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Abstract

A novel Model Predictive Control (MPC) law for the closed-loop operation of an Artificial 

Pancreas (AP) to treat type 1 diabetes is proposed. The contribution of this paper is to 

simultaneously enhance both the safety and performance of an AP, by reducing the incidence of 

controller-induced hypoglycemia, and by promoting assertive hyperglycemia correction. This is 

achieved by integrating two MPC features separately introduced by the authors previously to 

independently improve the control performance with respect to these two coupled issues. Velocity-
weighting MPC reduces the occurrence of controller-induced hypoglycemia. Velocity-penalty 
MPC yields more effective hyperglycemia correction. Benefits of the proposed MPC law over the 

MPC strategy deployed in the authors’ previous clinical trial campaign are demonstrated via a 

comprehensive in-silico analysis. The proposed MPC law was deployed in four distinct US Food 

& Drug Administration approved clinical trial campaigns, the most extensive of which involved 29 

subjects each spending three months in closed-loop. The paper includes implementation details, an 

explanation of the state-dependent cost functions required for velocity-weighting and penalties, a 

discussion of the resulting nonlinear optimization problem, a description of the four clinical trial 

campaigns, and control-related trial highlights.
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1 Introduction

People with Type 1 Diabetes Mellitus (T1DM) require exogenous insulin to regulate their 

Blood-Glucose (BG) concentration and, despite burdensome insulin treatment, tend to suffer 

difficulty maintaining healthy BG levels. Insufficient insulin causes hyperglycemia, which 

has few consequences if brief, but if prolonged may beget chronic health problems. Over-

insulinization induces hypoglycemia, which has very near-term consequences, including 
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death if severe. The objective of this work is an effective and safe control law for an 

Artificial Pancreas (AP) (Cobelli et al. 2011, Bequette 2012, Doyle III et al. 2014, Haidar 

2016) that performs automated insulin delivery to people with T1DM, with the goals of 

improving health outcomes and reducing treatment burden. The focus is Model Predictive 

Control (MPC) (Maciejowski 2002, Rawlings & Mayne 2009), considered in an AP context 

by others in (Hovorka et al. 2004, Magni et al. 2009, Breton et al. 2012, Bequette 2013, 

Turksoy et al. 2014, Zavitsanou et al. 2015), and by the authors in (Parker et al. 1999, 

Grosman et al. 2010, Gondhalekar et al. 2013, Dassau et al. 2015, Gondhalekar et al. 2016, 

Huyett et al. 2017, Dassau et al. 2017). Of specific interest is an AP for outpatient use, 

requiring (currently) a Continuous Glucose Monitor (CGM) sensor that provides feedback of 

BG measurements, and a Continuous Subcutaneous Insulin Infusion (CSII) pump to deliver 

insulin as commanded by the control law. Subcutaneous sensing and actuation suffer long 

delays; control action may take an hour to effect BG concentration changes. This major 

difficulty with CGM and CSII devices may result in controllers that over-deliver insulin 

during hyperglycemia, inducing subsequent hypoglycemia, and that fail to respond suitably 

quickly at the start of a BG rise, leading to more severe hyperglycemia. A more 

conservatively tuned control law may avert controller-induced hypoglycemia, but 

undesirably promotes hyperglycemia. Analogously, hyperglycemia is better corrected by 

more aggressive control laws, which abet hypoglycemia. In a traditional MPC framework 

this tradeoff limits the achievable performance, because safeguarding from hypoglycemia is 

the overruling priority. Theory on this performance tradeoff, in the context of linear positive 

systems and T1DM, was developed in (Goodwin et al. 2015). This work focuses on the 

design of single hormone AP controllers, whose actuation is only insulin infusion, thus 

possess no control authority to raise glucose levels. The challenge of circumnavigating the 

aforementioned controls tradeoff may partially be alleviated in bi-hormonal APs by adding 

glucagon infusion as a further control input (Cobelli et al. 2011, Bequette 2012, Doyle III et 

al. 2014, Haidar 2016), although research to date does not empower one to reach final 

conclusions pertaining to the medical efficacy and technological feasibility of bi-hormonal 

AP systems.

The goal, and main technical contribution, of this work is a novel MPC problem structure 

that simultaneously elevates the control performance and significantly increases the safety of 

an AP, compared to the MPC law employed in the authors’ previous clinical trial campaign 

(Dassau et al. 2015, Gondhalekar et al. 2016). These improvements advance the resulting AP 

towards the best achievable performance, within the envelope of the aforementioned tradeoff 

(Goodwin et al. 2015), but without tradeoff. In (Gondhalekar et al. 2015a,b) the authors 

introduced velocity-weighting MPC, whereby the MPC cost to penalize the BG deviation is 

velocity-dependent, i.e., the BG cost parameter itself is a function of the rate of change of 

the BG output. In a state of hyperglycemia the cost smoothly vanishes with an increasingly 

negative BG rate of change. The result is that stubborn hyperglycemia is corrected 

aggressively, but the controller ‘backs off’ when a hyperglycemic state is in the process of 

being corrected. In (Gondhalekar et al. 2014b) the authors introduced velocity-penalty MPC, 

whereby the actual BG rate of change is penalized using a cost that is state-dependent. 

Positive BG rates of change are then penalized directly, but only when the BG level is high. 

This results in a controller that provides an ‘extra kick’ during the uphill leg of large 
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hyperglycemic excursions. The algorithmic contribution of this work is to combine these 

two functionalities, with an enhancement of the velocity-penalty mechanism, and deploy 

them in tandem. The resulting controller responds with significantly increased insulin 

delivery at the start of large hyperglycemic excursions, e.g., as experience after an 

unannounced meal, and delivers very conservatively after the peak of the excursion has been 

reached. The resulting insulin delivery profile is thus prominently shifted towards the start of 

the excursion, leading to lower BG peaks, a stark reduction in hypoglycemia risk, and 

reduced BG variability.

Paper structure

The proposed MPC law is described in Sec. 2. Only few AP specifics are provided there, to 

highlight the novel MPC problem structure and yield an exposition more accessible to 

readers unfamiliar with AP control. For completeness, extensive AP related details and 

parameters, required for algorithm reproducibility (an intended contribution), are provided in 

the appendices. Velocity-weighting and velocity-penalty MPC notions are discussed in detail 

in Sec. 3. Details of the required optimization and implementation are presented in Sec. 4. 

Benefits over, and differences to, the authors’ previous MPC strategy of (Dassau et al. 2015, 

Gondhalekar et al. 2016) are demonstrated in Sec. 5 using the Universities of Virginia 

(UVA)/Padova United States (US) Food & Drug Administration (FDA) accepted metabolic 

simulator (Kovatchev et al. 2009, Dalla Man et al. 2014). In the US this simulator is the 

accepted manner for testing AP controllers prior to deployment in clinical trials, thus the in-

silico analysis is comprehensive, and mathematical performance proofs are not presented. 

The proposed MPC law was deployed in multiple and extensive clinical trials, and some trial 

highlights are examined in Sec. 6.

2 MPC design

2.1 Preliminaries

The proposed MPC law uses the discrete-time linear time-invariant (LTI) model (1) of 

insulin-glucose dynamics, with sample-period T:= 5 [min], insulin (control) input u ∈ ℝ [U] 

(‘Units’ insulin), BG output y ∈ ℝ [mg/dL], and BG velocity output v ∈ ℝ [mg/dL/min]. 

