. These 

findings reinforced the importance of action exploration again and strongly implied that the 

CNS actively regulates and exploits variability to facilitate learning in both error-based and 

reinforcement scenarios.

While intriguing, the results could not be replicated in several follow-up studies. Wei and 

colleagues66 conducted several experiments including visual perturbations, simulations with 

an optimal learner model, and a meta-analysis of extant data on reaching adaptation that all 

rendered divergent results. The authors surmised that multiple factors contributed to the 

observed variability, including sensory uncertainty, an incomplete forward model, noise in 

motor planning, execution and muscle noise. Hence, the rate of learning may be independent 

from initial variability measured at the endpoint. Extending the reaching paradigm to a 

redundant task where 4 joint angles mapped onto 2-dof target position in the horizontal 

plane, Singh and colleagues67 again failed to replicate Wu et al.’s results, but also reported 
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that the joint variability in null-space (task-irrelevant variability) in the baseline session did 

correlate with a measure of learning rate. Going beyond variability at the endpoint of a 

reaching task, two other recent studies on a pointing and bimanual task again failed to 

replicate the finding68,69. Finally, Barbado and colleagues70 examined the temporal structure 

of variability in a standing and a sitting postural task. As different initial performance levels 

correlated with learning rate, learners were separated by their initial performance level. 

Individuals with lower long-range correlations, measured by detrended fluctuation analysis 

(DFA), not only showed better performance, but also displayed a faster learning rate. The 

findings were interpreted as reflecting higher error sensitivity rather than exploration per se.

Stages of Learning Defined by Changing Roles of Variability and Noise

Given these divergent findings it becomes clear that exploration and exploitation of the 

solution space is a multi-faceted phenomenon. Note that in computer science and robotics 

many algorithms have been developed for exploration of non-convex high-dimensional 

space, e.g. the rapidly exploring random tree algorithm (RRT) that describes a differentiated 

branching path74. Merging numerous findings, we would like to suggest that learning 

proceeds in stages that are characterized by different roles and contributions of variability. 

At the initial stage when the solution space is unknown the search for strategies to achieve a 

task might require random explorations that are nevertheless intentional. The information 

garnered is stored and used to build a representation of the solution space. Hence, these 

explorations are not necessarily Gaussian; for example research on a pole balancing task has 

shown a mixture of movements that include rare large deviations that lead to long tails in the 

distribution, i.e. to Levy distributions71,72. At later stages, exploration may only require 

smaller-scale gradient search in a linearized environment before this process will transition 

to exploitation. The observed “exploratory” variability is always confounded with intrinsic 

noise and slow drifts that the CNS is unaware of, and therefore do not contribute to the 

representation of solution space. Importantly, in any human experiment there is also 

intentional switching of strategies for biomechanical reasons or to break psychological 

monotony73. When approaching a performance plateau, the only way to further improve 

performance is by reducing the noise level.

Our own work on the decomposition of variability differentiates between three processes 

(TNC)47–49: the first stage consists of finding the right location in the solution space which 

is quantified by Tolerance-cost. The fine-tuning stage proceeds by two intertwined 

processes: one consists of covarying the execution variables to align with the solution 

manifold, quantified by Covariation-cost. The second process consists of a general decrease 

of the variance of noise, quantified by Noise-cost. The data show differential emphasis of the 

three processes throughout practice, but also reflect that they are not strictly sequential. It is 

therefore safe to say that variability is a conglomerate of many different processes and 

sources.

In sum, before rushing to conclusions about exploratory variability based on simple variance 

measures, all these sources of variability need teasing apart. More behavioral research is 

needed to identify different facets of variability in learning. One focus should be to examine 
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longer-term practice in longitudinal studies that afford teasing apart variability and its 

change over extended practice.

Mechanisms for Increasing and Decreasing Random and Exploratory Variability

Given these potential positive effects of variability, one may ask whether the human 

neuromotor system is able to increase the magnitude of the variability or random noise 

component. Although identified in birdsong61,75, it remains an open question whether these 

intriguing mechanisms have an analog in humans whose anatomy and motor behaviors are 

undoubtedly very different. One study by Shadmehr and colleagues revealed some evidence 

for an “intentional” increase in variability and tied it to dopamine. When healthy control 

subjects performed fast reaching actions with different probabilities of reward, they 

increased their trial-to-trial variations when reinforcement was absent, presumably in search 

for more rewarding solutions76. The fact that unrewarded trials were followed by larger 

changes suggests immediate corrections, as they were also accompanied by a bias. 

