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Abstract

Over the last few years, scientific interest in the cytokine IL-17A has intensified as its role in 

human health and disease has been elucidated. Discovered almost a quarter century ago, IL-17A is 

known to have poor biologic activity when acting alone, but attains robust actions when working 

synergistically with potent mediators of proinflammatory immune responses, such as IL-6 and 

IL-8. IL-17A is produced by specialized innate immune cells that protect host barriers from the 

outside world. Like sentries, these innate immune cells can “sound the alarm” through increased 

production of IL-17A, causing activation and recruitment of primed neutrophils and monocytes 

when pathogens escape initial host defenses. In this way, IL-17A promulgates mechanisms 

responsible for pathogen death and clearance. However, when IL-17A pathways are triggered 

during fetal development, due to chorioamnionitis or in utero inflammatory conditions, IL-17A 

can instigate and/or exacerbate fetal inflammatory responses that increase neonatal morbidities 

and mortality associated with common neonatal conditions such as sepsis, bronchopulmonary 

dysplasia (BPD), patent ductus arteriosus (PDA), and necrotizing enterocolitis (NEC). This review 

details the ontogeny of IL-17A in the fetus and newborn, discusses how derangements in its 

production can lead to pathology, and describes known and evolving therapies that may attenuate 

IL-17A-mediated human conditions.
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Introduction

First discovered in 19931, interleukin (IL)-17A (aka CTLA8) belongs to a family of six 

IL-17 cytokines (IL17A-F) and demonstrates diverse biologic functions2–4. In general, 

IL-17A is produced by a wide spectrum of innate immune cells that are strategically located 

in barrier tissues that protect the human body from the outside environment. If breached by 

pathogenic microorganisms, these specialized immune cells become key instigators of early 

innate immune responses that may negatively impact the future health of the host5. IL-17A-

mediated fetal inflammatory responses can manifest in childhood with debilitating disease, 

including increased severity of respiratory syncytial virus (RSV) infection6,7, asthma 

exacerbations8, and Crohn’s and inflammatory bowel disease9–11. In adults, IL-17A is 

strongly associated with disease severity and progression of psoriatic responses in the skin12, 

depression13,14, and post-ischemic phases of stroke2,15–19. This review will detail our 

current understanding of IL-17A and its association with common, debilitating neonatal 

conditions. In addition, the ontogeny of IL-17A-producing immune cells will be discussed, 

including changes in lymphocyte composition with fetal and neonatal maturation. Lastly, 

novel pharmacologic interventions, which target IL-17A pathways to alleviate disease will 

be addressed.

Cells that produce IL-17

Differentiation of naïve T lymphocytes into distinct effector T helper (Th) cells is essential 

for proper adaptive immune responses20. Naïve T helper cells are currently known to 

differentiate into: (i) Th1 cells, which are vital for cell-mediated immunity and have a key 

role initiating early resistance to pathogens, (ii) Th2 cells, which stimulate antibody-

mediated responses and promote immune tolerance rather than defend against microbial 

infection, (iii) regulatory T (Treg) cells, which suppress immune activity, and (iv) Th17 

cells, which are important in the clearance of extracellular bacteria through IL-17A 

production20–23.

Th17 cells generate proinflammatory cytokines including IL-17A, IL-22, IL-26, tumor 

necrosis factor-α (TNF-α), chemokine (C–C motif) ligand 20 (CCL20)24, and granulocyte 

macrophage colony stimulating factor (GM-CSF)11,25. Differentiation of Th17 cells from 

naïve T cells is stimulated by proinflammatory cytokines, including IL-1β, IL-6, IL-21, and 

IL-23, in coordination with transforming growth factor-β (TGF-β) in a RAR-related orphan 

receptor-γ t (RORγt) – dependent manner11,26–29. Whereas RORγt triggers the 

development of Th17 cells and IL-23 induces their maturation and expansion, TGF-β 
promotes Th17 cell differentiation in a dose-dependent manner11. At low concentrations 

TGF-β activates RORγt expression and Th17 differentiation, while high TGF-β 
concentrations stimulate forkhead box P3 (FOXP3) and Treg formation11,30. Because of 

their opposing immune responses, the Th17/Treg balance is crucial for maintaining immune 

homeostasis. However, in extreme inflammatory or infectious conditions, the formation of 