The control input u is the insulin deviation from the subject’s basal rate, integrated over 

sample-period T. The basal rate is a person’s baseline insulin requirement and is non-

negative. The BG output y is the deviation from a BG setpoint ys ∈ ℝ>0. Deviations ui and yi 

may be negative, but absolute insulin inputs and BG concentrations are non-negative (see 

App. A.1 for definitions). Later figures depict absolute values. The velocity output v is an 

approximation of the rate of change of BG output y. At each step i we are provided an 

estimate of model state xi. For model and estimator details consult App. A.1.

The MPC law penalizes predicted BG excursions from a time-dependent BG target zone 

with lower and upper bounds ζ
⌣

 and ζ , respectively. Details of the BG target zone are 

provided in App. A.2. The zone-excursion function Z: ℝ × ℕ → ℝ is defined in (2).

The controller must enforce input constraint (3). The lower bound ξ
⌣

 enforces that absolute 

insulin infusion is non-negative, i.e., ξ
⌣

 is selected to be the negative of the basal insulin 
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required over sample-period T. A subject’s basal rate is generally time-dependent, hence ξ
⌣

varies with i. The basal rate is non-negative, hence ξ
⌣

i ≤ 0 for all i. The upper bound ξ  is a 

function of both the time of day the controller is called and also the insulin infusion history. 

Thus, ξ  is time-dependent but satisfies ξ i ≥ 0 for all i. Details of the insulin constraints are 

provided and discussed in Appendices A.3 & A.4. Note that ui = 0 (i.e., basal rate) is a 

feasible control input for all i.

xi + 1 = Axi + Bui, yi = Cyxi, vi = Cvxi (1)

Z y, i : = arg minα ∈ ℝ α2 y + ys − α ∈ ζ
⌣

i, ζ i (2)

ui ∈ 𝕌i: = ξ
⌣

i, ξ i ∍ 0 (3)

2.2 MPC problem

Let u, x, y, and v denote the predicted input u, state x, BG output y, and BG velocity output 

v, respectively. Further denote by ℤa
b the set of consecutive integers {a, …, b}, by Ny ∈ ℕ 

the prediction horizon, and by Nu ∈ ℤ1
Ny the control horizon. Then, MPC performs closed-

loop control action by applying at each step i the first element u0
∗ of the optimal, predicted 

control input trajectory u0
∗, …, uNu − 1

∗ , characterized as follows.

MPC Problem—Determine

u0
∗, …, uNu − 1

∗ : = arg min
u0, …, uNu − 1

J xi u0, …, uNu − 1

with cost function

J ⋅ : = ∑
k = 1

Ny
z⌣k

2 + Q vk zk
2 + Dvk

2 + ∑
k = 0

Nu − 1

Ruk
2 + R⌣ u⌣k

2 (4)

subject to
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x0: = xi (5)

xk + 1: = Axk + Buk ∀k ∈ ℤ0
Ny − 1

yk: = Cyxk ∀k ∈ ℤ0
Ny

vk: = Cvxk ∀k ∈ ℤ0
Ny

uk ∈ 𝕌i + k ∀k ∈ ℤ0
Nu − 1

(6)

uk: = 0 ∀k ∈ ℤNu

Ny − 1
(7)

uk: = max uk, 0 ∀k ∈ℤ0
Nu − 1

(8)

u⌣k: = min uk, 0 ∀k ∈ ℤ0
Nu − 1

(9)

zk: = Z yk, i + k ∀k ∈ ℤ0
Ny

zk: = max zk, 0 ∀k ∈ ℤ0
Ny (10)

z⌣k: = min zk, 0 ∀k ∈ ℤ0
Ny (11)
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vk: = max vk, 0 ∀k ∈ ℤ0
Ny (12)

D: =
D if yi + ys ∈ 𝔻
0 otherwise.

(13)

Eq. (6) enforces input constraint (3) across the control horizon. Eq. (7) implies that beyond 

the control horizon the basal rate is delivered. Eqs. (8) & (9) provide non-negative and non-

positive deviations of input u, and facilitate an asymmetric input cost in (4). Eqs. (10) & (11) 

provide non-negative and non-positive zone excursions, and facilitate an asymmetric 

penalization of the zone excursion in (4). Eq. (12) provides the non-negative BG velocity to 

penalize in (4) using the state-dependent velocity-penalty cost D of (13) (see Sec. 3.2). Note 

that D depends on the current output yi, thus the same D is employed at each prediction step 

k. The set ⅅ ⊂ ℝ>0 is defined such that the penalty D is only ‘activated’ when the current 

BG output yi indicates mild hyperglycemia.

The proposed MPC law uses Ny:= 9, Nu:= 5, R: = 6500, Ř:= 100, D:= 1000, ⅅ:= [140, 180], 

and Q(v) of (14) with ε:= 10−6, depicted in Fig. 1. See (Gondhalekar et al. 2016) for 

comments on parameter selection. The algorithmic contribution of the proposed MPC law 

over that of (Gondhalekar et al. 2016) is the use of Q(v) and Dvk
2 in (4). The MPC cost 

function of (Gondhalekar et al. 2016) is achieved when Q(v) = 1, D = 0, and R = 7000 (see 

Table 1); this tuning is henceforth termed ‘previous MPC’. Note that the actual previous 

MPC strategy of (Gondhalekar et al. 2016) is different in various ways, e.g., the BG target 

zone definitions and input constraints (see Appendices A.2–A.4).

Q v : =

1 if v ≥ 0
ε if v ≤ − 1
1
2 cos vπ 1 − ε + 1 + ε otherwise

(14)

2.3 Recursive feasibility & stability

The hard constraints are point-wise in time input constraints, and the predicted input 

trajectory uk = 0∀k ∈ ℤ0
Nu − 1

 is a feasible solution for all steps i and states xi (see (3)). Thus, 

recursive feasibility is guaranteed. The use of asymmetric costs on input, velocity, and BG 

target zone excursions affects only the cost-penalization via (4).

A person’s BG is never constant, but it is bounded. The purpose of the proposed MPC law is 

improved safety and performance of the AP system, not to impose closed-loop stability. LTI 

model (1) is open-loop stable (see App. A.1), thus by the target-zone nature of the proposed 

MPC law closed-loop stability with respect to model (1) is straightforwardly guaranteed in a 
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neighborhood of the model’s output setpoint ys. In the US the UVA/Padova US FDA 

accepted metabolic simulator (Kovatchev et al. 2009, Dalla Man et al. 2014) is the tool to 

verify AP controllers prior to clinical deployment. It contains a complex, nonlinear model of 

much higher order than model (1), and simulates sensor artifacts and variations in subject 

parameters that cannot be measured and explicitly designed for. The focus of this paper is 

the presentation and discussion of a novel MPC law that has successfully withstood the 

rigors of both comprehensive in-silico testing using the UVA/Padova simulator, and also 

multi-month deployments in extensive clinical trials.

3 Velocity-weighting & velocity-penalty MPC

3.1 Velocity-weighting MPC

The MPC Problem employs Ny T = 45 min predictions of BG values. This is short 

compared to the length of hyperglycemic excursions experienced, e.g., after large meals. 