Interestingly, Parkinson patients showed smaller trial-by-trial changes and less sensitivity to 

reward prediction errors, suggesting that this variability was regulated by dopamine.

While increasing variability may be helpful for exploration, in the later stages of 

“exploitation” lower variability, at least at the task-relevant endpoint, remains desirable. Two 

recent studies on accurate throwing have shown that extensive practice with up to 2000 trials 

and more not only reduced error and variability by error corrections, but also lowered the 

residual unstructured noise77,78. Several time series analyses and system identification 

methods ruled out short and longer-range correlational structure in the trial sequence. How, 

or whether the magnitude of random fluctuations can be suppressed by the individual 

remains an interesting open question. Potential explanations are more efficient generation of 

neural activation in the cortex or neuromodulator mechanisms, such as serotonin, that affect 

motor neuron excitability and gains in the descending drive79,80.

Variability and Noise for Intervention

The previous summary emphasized that overt performance variability is determined by a 

plethora of factors in both the actor and the task. An initial search for gathering information 

is beneficial and necessary not only in reinforcement learning with sparse feedback but also 

error-based learning. Beyond exploration, other domains of science and engineering have 

long recognized the many positive roles that noise can play13 (see Table 2). In this spirit, 

several recent studies in motor control examined whether noise, inherent, amplified, or 

added to the neuromotor system, may have positive effects.

Two studies by Diedrichsen and colleagues tested the hypothesis that either amplifying 

intrinsic noise or adding extrinsic noise, uncorrelated with the individual’s fluctuations, can 

serve as teaching signal and guide the learner to solutions along the solution manifold81,82. 

Using a redundant 3-dof reaching movement in the horizontal plane, where either reach 

direction or a specific joint configuration was the target task, two studies only rendered 

partial support for noise as an implicit teaching signal. While reach error was quickly 

reduced, i.e., error-feedback directed the system onto the solution manifold (zero error), 

adding noise as a teaching signal to additionally optimize error sensitivity or effort, was only 
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successful if subjects were aware of the target direction. As the well-practiced reaching task 

might not have provided the right testbed for the hypothesized learning processes, Thorp and 

colleagues83 examined subjects practicing a novel mapping between 4-dof hand postures to 

2-dof cursor positions. When adding posture-dependent noise, subjects indeed acquired a 

control policy that minimized noise and avoided dimensions that increased noise. 

Importantly, they also generalized their newly-acquired mapping to other target postures. 

This countered expectations from Bayesian learning, where increased sensory uncertainty 

would lower the Kalman gain and slow down learning. It is conjectured that added noise 

may pressurize the system to quickly form an accurate control policy. If this is correct, then 

this may open an interesting route for clinical interventions.

Using their throwing task, Sternad and colleagues created noisy conditions by amplifying 

the task error with three different gains, with and without adding random noise77. Following 

three days of baseline practice when subjects had reached a performance plateau, amplifying 

the error, both in stochastic and deterministic fashion, led to significant further 

improvements. System identification with three different stochastic iterative learning models 

revealed that amplification led subjects to not only error-correct, but also to decrease the 

variance of the random noise. As potential neurophysiological mechanisms for such 

systemic reduction of intrinsic noise neuromodulators, such as serotonin79, are discussed. 

The successful use of manipulating variability for a clinical question was exemplified by 

Sanger and colleagues84, who examined whether children with dystonia could improve their 

performance when their variability was experimentally lowered. Trial-to-trial variability in a 

virtual shuffleboard task was attenuated by replacing their veridical puck release velocities 

by the average over their previous throws. Children with dystonia improved their 

shuffleboard score significantly, documenting their sensitivity to their own seemingly 

uncontrolled variability.

A computational study by Ajemian and colleagues85 highlighted the beneficial role of noise 

in a supervised neural network explicitly addressing the stability-plasticity dilemma, a well-

known problem in artificial intelligence: a single task A can be perfected, but learning an 

additional task B may eradicate, or at least interfere with task A. This dilemma, how to adapt 

to new information (i.e., be plastic) without overwriting old information (i.e., be stable), was 

resolved by using both high levels of noise and high gains, a combination that is widely 

expected to induce instability. However, as demonstrated, this hyper-plastic network can 

learn two stable patterns by orthogonalizing the two vectors representing the two tasks in 

weight space. High levels of noise in weights maintain continued plasticity, while top down 

feedback avoids drift in task performance. This distinction between noise in weight space 

while network performance remains stable is similar to the distinction between stable 

endpoint and variability in the null space of joint angles. The simulations are complemented 

by experimental data that compare interleaved and blocked practice schedules and 

demonstrate that the old phenomenon of “contextual interference” can be explained with this 

hyperplastic network. Given the high dimensionality of the neural network and the 

continuous regeneration and turn-over in cortical neurons86, this illustrates a viable 

supportive role for noise in the CNS.
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Motor Memory – the Forgotten Aspect of Motor Learning