Treg lymphocytes can become defective, thereby permitting these cells to phenotypically 

transform into Th17-like cells3,31,32 through a process referred to as plasticity or 

transdifferentiation28.
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The clinical importance of Th17 cells is apparent in preterm neonates with chorioamnionitis 

exposure. Chorioamnionitis is a pathologic state of inflammation of the fetal membranes and 

is associated with increased cord blood quantities of IL-17A-producing Th17 lymphocytes33 

and Tregs that exhibit Th17-like phenotypes4. Because a common lineage is shared by Tregs 

and Th17 cells via developmental regulation of the transcription factor RORγδ34, extremely 

high levels of RORγδ expression during inflammation contributes to loss of Treg anti-

inflammatory function and facilitates the conversion of Tregs to Th17 subtypes35,36. 

Likewise, cord blood T lymphocytes with effector memory (TEM) cells can also express 

Th17-related markers and produce IL-17A under inflammatory conditions37. Increased 

concentrations of IL-17A during early inflammatory conditions enables Th17 cells to 

assume Th1-like effector functions, thereby expediting the recruitment of stimulated 

neutrophils to the site of infection and activating of regional macrophages to promote 

pathogen clearance20, 38, 39. In the most extreme preterm neonates, however, clinically 

relevant deficiencies of Th17 and Th1 cellular responses, due to impaired induction of the 

p40 subunit common to IL-12 and IL-23, leads to decreased concentrations of these 

interleukins21,40,41. Reductions in IL-12 and IL-23 in this vulnerable patient population can 

heighten risks of early onset neonatal sepsis despite the presence of higher concentrations of 

other pro-inflammatory cytokines21,41. Alternatively, permutations in the normal fetal 

immune development towards a proinflammatory Th17 response, instead of a tolerant Th2 

response, may initiate fetal inflammatory pathways that result in debilitating chronic 

diseases in the neonatal period or throughout a person’s lifespan33.

IL-17A is also produced by γδT cells, lymphoid-tissue inducer (LTi) cells42, γδT cells43, 

invariant natural killer T (iNKT) cells44, natural killer (NK) cells45, neutrophils46, Paneth 

cells47,48, microglia49, and innate lymphoid cells group 3 (ILC3)2,5. These innate immune 

cells are strategically located in barrier tissues that protect the human body from the outside 

environment and provide vital host protections against foreign threats5. Serving primarily as 

sentinels, these innate immune cells can rapidly (within 4 to 8 hours) increase IL-17A 

production after a pathogenic challenge, luring primed neutrophils to inflamed sites to 

expedite the death and clearance of offending microorganisms5.

Many of these innate immune cells constitutively express the cell surface receptors IL-1R1 

and IL-23R5,50–53 and, therefore, achieve maximal IL-17A production following exposure to 

both IL-1β and IL-23 cytokines5,54. Given the close proximity of these immune cells with 

the outside environment, commensal microorganisms that comprise the host’s microbiome 

may induce IL-1R1 expression on their cell surface to enhance the biological effects of 

IL-17A5,50. As a result, this relationship may enable this group of innate immune cells to 

‘re-shape’ the gut microbiota as necessary to maintain a healthy physiologic state through 

increased production of IL-17, IL-22, and antimicrobial peptides that target specific groups 

of bacteria5. Dysregulation of these cells, however, may also ignite or aggravate chronic 

inflammatory and/or autoimmune conditions, becoming clinically relevant at any age5,54,55.

IL-17 function

IL-17A has diverse proinflammatory effects but may be poorly active when operating 

alone3,56. IL-17A must therefore synergize with other proinflammatory cytokines, such as 
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TNF-α, IL-1β, IL-22, IFN-γ, and GM-CSF, to generate high levels of IL-6 and IL-8, which 

are potent mediators of host immune responses4,57. By bolstering granulopoiesis, IL-17A 

promotes the recruitment of large numbers of activated neutrophils to inflamed sites58, 

where neutrophil cytotoxic59 and phagocytic activities60 are enhanced, thereby providing an 

amplification loop for neutrophil proinflammatory responses61. IL-17A also enhances the 

recruitment and survival of macrophages4,62, stimulates the production of antimicrobial 

proteins and peptides from a variety of immune and non-immune cells4,34,58,63,64, and 

promotes the secretion of IL-2 from T helper cells, which accelerates the proliferation of 

Treg and conventional T lymphocytes4,65.