CGM noise and large plant-model mismatch render long prediction horizons 

disadvantageous, in the authors’ experience. However, short horizons yield controllers that 

undesirably persist to command insulin delivery surpassing the basal rate when BG 

predictions exceed the BG target zone’s upper bound ζ , but are subsiding, i.e., when a state 

of hyperglycemia is in the process of correcting itself. This supplementary insulin 

contributes to the risk of controller-induced hypoglycemia. The purpose of the proposed 

velocity-weighting MPC is to mitigate controller-induced hypoglycemia that is due to 

insulin over-delivery during waning hyperglycemia. It was first proposed in (Gondhalekar et 

al. 2015b) and further discussed in (Gondhalekar et al. 2015a).

If Q (v) = 1 and D = 0 then MPC cost function (4) has the structure of the cost function in 

(Gondhalekar et al. 2016), where predicted zone excursions z are weighted symmetrically, 

i.e., non-negative and non-positive excursions z and ž are penalized equally. The velocity-

weighting function Q (v) of (14) modulates the cost accrued by z, i.e., modifies the cost only 

during predicted hyperglycemia. By reducing the zone excursion cost for an increasingly 

negative BG velocity v the design of Q(v) mildly reduces control action at a low, negative 

BG velocity, but practically eliminates the cost contribution when BG velocities exceed 1 

mg/dL/min downwards, considered steep. Thus, on the downhill leg of a hyperglycemic 

excursion the proposed controller delivers less insulin while the BG level is descending, but 

can deliver aggressively during persistent (i.e., v ≥ 0) hyperglycemia. Note that velocity-

weighting leaves unchanged the controller’s response to predicted BG trajectories that solely 

rise. Note further that rendering the non-negative zone excursion z ineffectual in (4) when v 

is strongly negative yields ui = 0, i.e., in absolute terms the basal rate is commanded, not the 

pump suspended. Due to the open-loop stable nature of the ‘plant’ and model this has a 

stabilizing effect and reduces oscillations (see Sec. 5).

Velocity-weighting MPC may be interpreted as realizing a time-varying upper bound ζ  of 

the BG target zone. Fig. 2 depicts an illustration of how the BG target zone’s upper bound ζ
would be varying, were the zone excursion cost unity as in (Gondhalekar et al. 2016), in 

order to accrue equal cost in (4). Importantly, the time-variation is based on CGM feedback, 

because predicted BG velocities v are based on the current state estimate xi. Time-dependent 
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BG setpoints1 were employed by others to reduce controller-induced hypoglycemia. In 

(Hovorka et al. 2004, Marchetti et al. 2008, Eren-Oruklu et al. 2009, Boiroux et al. 2012) a 

BG reference trajectory with respect to which predicted BG deviations are penalized is 

generated at each step. During hyperglycemia the reference trajectory is initialized to the 

current BG value and has a pre-defined, negative rate of change. Thus, the reference 

trajectory is based on feedback, but of BG, not its velocity v: The same level of 

hyperglycemia results in the same reference trajectory regardless of whether the 

hyperglycemia is persistent (i.e., v ≥ 0) or is in the process of correcting itself (i.e., v < 0). 

The proposed velocity-weighting MPC approach is able to discriminate between these cases 

and adapt (4) accordingly. The reference trajectories of the aforementioned works are 

generated equally irrespective of whether meals are announced. In (Boiroux et al. 2011) 

meal-announcement triggers the computation of an optimal meal-bolus and associated 

predicted BG trajectory that is employed as a BG reference trajectory about which to 

penalize MPC predictions. This approach may suffer weaknesses. First, the reference 

trajectory is generated based on assumptions, e.g., a model and the meal-size, that may not 

be correct. Nevertheless it is employed, in disregard of the true BG response, without 

exploiting feedback. In reality models and meal-size estimates are inaccurate, and other 

factors, e.g., meal-composition, greatly affect the actual BG response. The proposed 

velocity-weighting MPC is able to modulate its weighting (its ‘virtual’ reference trajectory) 

based on feedback. For a given meal-size a high fat content may result in persistent 

hyperglycemia, which the velocity-weighting would discern and penalize more heavily than 

had an equi-sized meal with low fat content been consumed. A further weakness of (Boiroux 

et al. 2011) is that the method is of relevance only when provided by the user with, and 

during the time following, meal-announcement. In contrast, the proposed velocity-weighting 

MPC is ‘active’ continuously, advantageous for both unannounced and announced meals, 

and is more effective for the former, more challenging situation (see Sec. 5).

3.2 Velocity-penalty MPC

Meal ingestion that is unannounced poses a major challenge for any AP controller, 

particularly one based on CGM feedback and CSII pumps, due to the large delay in 

subcutaneous sensing and actuation. Meal consumption inevitably causes a BG rise, and an 

AP must respond by delivering more insulin. Importantly, earlier delivery is more effective. 

The objective of velocity-penalty MPC is strong insulin delivery during rapid BG ascents 

when the subject is entering hyperglycemia. Velocity-penalty MPC results in a simple 

switching strategy that is state-dependent, i.e., is based on feedback, not meal-

announcement. Switching controllers for an AP have been proposed before but differently 

(Marchetti et al. 2008, Messori et al. 2015, Colmegna, Sánchez-Peña, Gondhalekar, Dassau 

& Doyle III 2016a,b).

When yi + ys ∈ ⅅ = [140, 180] mg/dL, i.e., a state close to mild hyperglycemia, then 

D = D > 0, resulting in the BG velocity v being penalized in (4). The design objective of 

velocity-penalty MPC is to aggressively drive insulin delivery at the start of hyperglycemia. 

Penalizing only the non-negative BG excursion z requires z to be sufficiently large, i.e., to 

1Throughout this paragraph the notions of BG setpoints and BG target zones are deemed synonymous.
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accrue adequate cost, before the MPC law significantly commands insulin. This induces 

delay. However, all hyperglycemic excursions start low and rise based on BG velocity. Thus, 

directly penalizing the non-negative velocity v allows the controller to respond sooner. 

Large, meal-fueled hyperglycemic excursions frequently traverse the BG interval ⅅ with a 

high velocity, incurring a large MPC cost, leading to abruptly increased insulin delivery. In 

contrast, excursions that turn out to be small tend to have lower velocities v, thus are 

penalized only a little. The velocity-penalty term is quadratic in v, thus a BG trajectory that 

undulates nonchalantly (i.e., v ≪ 1) within ⅅ accrues nearly no cost, leading to no 

significant extra insulin delivery. In the original velocity-penalty proposal of (Gondhalekar 

et al. 2014b) the interval within which the velocity-penalty is activated was [140, ∞) mg/dL. 

The upper limit of 180 mg/dL was introduced to prevent over-delivery. When the current BG 

value exceeds this upper bound the usual output cost on the BG excursion z results in 

suitable control action.