Nobody would dispute that skill learning includes generalization and long-term persistence 

of the skill. Indeed, Schmidt confined the term “learning” to permanent changes in behavior, 

in contrast to fast improvements in laboratory sessions that may only reflect short-term 

adaptations or physiological changes87. Hence, strictly speaking, true learning can only be 

inferred from retention and generalization to different tasks. A recent study on error-based 

and reinforcement learning in cerebellar patients and control participants probed into this 

essential distinction: performing a visuomotor rotation task with and without visual error 

feedback revealed that in error-based learning error and variability of performance 

improved, but performance faded in the 100 retention trials much faster than under 

reinforcement learning conditions88. A model including two noise sources, random motor 

noise and exploratory “noise” (random deviations that serve as reference for subsequent 

corrections) replicated the findings. Interestingly, cerebellar patients could improve with 

binary reinforcement, although noise interfered. While the results are convincing, it should 

be noted that the retention session followed the practice session immediately. Retention tests 

become more informative, but also harder to implement, when they are scheduled days or 

weeks after the practice session. Huber and colleagues manipulated reward during 6 days of 

practice of the throwing task78. Increasing the threshold for reward led subjects to less 

variable behavior. Unexpectedly, when relaxing the reward requirements, subjects 

maintained their more precise performance over 5 retention days. Several time series 

analyses and a simple iterative stochastic model argued that trial-to-trial variability was no 

longer shaped by error corrections, but showed a significant decrease in the magnitude of 

noise.

Two long-term studies took retention to the extreme and tested performance of a novel 

polyrhythmic bimanual task in 20 practice sessions over 2 months and assessed retention 

after 3 and 6 months and after 8 years89,90. As practice was largely self-guided with 

extremely sparse feedback, subjects developed their individual kinematic signatures in this 

relatively challenging task. Retention tests showed remarkable persistence of subtle 

kinematic variations, even after 8 years. Different metrics improved and persisted with 

different time scales, suggesting different mechanisms generating the complex behavior. One 

group that received additional auditory guidance showed more “forgetting” indicating that 

extrinsic information may destabilize the internal representation of the task.

Given the central position of memory, both declarative and procedural, in cognitive 

psychology, it is remarkable how few studies in motor neuroscience have paid attention to 

retention and memory. We all “know” that one never forgets how to ride a bicycle, but then, 

musicians need to practice every day to not lose their skill. Memory formation remains a 

fascinating process and retaining and forgetting need more attention.

Beyond Variability and Noise in Skill Learning

The role of variability and noise in skill acquisition, or de novo learning, is a vast area of 

research and any review has to set boundaries. Figure 4 overviews adjacent experimental and 

theoretical approaches that were excluded here, but that are covered in other excellent 

reviews: mixtures of deterministic and stochastic structure in temporal fluctuations in 
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posture and locomotion91, the effect of varying practice conditions92, error-based learning 

and adaptation in well-established behaviors such as reaching, including implicit and explicit 

learning in SRT (serial response time) tasks14, Bayesian approaches, Kalman filter models 

and stochastic optimal feedback control93, reinforcement learning61 and the neural substrate 

of skill learning94.

This review aimed to highlight that variability not only reflects error corrections, but stems 

from a host of other processes at different time scales and from different levels of the 

complex high-dimensional system. This review progressed from noise as the unwanted 

corruption of a signal, to variability structured by the high dimensionality of the body and 

the task, including random searches for exploration of this solution space, noise as a means 

to induce plasticity and flexibility, and to shape behavior and form flexible and long-lasting 

skills.