In general, IL-17A is important in combating extracellular pathogens including Gram-

positive, Gram-negative, and fungal microbes40,66,67. Neonates demonstrate reduced 

baseline production of IL-17A compared to adults, which may diminish neonatal immune 

responses and contribute to their increased susceptibility to infection by group B 

Streptococcus, Escherichia coli40, and Klebsiella pneumoniae20,68. Because IL-17A levels 

are similar between preterm and term neonates, its production is not dependent upon 

immune maturation or advancing gestational age20. In mice, IL-17A-producing γδT cells 

originate only within the embryonic thymus beginning at embryonic day 1569. This period 

corresponds to approximately 24-28 weeks’ gestation in humans, which is associated with 

the highest risks of IL-17A-associated neonatal pathology including sepsis, necrotizing 

enterocolitis, and brain injury70. Although other factors contribute to the heightened 

susceptibility to pathology at this developmental stage, there is burgeoning evidence that 

IL-17 plays a prominent role in neonatal pathology.

The role of IL-17 in neonatal sepsis

The capacity for the host to respond to sepsis is strongly influenced by the patient’s 

developmental age71–76. It is commonly accepted that IL-17A is important for neonatal host 

defense and protective immunity. Physiologic levels of IL-17A produced by type 3 innate 

lymphoid cells (ILCs) improved resistance to infectious challenge in healthy neonatal mice 

via microbiota-driven granulocyte-colony stimulating factor (G-CSF) production and 

neutrophil recruitment77. Similarly, reduced whole blood IL-17A in human preterm neonates 

was associated with an increased risk of bacteremia20. IL-17A produced by intestinal γδT 

cells plays an important role in maintenance and protection of epithelial barriers in the 

intestinal mucosa78. In contrast, excessive production of IL-17A during disease can be 

detrimental to the host and lead to organ injury and death. Emerging information implicates 

pathologic IL-17A signaling during experimental inflammation79, sepsis79–81, NEC82, acute 

lung injury83,84, and brain injury15,17,85. The deleterious role of excessive IL-17A, produced 

by many different cellular sources including γδT cells that can rapidly produce IL-17A via 

an IL-1R1-dependent pathway50,86, is well established in the pathogenesis of severe 

inflammatory and ischemic-injury models including sepsis15,80,87. IL-17A mRNA was 

increased in the intestine following necrotizing enterocolitis in baboons88, and excessive 

IL-17A impaired enterocyte tight junctions, increased enterocyte apoptosis, and reduced 

enterocyte proliferation in murine NEC82. Thus, excessive IL-17A leads to decreased 

intestinal integrity that, in turn, increases the likelihood of developing bacteremia, organ 

injury, and sepsis.
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Mortality to murine neonatal sepsis was dependent upon excessive and deleterious IL-17A 

production by γδT cells in the lung and gut. Sepsis mortality was significantly attenuated 

with antibody-mediated transient IL-17 receptor (IL-17R) blockade. Notably, pathologic 

IL-17A production was dependent upon IL-1R1-mediated signaling and was heavily 

augmented by IL-1819. The importance of discovering the contribution of IL-18 to 

pathologic IL-17A production in neonates is underscored by studies that showed serum 

IL-18 varies inversely with age among children89, and preterm neonates exhibited elevated 

blood IL-18 levels when uninfected, that rose further with infection90. Taken together, these 

data support the paradigm of a developmental age-related propensity to pathologic IL-17A 

production with stimulation19,82,85.

The role of IL-17 in bronchopulmonary dysplasia

BPD develops in very low birthweight (VLBW; < 1500 grams at birth) infants secondary to 

abnormal growth of distal lung structures and tissue damage caused by the combination of 

the underlying disease pathology and injury caused by standard ventilation techniques that 

are lifesaving in this patient population91–95. Neonates destined to develop BPD demonstrate 

increased numbers of circulating neutrophils and macrophages, in addition to higher 

concentrations of leukotrienes, endothelin-196, IL-697, and IL-17A91,98. New studies 

confirm an increased number of TEMs, progenitor Th17, mature Th17, and IL-17+ Treg 

lymphocytes in placental cord blood samples of extremely preterm human neonates who 

developed BPD compared to controls98. These same investigators previously employed a 

murine model of in utero infection to demonstrate enhanced lung expression of Th17 cells 

exhibiting intense proinflammatory properties resistant to Treg-mediated suppression99,100. 