3.3 Velocity-weighting + penalty: Demo & comments

Velocity-weighting and velocity-penalty MPC were introduced independently in 

(Gondhalekar et al. 2015b, 2014b). A contribution of the proposed MPC approach is their 

combination and tuning to work in concert. An in-silico comparison of proposed MPC and 

previous MPC is depicted in Fig. 3. Due to the velocity-penalty, proposed MPC effects a 

precipitous rise in insulin delivery at the start of the response to the unannounced 90 grams 

carbohydrate (gCHO) meal at 18:30, reducing the BG peak. However, due to the high BG 

velocity and rapid BG traversal of the interval ⅅ, this insulin peak is short-lived. Due to 

velocity-weighting, insulin delivery is reduced with respect to previous MPC immediately 

following the main BG peak. This in-silico subject experiences a double-peak. Proposed 

MPC resumes elevated insulin commands when hyperglycemia appears persistent, as based 

on CGM feedback. In contrast the previous MPC law persistently commands elevated 

insulin throughout the double-peak phenomenon, but commands no substantial peak at the 

onset of hyperglycemia. No actual hypoglycemia was induced in this example, but with 

previous MPC the controller was forced to suspend the pump for one hour due to predicted 
hypoglycemia, inducing BG rebound. Proposed MPC yields a less oscillatory, albeit slightly 

more sluggish, return to the safe zone. Furthermore, proposed MPC commands slightly less 

total insulin than previous MPC.

Velocity-weighting renders (4) state-dependent with respect to predicted state xk (vk = 

Cvxk). Velocity-penalties are state-dependent with respect to actual estimated state xi (yi = 

Cyxi). This distinction is important and deliberate, and conforms to the central tenet of zone-

MPC; limited intervention, i.e., that remedial action occur when feedback unequivocally 

indicates its need. Velocity-weighting only attenuates insulin delivery compared to using 

Q(v) = 1, is inherently safer, and is thus ‘active’ at each prediction step. Undesirable 

outcomes are limited to mild under-correction of hyperglycemia that is already subsiding, 

but not over-correction, compared to using Q(v) = 1. In contrast, velocity-penalties may 

induce stark insulin infusion increases, and are only safe when BG unambiguously exceeds 

normoglycemia. During hypoglycemia it is not prudent to command significant insulin 

based on BG predictions entering hyperglycemia, where these predictions are based on an 

erroneous model and noisy CGM feedback.
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The proposed MPC law is strictly an extension of (Gondhalekar et al. 2016), and both 

velocity-weighting and velocity-penalties can be ‘tuned out’ by selecting Q(v) = 1 and D = 

0. Thus, importantly, the new, experimental additions can be introduced conservatively to 

augment the previous MPC law, which performed well in trials (Dassau et al. 2015). 

Simulator testing indicated a velocity-penalty D higher than selected would work well. 

However, due to the inherent risk of this new feature it was included with a less assertive 

tuning.

The reader may wonder whether a velocity-weighting function satisfying Q(v) > 1 for some 

v is advantageous, or whether such a Q(v) may replace the velocity-penalty. The authors 

experimented with various (details omitted) more general Q(v) definitions, but concluded the 

experiments failed to yield a desirable control law.

4 Implementation & computation

4.1 Nonlinear optimization via sequence of QPs

The MPC Problem is a nonlinear optimization problem, but is ‘nearly’ a Quadratic Program 

(QP), and is solved via a sequence of convex, continuous QPs. Were Q(vk) of (14) known 

∀k ∈ ℤ1
Ny then the MPC Problem would be a QP: Asymmetric input costs are implemented 

by explicitly splitting the predicted input u into non-negative/non-positive parts u/ u⌣, 

resulting in 2Nu decision variables associated with the model input. Asymmetric costs on 

non-negative/non-positive zone-excursions z/ z⌣, and the non-negative velocity v, are 

implemented using auxiliary decision variables that over/under-bound the excursion z and 

velocity v. This results in 3Ny decision variables associated with the model outputs. Thus, 

with Q(vk) ∀k ∈ ℤ1
Ny known the MPC Problem is a QP with 2Nu + 3Ny decision variables. 

This QP must be solved subject to hard constraints. (See the appendix of (Gondhalekar et al. 

2014b) for details.)

However, vk, thus Q(vk), are initially unknown. These are determined iteratively: An initial 

guess of predicted input sequence u0, …, uNu − 1  of zeros, given current state xi, leads to 

predicted velocities v1, …, vNy
 and associated costs Q v1 , …, Q(vNy

) . Based on these 

costs a QP is formulated and solved, yielding an updated predicted input sequence 

u0, …, uNu − 1 , and, in turn, an updated set of costs Q(·) and an updated QP. This iterative 

process is continued until there is no significant change in the costs Q(v1), …, Q(vNy
) . The 

function Q (·) is smooth to aid convergence. The solution method is akin to sequential 

quadratic programming, but simpler, because no numerical differentiation is required.

The vk values heavily depend on the state estimate xi, and are affected only little by 

predicted inputs uk. Thus, not much is to be gained from a large number of QP iterations. If 

vk ≥ 0∀k ∈ ℤ1
Ny then only one iteration is required. The numbers of QP iterations required 
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for the MPC optimizations of the in-silico study of Sec. 5 and first round of clinical trials of 

Sec. 6 are tabulated in Table 2. The majority of optimizations require only a single iteration. 

All cases required ≤ 9 iterations. Testing indicated a cap, e.g., of 4 iterations, would yield 

closely approximate solutions. In software the number of iterations is hard-limited to 10. 

Thus, there is no possibility the optimization terminates without a usable solution.

4.2 Matlab for PC, Java for smartphones & PC

The proposed MPC strategy is implemented in two ways. It was coded in Matlab for PCs, to 

test with the UVA/Padova US FDA accepted metabolic simulator (Kovatchev et al. 2009, 

Dalla Man et al. 2014) and historic clinical data (see Sec. 5). It was also implemented in 

Java for deployment on Nexus 5 smartphones within the UVA Diabetes Assistant (DiAs) AP 

system (Kovatchev et al. 2012, Keith-Hynes et al. 2013) (see Sec. 6). The QP solver 

employed is quadprog in Matlab, jOptimizer (Trivellato et al. n.d.) in Java. When 

performing simulations on a PC the proposed MPC strategy may be executed in one of three 

ways: (1) Matlab only; (2) Java only; (3) concurrent Matlab and Java with cross-checking. 

Option (1) is to develop, test, and debug the control strategy; it is just easier in a high-level 

language. Option (2) is to test and debug the Java code. Option (3) checks that the Matlab 

and Java controllers are functionally identical, by programmatically verifying that each final, 

and salient intermediate, variable is the same in the Matlab and Java ‘spaces’. This setup 

resulted in high confidence that the Java code is correct, and permitted verification of the 

Java controller using the Matlab-based UVA/Padova US FDA accepted metabolic simulator.

4.3 Computational burden on Nexus 5

The Nexus 5 has a 2.26 GHz quad-core processor and 2 GB memory, and computes 

solutions to the nonlinear MPC optimization problem suitably quickly. During the first 

round of clinical trials (see Sec. 6) the proposed MPC strategy was computed 21, 821 times. 

Table 3 contains statistics; the difference between the computation-times of the entire 

controller call (CTRL all) and the MPC optimization (MPC only) is the overhead for non-

MPC computations, e.g., data handling, state-estimation, and log-file writing. Controller 

calls lasted on average 1.2 seconds, where roughly 0.3 seconds is the overhead, which is 

fairly constant. Table 3 contains the minima, means, and maxima of the computation times 

of individual QP iterations. Interestingly, higher QP iterations result in a narrower spread of 

computation times.