While variability and noise attracts increasing attention, a host of questions are open and still 

unaddressed. How can we differentiate between desired and undesired noise? Is there a 

mechanism that turns on and turns off noise? What are the control mechanisms that channel 

variability into task-irrelevant directions? How can we use external noise to shape learning 

for clinical applications? Evidently, we are still far from understanding the positive and 

negative roles of variability and more methodological and theoretical approaches are needed 

to fully explore and exploit the information contained in overt variability.
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Highlights

• Analysis of variability provides information about control priorities

• Variability comprises a multitude of processes that contribute to skill 

improvement

• Stages of learning can be characterized by different roles of variability

• Skill learning aims to make intrinsic noise matter less in task performance

• Noise or unstructured variability can also be beneficial, e.g., exploration
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Figure 1. 
Behavioral change (Δ skill) in adaptation and skill acquisition. A: Adaptations to novel 

environmental or bodily conditions, such as wearing new shoes, starts with a behavior that is 

well-practiced, such as walking (pre-perturbation, error = 0). Wearing new hiking boots or 

high heels it usually only takes a short time to adapt the coordination pattern (per-

perturbation, Δ skill ≠ 0). After changing back to the regular shoes, the walking pattern 

quickly returns to baseline behavior (post-perturbation, error = 0). For the baseline behavior, 

there is typically no gain in skill (Δ skill = 0). B: Skill learning, such as learning a new 

dance routine, starts with high levels of errors and variability (error ≫ 0). Consistent 

practice, with or without controlled conditions, such as detailed performance feedback, leads 

to a reduction of error and variability (Δ skill > 0). This is typically a much longer process 

and results in long-term retention of the skill (Δ skill ≈ 0). Riding a bicycle is a skill that is 

never forgotten. C: In sports coaching and therapeutic interventions, the goal is to aid and 

accelerate the process of reducing error and variability by including expert guidance, verbal 

feedback, clues, and technology-based assistance (Δ skill ≫ 0). The goal is to achieve long-

lasting behavioral changes that should also generalize to other conditions.
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Figure 2. 
Illustration of multiple redundancies with the example of hammering on an anvil. Intrinsic 
redundancy: An infinite number of combinations of the three joint angles of the arm can 

place the tip of the hammer in one location in the plane. Extrinsic redundancy: An infinite 

number of trajectories can hit the anvil at one point. Task redundancy: The anvil can be hit 

at an infinite number of contact points, as the target is not a single point but an area. The 

shown trajectories are the original recordings of Bernstein38. Not shown is that similar 

intrinsic redundancies exist due to multiple muscles and muscle fibers achieving the same 

joint configuration.
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Figure 3. 
Overview of three methods to analyze variability in multi-dimensional spaces. The insets are 

2D sections of the 3D space. A: UCM-method. A schematic space spanned by three 

execution variables and the associated result variable, defining task performance. The darker 

nonlinear surface denotes the solution manifold, the set of executions that achieve the task 

result with zero error. Using the schematic data set (yellow dots) the UCM-method anchors 

the analysis at the mean performance, and applies Jacobian analysis to estimate variance 

parallel to the null space, illustrated by the plane (red mesh), and orthogonal to it (red line). 

Note the light blue manifold signifies that the non-linearized manifold can be a nonlinear 

surface and can differ from the solution manifold describing zero error. B: GEM-method. 

The analysis applies the same decomposition, but also introduces a goal function that defines 

the solution manifold and affords calculation of the error-sensitivity of solutions on the 

manifold. This is indicated by the dark blue color shading. C: TNC-method. Assuming the 

same task as in A and B, the three data sets represent performance on three practice sessions. 

The largest distribution (yellow, identical to the data in A and B) represents initial data (Day 

1) far from the solution manifold (same as in B). With more practice on Day 2, the set of 

trials (red) approaches the manifold (Tolerance-cost is small) and starts to covary with the 

solution manifold (Covariation-cost decreases); however, the distribution is still relatively 

broad. The Day 3 data set (green) represents performance after extended practice where the 

distribution has aligned with the manifold (Covariation-cost is small) and the dispersion is 

reduced (Noise-cost is small). Note that the numerical quantification of the TNC-costs does 

not assume Gaussian distributions.
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Figure 4. 
Overview of the current focus on skill acquisition and variability with related research areas 

and paradigms, both experimental and theoretical, in adjacent circles. These other areas are 

covered by other reviews on motor learning cited in the text.
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Table 1

Overview of terminology with brief definitions

Variability and Variation Umbrella terms for all sets or series of observations that are non-constant and may be also non-stationary.

Variance Well-defined concept in statistics that measures spread of data from its mean, quantified as squared 
deviation of a random variable from its mean.

Noise Unstructured variability, both in the temporal and spatial domain. In signal processing defined as a 
random signal with equal intensity at different frequencies, constant spectral density at all component 
frequency (white noise).