The rise in Th17 cells resulted from heightened RORγt expression and transformation of 

Tregs into Th17-like cells via RORγt-mediated mechanisms. This phenotypic alteration of 

Tregs therefore contributes to both compromised Treg suppressor functions and perpetuation 

of Th17-mediated proinflammatory responses. The authors concluded that chorioamnionitis-

mediated Th17-biased proinflammatory responses in the preterm infant attenuates immune 

programing during a critical developmental window resulting in “dysfunctional immune 

priming”. This immune modification ultimately leads to uncontrolled inflammatory 

processes and tissue damage that increases the risks of morbidity and mortality associated 

with BPD and chronic lung disease33.

IL-17A induces airway epithelial cells to secrete chemokines and cytokines that are also 

important in protecting the lung against extracellular infections including: (i) CXCL1, 

CXCL2, IL-6, IL-8, and GM-CSF, which promote neutrophil differentiation in the bone 

marrow and recruitment of activated cells to the lung epithelium101–103, (ii) CCR6, which is 

associated with trafficking of T, B, and dendritic cells to epithelial sites104, (iii) IL-19, which 

can influence the differentiation of T helper cells into Th2 cells105, (iv) CCL28, which 

enables the migration of IgE-secreting B cells106, and (v) Th1 cell-like chemoattractants, 

which facilitate more effective pathogen clearance when necessary107,108. Furthermore, 

IL-17A contributes to the maintenance of a healthy respiratory epithelial border by 

promoting the production of adhesion and cell junction molecules through induction of 

ICAM-1 by airway epithelial cells11,106,109. Therefore, tight regulation of IL-17A appears 

vital for proper maintenance of the respiratory epithelial border, whereas altered production 
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can injure developing lung tissue resulting in detrimental pulmonary pathologies in our 

youngest patients.

The role of IL-17 in necrotizing enterocolitis

Necrotizing enterocolitis is a life-threatening gastrointestinal ailment that affects up to 5% of 

all VLBW infants admitted to the neonatal intensive care unit110. Devastatingly, 10% to 50% 

of neonates diagnosed with NEC will succumb to their illness, while one-third will suffer 

debilitating long-term complications, such as short-gut syndrome111. NEC onset is 

epidemiologically linked to a “window of susceptibility” with symptoms typically occurring 

in VLBW infants around 30-32 weeks’ corrected gestational age (GA). Therefore, the 

youngest gestational-aged neonates will develop disease later in life than those who are 

older at birth112,113. Because the incidence of NEC is also inversely proportional to GA at 

birth114, immature host defenses are thought to contribute to its pathogenesis115. Heightened 

baseline expression of Toll-like receptor (TLR)-4 and STAT3 in the intestinal mucosa of 

premature compared to full-term neonates116,117, in addition to changes in microbial 

colonization and maturation of immune responses have been implicated in this 

association115,118.

Immune homeostasis in the gut is normally maintained by the production of low-levels of 

IL-17A by resident Th17 lymphocytes and ILCs119. Secretion of IL-17A is influenced by 

the release of IL-1β and TGF-β from intestinal epithelial cells and functions to inhibit 

excessive bacterial growth in the gastrointestinal tract6,120. Th17 cells are also directly 

regulated by local Treg lymphocytes to ensure IL-17A is not disproportionally produced 

under basal conditions28. Treg control of Th17 cells is particularly important during the 

formation of the intestinal microbiome following birth to prevent excessive proinflammatory 

immune responses as the infant is newly exposed to trillions of microorganisms28. 

Disruption of the normal establishment of the neonatal microbiome through exposure to 

intrapartum or postpartum antibiotics, however, can alter the proper functioning of ILCs and 

Th17 lymphocytes. This modification can attenuate neutrophil homeostasis through altered 

production of G-CSF and IL-17A, which increases the neonate’s susceptibility to NEC 

and/or sepsis by enabling the translocation of virulent microorganisms118,119.