5 In-silico performance analysis

The proposed and previous MPC strategies were evaluated using the UVA/Padova FDA 

accepted metabolic simulator (Kovatchev et al. 2009, Dalla Man et al. 2014) with its entire 

adult cohort, consisting of 10-subject and 100-subject simulator cohorts. The latter contains 

a 101st subject ‘average’, resulting in a combined cohort of 111 subjects. The UVA/Padova 

simulator’s cohort of in-silico subjects has a wide spectrum of parameter values, some of 

which might be considered at the boundary of physiologic plausibility. Thus, use of the 

simulator provides a means to test robustness with respect to inter-subject variability. The 

case-study simulations start at 14:00. Closed-loop control commences at 16:00. Simulations 

finish at 19:00 next day. This closely mimics the trial protocol of (Dassau et al. 2015), which 
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stipulates a maximum meal-size of 90 gCHO. Three large, 90 gCHO meals are provided: 

Dinner at 18:30, breakfast at 07:00 (next day), lunch at 13:00. This scenario is unrealistically 

challenging, but represents a demanding stress-test for an AP controller. Large unannounced 

meals are one of the toughest challenges; both unannounced and announced (see App. B) 

meal scenarios were simulated for each MPC strategy, resulting in four simulation sets. The 

BG sensor employed is the simulator’s CGM, which includes additive, stochastic noise that 

can be generated based on a user-provided seed. The above scenario was simulated 11 times 

using all 111 virtual subjects, once with additive CGM noise of zero, and further with non-

zero additive CGM noise using random seeds 1 through 10, resulting in a total of 1221 

simulations. The multiple CGM realizations yield more significant and insightful statistics.

Simulations employ treatment parameters that are optimal for the in-silico subjects. Prior to 

seeking FDA approval diverse simulations where performed with parameters mal-adjusted to 

varying extents, e.g., basal rates and carbohydrate-ratios excessive or insufficient. Other 

meal-sizes were also simulated. The safety and efficacy of the proposed MPC strategy with 

respect to such parameter variations was evaluated and deemed satisfactory for clinical 

trials. Not all simulation results are provided here, but the presented results are indicative of 

the general trend, and demonstrate the proposed MPC strategy’s superiority, and novelty, 

over that of (Gondhalekar et al. 2016).

Cohort-level trajectories are depicted in Fig. 4. For unannounced meals the differences are 

easily discernible. Proposed MPC results in BG trajectories that benefit from lower peaks 

during the meal-response, enjoy higher troughs at the end of the meal-response, descend 

from peak to trough less steeply, are less oscillatory, and generally display tighter standard-

deviation and min-max envelopes. Proposed MPC effects significantly elevated insulin 

delivery towards the start of the meal-response – a result of velocity-penalty MPC. 

Following BG peaks velocity-weighting MPC quickly returns insulin delivery to 

approximately the basal rate; in contrast, previous MPC continues to drive significant insulin 

delivery in excess of basal beyond the peak, when BG levels are falling. After meal-peaks 

proposed MPC results in more steady insulin delivery, whereas previous MPC requires much 

pump-suspension (discussed later), causing a dip in mean insulin delivery, which in turn 

causes BG rebound. Reducing BG oscillations is very important, even at safe BG values 
(Ceriello et al. 2008, Ceriello & Ihnat 2010); BG variability has a detrimental effect on 

peoples’ health, and an AP controller should best mitigate, not exacerbate or induce, BG 

fluctuations. When meals are announced the proposed and previous MPC strategies’ 

responses are very similar. However, BG responses with proposed MPC are slightly less 

oscillatory, and the standard-deviation and min-max envelopes are a little tighter. Insulin 

delivery in the hour following BG peaks is lower on average using the proposed MPC 

strategy – a result of velocity-weighting. This reduction is of critical benefit for a small 
number of subjects (discussed later).

Numerical results are tabulated in Table 4. The first set of rows lists time-in-range 

percentages for various BG ranges and thresholds. The second set of rows lists counts of the 

number of simulations that experience one or more episode of BG beyond the stated 

thresholds. The third set of rows lists counts of the total number of BG events, i.e., 

individual episodes of BG beyond the stated thresholds. The fourth set of rows concerns the 
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BG trajectories’ path length, computed by setting 1 mg/dL ≡ 1 min; shorter paths indicate 

less oscillatory responses. The single row contains the mean total insulin delivery per 

simulation. The sixth set of rows lists the number of pump-suspensions of various lengths. A 

Health Monitoring System (HMS) (Harvey et al. 2012), which provides predictive 

hypoglycemia alarms, was executed during the simulations; the seventh set of rows lists the 

total number of HMS alarms, as well as the number of simulations that experience one or 

more alarm. The Low Blood Glucose Index (LBGI) and High Blood Glucose Index (HBGI) 

were computed according to (Magni et al. 2009). The Control-Variability Grid Analysis 

(CVGA) conforms to (Magni et al. 2008).

Proposed MPC yields significantly reduced hypoglycemia risk. Notably, this is achieved 

while enforcing considerably fewer pump-suspensions. This is important, especially when 

considering long suspensions. The ability to suspend insulin delivery is crucial to 

circumnavigate emergencies (see (Gondhalekar et al. 2016)). However, pump-suspensions, 

especially when long, invariably result in BG rebound, which increases BG variability and 

oscillations, and tends to elevate hyperglycemia risk. Both proposed and previous MPC 

employ the asymmetric cost function described in (Gondhalekar et al. 2016) that promotes 

pump-suspension when required; the strength of proposed MPC is to induce fewer events 

that require suspension. Proposed MPC results in slightly less total insulin delivery. This 

alone, but particularly in concert with the reduced need for subjects to consume rescue 

carbohydrates, indicates that proposed MPC may assist subjects with their body-weight 

management, an issue people with T1DM struggle with even more than healthy people do 

(The Diabetes Control and Complications Trial Research Group 1993, Purnell et al. 1998). 

The risk of severe hyperglycemia is reduced using proposed MPC. However, the time above 

180 mg/dL is slightly elevated; the reason is the shallower approach into the safe BG zone 

after meal-peaks. Nevertheless, due to reduced hypoglycemia risk the time in ranges [80, 

140] and [70, 180] mg/dL increases, for both unannounced and announced meals. The 

reduced path lengths induced by proposed MPC indicate a reduction in BG variability and 

oscillations. The sizable reduction in HMS alarms and the number of simulations that 

experience them deserves attention: Many users of AP devices (currently limited to 

experimental units) bemoan the devices’ inordinate alarming. Presumably the alarm-

strategies are intended by their designers to be useful; unfortunately, excessive alarms result 

in subjects reverting to open-loop (standard care) during times they need quiet, e.g., to sleep 

or work. The fewer alarms using proposed MPC, thus, are not only indicative of a safer and 

more effective control strategy, but may result in a longer time spent in closed-loop, and 

more enthusiastic adoption of AP technology.

The CVGA results of Table 4 and Fig. 5 further underline the significantly reduced 

hypoglycemia risk of proposed MPC. For unannounced meals proposed MPC effects a 

prominent shift to the left of the cluster of points, meaning that the nadirs of the subjects’ 

BG trajectories have been substantially lifted. Furthermore, the cluster has experienced a 

slight shift downwards, signifying improved hyperglycemia correction. The standard-

deviation of the points (circle radii in Fig. 5) is also smaller using proposed MPC. Note that 

with large unannounced meals neither MPC law yields a score in the most desirable A zone. 