Colored noise or 1/f noise Signals with power spectral densities proportional to 1/fβ; for Brownian noise β=2. Note, the signal is still 
noise, but has different degrees of predictability.

Uncertainty Term originates in probability theory and Bayesian literature, defined as possible states or outcomes 
measured by assigning probabilities to each possible state or outcome, including probability density 
functions for continuous variables.

Fluctuations Non-constant behavior over time that can be stochastic or deterministic. Time series with sinusoidal 
changes and more frequency terms are fluctuations, but are not stochastic. The degree of structure is 
measured with metrics, such as entropy.

Deterministic versus
Stochastic processes

System or process whose outcome entirely determined by inputs and initial conditions, no randomness 
involved in the development of future states.
Random sequence or selection of data that have no structure in the temporal or spatial domain.

Isotropic versus Anisotropic 
distributions

Distribution is uniform in all directions; Distribution is non-uniform in different directions.
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Table 2

Examples of positive effects of noise in physical and biological systems.

Phenomenon Description Examples in Sensorimotor Control

Stochastic resonance Noise added to a weak signal raises the 
average signal level leading to better signal 
detection in a nonlinear system. Frequencies in 
the white noise corresponding to the signal's 
frequencies will resonate and amplify the 
original signal, thereby increasing the signal-
to- noise ratio.
Stability of nonlinear control systems, 
particularly oscillatory systems, can be 
enhanced by exploiting nonlinear mechanisms.

Insoles applying vibrations to the plantar foot surface showed 
that input noise can enhance sensory and motor function, via 
stochastic resonance95.
Stochastic vibrotactile stimulation stabilizes respiratory 
rhythm in preterm infants, avoiding life-threatening apneas96.
Perception of “subconscious” visual events ascribed to 
stochastic resonance, following enhanced neurons activation 
because of non- linearities in their processing97,98.

Fluctuations in 
physiological signal 
arising from spatial and 
temporal self- similarity

Long-range power law correlations over a 
wide range of time scales suggest that 
physiological systems operate far from 
equilibrium. Maintaining constancy 
(homeostasis) is not the goal of physiological 
systems.

Cortical neurons show dendritic arborization with self-similar 
(fractal) geometry. A variety of cardiac pathologies are 
characterized by long-range correlations in ECG signals99. 
Stride intervals in walking show altered scaling behavior and 
correlation properties in individuals with degenerative 
neurological disorders100–102.

Phase transitions in 
nonlinear dynamical 
system

Nonlinear dynamical systems with multiple 
stable states can undergo phase transitions 
between modes that are facilitated by noise 
(non-equilibrium phase transition). Robustness 
is defined as stability with respect to noise in 
parameters of a control

In rhythmic bimanual coordination, spontaneous transitions 
from anti-phase to in- phase movements are observed at a 
critical value of the control parameter movement frequency. 
Modeling these phase transitions with stochastic order 
parameter equation matches different time scales of 
behavior33. In speech recognition noisy data sets to train deep 
neural networks avoid over-fitting and

Inducing robustness system. Noise can improve state estimation 
and thereby enhance robustness. See also 
persistent excitation.

performance degradation in noisy acoustic conditions103. To 
discover robustness of an operating system noise can be 
injected by a program that generates strings of characters104.

Exploration in Deep 
Reinforcement Learning

Noise can be added in the so-called action 
(state) or parameter space of the policy.

Parameter noise often results in more efficient exploration and 
in some cases allows for solving problems in which action 
noise is unlikely to succeed105.

Dithering Intentionally applied form of noise used in 
digital signal processing to randomize error 
due to quantization. If quantization yields 
error that is repeating and correlated with the 
signal, the error may yield undesirable 
artifacts.

Image processing of a grey scale image routinely applies 
dithering to approximate the density of black dots to the 
average grey level in the original image. Color images achieve 
more depth if the limited color palette is extended by adding 
noise to available colors. In image classification, noisy or 
weakly correlated to the categories of their classification 
improves the performance of the classifier106.
In mechanical systems, small high-frequency vibrations or 
random noise reduces static friction between moving parts as 
they move less jerky and more continuously. This transforms 
the system into smooth dynamics that can be controlled more 
easily with standard techniques. It can also reduce wear and 
tear.

Simulated annealing and 
noise in networks

Probabilistic technique used in large-scale 
networks with large search space with the goal 
to find the global optimum. This noise is 
abated after the system found the global 
optimum.
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