During a pathogenic challenge or inflammatory trigger, expression of TLR-4 by the 

intestinal mucosa is upregulated and accompanied by a notable rise in serum concentrations 

of IL-6 and prostaglandin E2 (PGE2)6,121,122. Together, these adaptions result in preferential 

differentiation of Th17 lymphocytes with a coinciding drop in Treg numbers82,111. 

Excessive IL-17A concentrations promote mucosal injury that is commonly associated with 

NEC, including impaired enterocyte tight junctions, increased enterocyte apoptosis, and 

reduced proliferation of enterocytes82. Hence, blocking IL-17A or inducing Treg 

lymphocyte differentiation can decrease or reverse NEC severity82.

In summary, specific T helper subsets are controlled by interactions between commensal 

microbes and mucosal immunity123. Tonic TLR-4 activation by pathogenic bacteria leads to 

exaggerated recruitment and activation of Th17 cells but suppression of Tregs, which can 

alter the normal balance of gut immunity and initiate pathologic responses commonly 
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associated with necrotizing enterocolitis. Although specific mechanisms involved in IL-17A-

mediated NEC remains elusive, continued investigation of this pathway remains intriguing. 

A better understanding of IL-17A-mediated actions may lead to the development of novel 

pharmacologic therapies or change standard clinical management to improve patient 

outcomes resulting from necrotizing enterocolitis.

The role of IL-17 in retinopathy of prematurity

Retinopathy of prematurity is a common, biphasic vasoproliferative disorder of the 

developing retina that occurs in VLBW, critically ill, and severely growth restricted 

infants124. ROP consists of initial blunting of retinal vascular growth followed by retinal 

vessel proliferation around 4-6 weeks of age124. The incidence of ROP is inversely related to 

gestational age, with increased risk and severity of disease in the youngest, sickest preterm 

infants. Recently, pre- and post- natal inflammatory conditions, including chorioamnionitis 

and neonatal sepsis, were shown to be positively correlated to ROP development125,126. 

Alarmingly, ROP remains a major cause of blindness in infancy despite improved screening 

and treatment options90.

Fetal inflammatory responses have recently been identified as an important instigator of 

ROP and results from greatly increased levels of IL-6127, but reduced concentrations of 

IL-17A and IL-18, shortly after birth90. Diminished IL-17A levels in preterm infants during 

critical time points may be responsible for the arrest of retinal angiogenesis, while also 

predisposing the infant to late onset sepsis90.

During retinal neovascularization, however, resident immunocompetent cells of the retina, or 

microglial cells, secrete proinflammatory cytokines, like IL-17A, when chronically 

activated. These inflammatory signals stimulate vascular endothelial growth factor (VEGF) 

production from neuroglial cells, such as Müller and ganglion cells, to promote aberrant 

growth of retinal vessels 49,124,128–131. This abnormal growth is the hallmark of ROP and 

can be attenuated in murine models by IL-17A neutralizing antibodies through modulation 

of the VEGF pathway132. In knockout models of IL-17A, inflammation was also alleviated 

and tissue repair facilitated by biasing macrophage polarization towards a M2 phenotype. 

This macrophage transformation leads to the production of high levels of IL-10, which 

dampens pro-inflammatory responses to enable wound healing132–135. In contrast, IL-17 

drives macrophage differentiation towards a M1 subtype, facilitating secretion of TNF-α, 

IL-1β, and IL-6 to enhance pro-angiogenic VEGF pathways and ROP132.

Currently, anti-VEGF agents are routinely used to treat vasoproliferative diseases, including 

ROP136. However, a substantial number of eyes do not respond adequately to these specific 

therapies124,137–139. Development of innovative therapies based on IL-17A neutralization 

may be an effective treatment for ROP by attenuating microglial cell density, Müller cell 

gliosis, and ganglion cell loss124.