With announced meals proposed MPC yields no significant mean improvement in CVGA 

results, because the meal-bolus renders the control law mostly ineffectual, and many points 
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in the CVGA cluster approximately retain their location. However, a small number of 

subjects that experience hypoglycemia with previous MPC have their BG trajectory’s nadirs 

notably raised, and hypoglycemia mitigated, thanks to velocity-weighting. With meal-

announcement not one subject is ‘clipped’ at the right edge when using proposed MPC.

In addition to the in-silico and clinical testing outlined in Secs. 5 & 6 proposed MPC was 

verified using data from the authors’ previous clinical trials (Dassau et al. 2015). Extensive 

historical data were ‘fed through’ both previous and proposed MPC laws, and differences 

studied. Outcomes are not presented here, but the proposed MPC law was deemed effective, 

safe, and beneficial over that of (Gondhalekar et al. 2016).

6 Clinical trials

The proposed MPC law was deployed in four US FDA approved clinical trial campaigns: (1) 
In a pilot-study 6 people were in closed-loop at home (ClinicalTrials.gov ID: 

NCT02463682). (2) Ten adolescents each spent 3 days in closed-loop (ClinicalTrials.gov ID: 

NCT-02506764). This trial was more challenging than many of the authors’ previous trials, 

because adolescents are generally difficult to control2, the trial included multiple 

unannounced exercise periods, and meals were large (frequently > 100 gCHO). Proposed 

MPC demonstrably outperformed standard, open-loop therapy (Huyett et al. 2017). (3) 
Nineteen adults each spent 14 days in closed-loop at home (ClinicalTrials.gov ID: 

NCT-02773875). (4) Twenty-nine adults each spent 3 months in closed-loop at home 

(ClinicalTrials.gov ID: NCT-02705053). Trial details and results are discussed elsewhere 

(e.g., Huyett et al. (2017), Forlenza et al. (2017), Dassau et al. (2017)). Two trial ‘snapshots’ 

are discussed in Secs. 6.1 & 6.2. The trials were performed using proposed MPC. They were 

subsequently simulated using previous MPC, to obtain this alternate control law’s command 

trajectory, had it received exactly the same input data. Note that both BG responses and 

insulin infusion would have been different, had the alternate control law actually been 

employed.

6.1 Clinical trial example 1 of Fig. 6

This clinical trial example demonstrates the effort of velocity-weighting MPC to safeguard 

from controller-induced hypoglycemia due to excessive insulin commands during waning 

hyperglycemia. During the half hour preceding 08:00 two feed-forward meal-boluses (see 

App. B) were delivered to counteract breakfast. These boluses induce a so-called Insulin On 

Board (IOB) constraint (see App. A.4) to become active. During the ascent to hyperglycemia 

due to the meal, both proposed MPC and previous MPC are constrained to deliver no more 

than basal insulin. CGM peaks at about 09:00 and is re-calibrated shortly after. The re-

calibration causes the large, discrete step in CGM output. (However, there is no associated 

step in the actual BG concentration.) Note that the state-estimator (see App. A.1) has a 

mechanism (details omitted) to accommodate CGM recalibrations and correctly identifies 

that across the CGM recalibration the CGM trajectory indicates BG is beginning to subside. 

The jump in CGM value causes the IOB constraint to abruptly rise, providing the controller 

2Solely referring, indubitably, to glycemic regulation.

Gondhalekar et al. Page 14

Automatica (Oxf). Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more leeway to command insulin in excess of basal. Note that due to the length of time that 

has elapsed since the meal-boluses the IOB constraint would have loosened soon regardless 

of the CGM re-calibration. Thus, the point of note is that the IOB constraint relaxes during 

hyperglycemia, which the control law now is granted authority to remedy. Until 11:15 

proposed MPC commands only basal insulin, thanks to velocity-weighting MPC. The 

subject experiences a hypoglycemic event at noon, presumed to be caused by excessive 

meal-boluses (it is generally difficult for subjects to estimate meal-size). Importantly, 

previous MPC would have commanded significantly more insulin, and significantly in 

excess of basal insulin, during most of the CGM descent. It is justifiable to hypothesize that 

previous MPC could have contributed to calamitous over-insulinization.

6.2 Clinical trial example 2 of Fig. 7

This trial example demonstrates velocity-penalty MPC’s effort to assertively correct 

developing hyperglycemia. In the period 02:00–03:00 the CGM trajectory ascends through 

the BG interval ⅅ = [140, 180] mg/dL, inducing an increase in insulin delivery. In this case 

the night-time constraint (see App. A.3) disallows significant insulin delivery. At 12:30 the 

CGM trajectory very steeply enters the BG interval ⅅ = [140, 180] mg/dL from below, 

causing a short-lived surge in insulin to be commanded. Note that the insulin surge lasts 

slightly beyond the CGM peak due to the dynamics of the recursive state-estimator. Around 

18:00 the CGM trajectory very slowly roams the BG interval ⅅ = [140, 180] mg/dL, 

inducing only very slight increase in insulin delivery. The effects of velocity-weighting are 

evident around 04:00.

7 Conclusion

A novel MPC law was proposed to simultaneously improve both the safety and performance 

of an AP to treat T1DM. The proposed MPC law allows the control designer to circumvent, 

to some extent, the well-known waterbed-effect between the abilities to correct 

hyperglycemia and to minimize hypoglycemia. An extensive in-silico study demonstrated 

the proposed control law has benefits but suffers no tradeoff. The novel features of the 

proposed control law are based only on feedback and require no user announcement. The 

proposed MPC strategy exploits the flexibility of real-time optimization to employ velocity-
weighting and velocity-penalties, two features that appear novel in the context of AP control. 

Velocity-weighting appears to be an innovative manner of formulating an MPC cost 

function. The proposed MPC strategy was implemented on smartphones and deployed in US 

FDA approved clinical trials that demonstrated its safety and efficacy. Spurred by these 

successes more extensive, long-term trials are planned. In work parallel to that presented in 

this paper the authors are investigating more extensive personalization (Pinsker et al. 2016, 

Lee, Dassau, Gondhalekar, Seborg, Pinsker & Doyle III 2016), control-oriented models 

more elaborate than LTI (Colmegna, Sánchez-Peña, Gondhalekar, Dassau & Doyle III 

2016a,b, Colmegna, Sánchez-Peña & Gondhalekar 2016), enhanced cost functions (Lee, 

Gondhalekar, Dassau & Doyle III 2016, Rebello et al. 2017), and real-time adaptation of the 

control strategy (Laguna Sanz et al. 2016, Cao et al. 2017). Planned future work focuses on 

the design of control laws for people that exercise, for a wider range of users, e.g., young 
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children and people with disorders in addition to T1DM, and exploiting non-BG feedback 

by, e.g., activity trackers.
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Appendix – AP specific controller details

The proposed control strategy is a modification of that in (Gondhalekar et al. 2016). Details 

of the feedback MPC law and the feed-forward meal-bolusing strategy are described in 

Appendices A & B. These details are either similar to, or trivially modified from, those of 

(Gondhalekar et al. 2016), which the interested reader is encouraged to consult. Presented 

details focus on differences to (Gondhalekar et al. 2016) and are stated to permit discussion, 

for completeness, and to facilitate algorithm reproducibility when parameter values were 

revised.