The role of IL-17 in the patent ductus arteriosus

The ductus arteriosus (ductus; PDA) is vital to the fetus allowing blood to be shunted away 

from the fetal lungs and into the systemic circulation. In term infants, the ductus constricts 
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after birth due to an increase in tissue oxygenation and decreased levels of 

prostaglandin140,141. The internal layer of the ductus becomes hypoxic with ductal 

constriction leading to neointimal cushion formation and extensive vascular 

remodeling140,141. This mechanism of vascular remodeling is similar to the development of 

atherosclerosis seen after vascular wall injury140,142. Cytokines, such as IL-17, play a role in 

vascular remodeling in atherosclerosis and may similarly mediate remodeling of the 

ductus143,144. IL-17 has also been shown to affect the aorta (large vessel) and the coronaries 

(small vessels) in different ways revealing that IL-17 has variable expression in different 

tissues145. Although IL-17 plays a role in vascular remodeling and in expression of 

prostaglandin, its role in ductal closure is presently unknown.

In contrast to term infants, the ductus may remain patent for a prolonged period in preterm 

infants, which can result in a shunt that leads to pulmonary over-circulation and systemic 

hypoperfusion. The ductus in a premature infant is thinner which can decrease 

vasoconstriction requiring other means of closure including platelet aggregation and 

thrombus formation140,142. IL-17 increases platelet activation and platelet adhesion which 

may be needed for ductal closure in the premature infant142,146. In addition, premature 

infants are more likely to have a symptomatic PDA if there is a history of 

chorioamnionitis147 or history of postnatal inflammation148 including early onset and late 

onset sepsis149,150. Of note, IL-17 is an important cytokine in inflammation and it in some 

cells it has been shown to stimulate the increase of prostaglandins, a potent vasodilator of 

the ductus146,149,151. The mechanistic interplay between prostaglandin and IL-17 may affect 

ductal closure in the setting of sepsis or other significant inflammatory states. IL-17 

concentration at physiologic levels may promote vascular remodeling and platelet 

aggregation assisting ductal closure. However, the concentration at higher levels may induce 

pathologic ductal dilation due to its effect on prostaglandin production which could be the 

etiology of inflammatory associated symptomatic PDA. Thus, therapeutic approaches that 

target attenuation of pathologic IL-17 production require further study prior to 

implementation in the preterm population.

Pharmacologic interventions targeting IL-17 pathways

Presently, 2 monoclonal antibodies directed against IL-17A and one against the IL-17A 

receptor have completed phase III human trials. These agents include: (i) Ixekizumab 

(LY2439821), a humanized IL-17A specific antibody, (ii) Secukinumab (AIN457), a fully 

human IL-17A specific antibody152, and (iii) Brodalumab (AMG 827), an IL-17A specific 

antibody152. Because the inhibition of IL-17A may increase the risks of extracellular 

bacterial153 and/or fungal infections, careful attention must be paid when this cytokine is 

specifically targeted152. Adult and animal studies provide important information as we 

ponder the use of these therapies in neonatal patients. However, our understanding of 

IL-17A pathways in term and preterm infants remains incomplete and is a barrier to clinical 

trials that target IL-17 signaling in this unique population.
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Conclusion

IL-17 is important for immune surveillance and protection of the neonate. Conversely, 

pathologically-elevated IL-17 plays a deleterious role in many devastating inflammatory 

diseases that occur in neonates including sepsis, NEC, and ROP. Targeting excessive IL-17 

signaling in the setting of these diseases represents a novel therapeutic strategy that brings 

hope for improved outcomes in this vulnerable population.
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Abbreviations

BPD Bronchopulmonary dysplasia

CLD Chronic lung disease

FOXP3 Forkhead box P3

GA Gestational age

G-CSF Granulocyte-colony stimulating factor

GM-CSF Granulocyte-macrophage colony stimulating factor

IL Interleukin

ILC Intestinal group 3 innate lymphoid cell

iNKT Invariant natural killer T cells

NEC Necrotizing enterocolitis

PDA Patent ductus arteriosus

PGE2 Prostaglandin E2

RDS Respiratory Distress Syndrome

ROP Retinopathy of prematurity

RORγt Retinoic acid receptor-related orphan receptor-gamma t

RSV Respiratory syncytial virus

TEM T lymphocytes with effector memory cell

TGF-β Transforming growth factor β

Th T helper lymphocyte
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TLR Toll-like receptor

VEGF Vascular endothelial growth factor

VLBW Very low birth weight
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