A Feedback MPC law details & settings

A.1 Insulin-BG dynamics: Control-relevant model

LTI system (1) is employed with the following:

A: =
p1 + 2p2 −2p1p2 − p2

2 p1p2
2

1 0 0
0 1 0

∈ ℝ3 × 3

B: = 1800K

 uTDI
100 ⊤ ∈ ℝ3

Cy: = 001 ∈ ℝ1 × 3

Cv: = 0.10 − 0.1 ∈ ℝ1 × 3

K: = 90 (p1 − 1) (p2 − 1)2; p1: = 0:98; p2: = 0.965 uTDI> 0: Total daily insulin, subject-

specific [U].
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The model of insulin-BG dynamics described by A, B, Cy was identified in (van Heusden et 

al. 2012) and successfully used in many AP trials (Gondhalekar et al. 2013, Dassau et al. 

2015, Gondhalekar et al. 2016, Huyett et al. 2017). Model (1) is personalized by the subject-

specific uTDI, which one can acquire accurately from patients. The poles p1 and p2 are the 

same for each subject, and were derived to yield a control-relevant model (i.e., one that 

facilitates controller design but not high-fidelity simulations) that leads to a controller that 

works well for people on average but is safe for outlier subjects (see (van Heusden et al. 

2012) and Sec. 2.8 of (Gondhalekar et al. 2016)). The poles p1 and p2 indicate system (1) is 

open-loop stable. System (1) is linearized around the subject-specific, time-dependent basal 

rate input uBASAL,i [U/h], that results in steady-state BG output ys := 110 [mg/dL]. The 

absolute insulin input and BG output are given by uIN,i:= ui + uBASAL,iT [U] and yBG,i:= yi + 

ys [mg/dL].

The structures of A, B, and Cy indicate that, in the absence of plant-model mismatch and 

noise, at step i the three state elements x[3], x[2], and x[1] correspond to yi, yi+1, and yi+2, 

respectively. The output matrix Cv was chosen such that the velocity output vi provides an 

estimate of the average, over the impending 2T = 10 min, rate of change of BG output yi, in 

units mg/dL/min. The structures of A, B, and Cy further indicate that model (1) has a 3T = 

15 min delay from u to BG output y.

An estimate of model state xi is determined at each step i, based on feedback from a CGM, 

by the linear recursive estimator (Luenberger observer) described in Sec. 2.2 of 

(Gondhalekar et al. 2016). This provides a simple tuning handle to reject CGM disturbances 

that, in practice, are difficult to model or derive realistic stochastic properties of. The authors 

have experimented in-silico with alternative state-estimators, and certain improvements over 

the linear recursive estimator were presented in (Gondhalekar et al. 2014c,a, Lee et al. 

2014). However, for clinical trials the current estimator is retained because it is dependable 

and extensively tested.

A.2 Diurnal BG target zone

The proposed MPC law is a periodic zone-MPC strategy. The BG target zone is the interval 

[80, 140] mg/dL at times 06:00–22:00, [90, 140] mg/dL at times 24:00–04:00, with two-

hour transitions between; see Fig. A.1. Such diurnal zones help enforce increased safety 

from nocturnal hypoglycemia (Gondhalekar et al. 2013, Dassau et al. 2015, Gondhalekar et 

al. 2016). The current boundary values were modified from previous ones after successful 

and safe testing. The zone-transition function described in Sec. 2.3 of (Gondhalekar et al. 

2016) is used with the updated values.

A.3 Diurnal insulin delivery constraints

At each step i the controller must enforce constraint (A.1) with ti the time of day at step i. In 

the period 04:00–22:00, ū(ti):= 1 [U], i.e., during the day the controller has broad control 

authority but there exists a safeguard to protect from large, undesirable insulin input 

commands due to, e.g., data anomalies. At other times ū(ti):= 1.8 uBASAL,i T, i.e., at night 

insulin infusion is constrained to 80% in excess of the subject’s basal rate. Note that the 

basal rate is tailored to the subject and, typically, is time-dependent. Thus, the nighttime 
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constraint is both personalized and depends on the time of day. This diurnal input constraint 

is depicted in Fig. A.1 and provides a further safeguard against nocturnal hypoglycemia 

(Gondhalekar et al. 2013, Dassau et al. 2015, Gondhalekar et al. 2016). Only 14 of 1, 579, 

974 MPC commands of the in-silico study of Sec. 5, and only 4 of 21, 821 MPC commands 

evaluated during the first round of clinical trials of Sec. 6, equal the daytime constraint ū(ti) 
= 1. This observation is important: The aggressive hyperglycemia correction effected by 

velocity-penalty D in (13) is not ‘riding the constraint’, i.e., tuned to be excessive and 

reined-in by constraints. The daytime constraint enforces safety from anomalously large 

control commands, but does not affect the controller during typical operation. It is designed 

to protect, but permit broad control leeway, based as much as possible on the natural 

minimization of objective function (4).

0 ≤ ui + uBASAL, iT ≤ u ti (A.1)

Fig. A.1. 

Top: Upper and lower bounds ζ  and ζ
⌣

 of diurnal BG target zone. Bottom: Diurnal, 

individualized upper-bound u on insulin infusion input. See Appendices A.2 & A.3.

A.4 Insulin on board (IOB) constraints

Insulin delivery is subject to an IOB constraint that, based on delivery history, prevents over-

delivery when much insulin was recently delivered, e.g., after a meal-bolus (see App. B). 

The IOB constraint presented here is an important, albeit simple, modification of that in 

(Gondhalekar et al. 2016). We denote by Θ: ℝ≥0 × ℝ>0 → [0, 1] the newly derived IOB 

decay curve function (A.2), by 𝒯 ∈ ℝ ≥ 0 [h] the time since insulin infusion, by 𝒯 ∈ ℝ ≥ 0
[h] the curve length; see Fig. A.2. Eq. (A.2) was designed (details omitted) to yield curves 

closely fitting those of (Gondhalekar et al. 2016), obtained from (Walsh & Roberts 2006, 

Ellingsen et al. 2009). Introducing (A.2) permits curves of arbitrary length 𝒯, not only 

discrete lengths 𝒯 ∈ 2, 3, …, 8  depicted in Fig. A.2 as used in (Gondhalekar et al. 2016, 

Walsh & Roberts 2006, Ellingsen et al. 2009). The length 𝒯 G ∈ [2, 8] of the IOB curve 

employed at current CGM level G [mg/dL] is given by (A.3), a continuous function that 

replaces the discontinuous switching of (Gondhalekar et al. 2016). At each step i we denote 

by Gi the most recent CGM value, and by θi ∈ ℝ96 of (A.4) a vector with values of the IOB 

decay of length 𝒯 Gi , sampled at T = 5 [min] intervals. Analogously let θMEAL ∈ ℝ96 of 

(A.5) contain the sampled 4h IOB curve, to be used for meal-boluses.
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Θ τ, 𝒯 : =
1 − b
1 − acos τ

𝒯τ
c
π + b − a

1 − a if τ ∈ 0, 𝒯

0 otherwise
(A.2)

a: = − 0.995 c: = 0.84

b: = 0.04 τ : = acos a /π 1/c

𝒯 G : = max min −G/30 + 12, 8 , 2 (A.3)

θi j : = Θ 5 j
60, 𝒯 Gi ∀ j ∈ 1, 2, …, 96 (A.4)

θMEAL j : = Θ 5 j
60, 4 ∀ j ∈ 1, 2, …, 96 (A.5)

Fig. A.2. 
IOB decay curves. Proposed curve (A.2) defined for arbitrary positive length, e.g., 

𝒯 ∈ 1, 1.5, 9  as depicted. Previous curves limited to 𝒯 ∈ 2, 3, …, 8  (Gondhalekar et al. 

2016, Walsh & Roberts 2006, Ellingsen et al. 2009).

Denote by ΛBASAL ∈ ℝ96 the 8h history of ui, the insulin deviation from the basal rate, but 

setting to zero values at steps a feed-forward meal-bolus was delivered (see App. B). Denote 

by ΛMEAL ∈ ℝ96 the 8h history of feed-forward meal-boluses, by Φ ∈ ℝ the estimated 

IOB, by Γ ∈ ℝ the required IOB, that ∈ depends on the current CGM level Gi, and by CF,i 

∈ ℝ>0 [mg/dL/U] the patient’s correction-factor at step i. At each step i the IOB upper 

bound ūIOB,i is given by (A.6).
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uIOB, i: = max Γi − Φi, 0 (A.6)

Φi: = θi
⊤ΛBASAL, i + θMEAL

⊤ ΛMEAL, i

Γi: = Gi − ys /CF, i

The proposed MPC law must enforce IOB constraint (A.7). It holds that ūIOB,i ≥ 0, and 

ūIOB,i = 0 implies the controller delivers no more than uBASAL,iT, the basal rate. Thus, after 

a large bolus insulin delivery is temporarily constrained to the basal rate, but (A.7) cannot 

constrain insulin delivery to below the basal rate.

ui ≤ uIOB, i (A.7)

This IOB constraint’s improvement over that of (Gondhalekar et al. 2016) is the ability to 

employ IOB decay curves of arbitrary length, allowing the length function 𝒯 G  of (A.3) to 

be continuous. This has two advantages. First, the IOB constraint no longer displays 

discrete-steps, which can result in jerky and surprising (potentially alarming) insulin 

delivery trajectories. Second, it permits more subtle tuning of the IOB constraint. Because 

velocity-weighting protects from hypoglycemia one can employ slightly shorter IOB decay 

curves, i.e., be tuned to loosen a little more rapidly, than in (Gondhalekar et al. 2016). The 

IOB constraint is then not excessively ‘hijacked’ to protect from over-delivery during post-

prandial hyperglycemic excursions. By loosening the IOB constraint earlier following feed-

forward meal-boluses the MPC law is sooner provided leeway to exploit feedback provided 

by the CGM and correct persistent hyperglycemia. However, the velocity-weighting protects 

from over-delivery in case, at the time the IOB constraint loosens, the BG trajectory is 

already descending. An example of this is depicted in Fig. 6.

A.5 Pump-discretization

The proposed control strategy was destined for deployment with a CSII pump that has a 

delivery resolution of 0.1 [U]. After the controller computes the optimal input the final, 

absolute control input commanded to the pump is characterized according to a so-called 

carry-over scheme; see Sec. 2.7 of (Gondhalekar et al. 2016) for details and discussion. Note 

that the pump-discretization could not be chosen by the authors, but is dictated to them by 

the combination of pump and AP platform software. Thus there is no design-related 

significance to the fact that in (Gondhalekar et al. 2016) a finer pump-discretization of 0.05 

[U] was available.
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B Feed-forward meal-bolusing strategy

Subjects may opt to announce meals to the controller, resulting in feed-forward meal-

boluses. The bolus size computation is a variation of that in Sec. 3 of (Gondhalekar et al. 

2016). Let M ∈ ℝ>0 [gCHO] denote the meal-size, and CR ∈ ℝ>0 [gCHO/U], ∈ CF ∈ ℝ>0 

[mg/dL/U], and S ∈ ℝ the subject’s carbohydrate-ratio, correction-factor, and self-

monitoring BG measurement, respectively, specific to the time of day of meal-

announcement. Following a meal-announcement the MPC law of Sec. 2 is by-passed and the 

insulin input uIN,i is characterized according to (B.1). As a precaution the basic bolus M/CR 

is reduced by 20% if S < 120 mg/dL. If insufficient the controller can increase insulin 

delivery later, but removing excessive insulin is not possible. A correction is added to the 

basic bolus when S > 150 mg/dL, but only if no such correction was administered within the 

preceding two hours; this lockout period prevents a sequence of announced meals causing a 

sequence of corrections to address the same BG excursion. The correction is limited to 2 U. 

The switching thresholds, bound, lockout period, and reduction ratio were selected after 

discussions with endocrinologists. Without meal-announcement the controller counters 

meal-responses based solely on CGM feedback and the MPC law of Sec. 2.

uIN, i: = uMEAL + min uCOR, 2 (B.1)

uMEAL: =
M /CR if S ≥ 120

0.80M /CR otherwise

uCOR: =
S − 150 /CF if S ≥ 150 Λ Δ > 120

0 otherwise

Δ : Time min since preceding uCOR > 0
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Fig. 1. 
Schematic of velocity-weighting function Q (v) of (14).
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Fig. 2. 
Schematic demonstration of velocity-weighting MPC. Actual BG target zone upper bound ζ ; 

black dashed line. ‘Effective’ zone; blue fill. Predicted BG values; blue dots. Predicted BG 

velocities: Non-negative (A); negative (B, vk = −0.6 mg/dL/min); more negative (C, vk = 

−0.93 mg/dL/min); variable negative (D, vk ∈ [−2, 0] mg/dL/min).
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Fig. 3. 
Proposed MPC vs. previous MPC demonstrated using UVA/Padova simulator subject 59. 

Green area: [80, 140] mg/dL. Yellow area: [70, 180] mg/dL. Unannounced 90 gCHO meal 

ingested at 18:30; see protocol of Sec. 5. Total insulin (18:00–06:00): 16.44 U (proposed), 

16.76 U (previous).
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Fig. 4. 
In-silico performance analysis: Mean, standard-deviation (STD), and min-max envelopes 

(only BG). Proposed ( blue) vs. previous ( red) MPC strategy. Unannounced (left) vs. 

announced (right) meals. See Table 4 for statistics.
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Fig. 5. 
In-silico performance analysis: CVGA plots. Proposed (top) vs. previous (bottom) MPC 

strategy. Unannounced (left) vs. announced (right) meals. Blue dot and circle depict mean 

and standard-deviation. See Table 4 for statistics.
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Fig. 6. 
Clinical trial example 1; see Sec. 6.1. Top: CGM (blue dots), [80, 140] mg/dL (green area), 

[70, 180] mg/dL (yellow area), diurnal BG target zone (dashed black lines), meal-sizes 

[gCHO]. Bottom: Insulin delivery of trial using proposed MPC (thick red line), insulin 

delivery as would have been commanded by previous MPC (thin black line), feed-forward 

meal-boluses (blue bars, right scale), basal rate (dashed green line), diurnal safety constraint 

(dashed black line).
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Fig. 7. 
Closed-loop clinical trial example 2; see Sec. 6.2. Key same as Fig. 6, but note the different 

insulin axis scale.
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Table 1

The proposed MPC and previous MPC tunings compared.

MPC
R

D Q(v)

Proposed 6500 1000 Eq. (14)

Previous 7000 0 Q(v) = 1
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