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Abstract

Instrumental variables (IVs) are widely used for estimating causal effects in the presence of 

unmeasured confounding. Under the standard IV model, however, the average treatment effect 

(ATE) is only partially identifiable. To address this, we propose novel assumptions that allow for 

identification of the ATE. Our identification assumptions are clearly separated from model 

assumptions needed for estimation, so that researchers are not required to commit to a specific 

observed data model in establishing identification. We then construct multiple estimators that are 

consistent under three different observed data models, and multiply robust estimators that are 

consistent in the union of these observed data models. We pay special attention to the case of 

binary outcomes, for which we obtain bounded estimators of the ATE that are guaranteed to lie 

between −1 and 1. Our approaches are illustrated with simulations and a data analysis evaluating 

the causal effect of education on earnings.
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1 Introduction

Observational studies are often used to infer treatment effects in social and biomedical 

sciences. In these studies, the treatment assignment may be associated with various 

background variables that are associated with the outcome, causing the unadjusted treatment 

effect estimate to be biased. These background variables are often called confounders. A 

major challenge of causal inference in observational studies is that in practice, these 

confounding variables are often not fully observed, making it impossible to identify the 

treatment effect in view. In such settings, instrumental variable (IV) methods are useful in 

dealing with unmeasured confounding and have gained popularity among econometricians, 

statisticians and epidemiologists. Intuitively, conditional on baseline covariates, a valid IV 

affects the outcome through its effect on the treatment but is otherwise unrelated to the 

outcome.
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Traditionally, the IV methods have often been used to identify and estimate the parameters 

indexing a system of linear structural equation models (SEMs) (Wright and Wright, 1928; 

Goldberger, 1972); see Wooldridge (2010, §18.4.1) and Clarke and Windmeijer (2012) for 

recent reviews. Under correct specification of the linear SEMs, the population average 

treatment effect (ATE) is equal to a certain parameter in the SEMs and can thus be 

consistently estimated. One such SEM can be inferred from the following system of linear 

regression models:

D = α0 + α1Z + α2X + α3U + εD, (1a)

Y = β0 + β1D + β2X + β3U + εY, (1b)

where Z is an instrumental variable, D is a continuous treatment, Y is a continuous outcome, 

X and U denote observed and unobserved baseline covariates, respectively, Z⫫U | X and the 

error terms are independent: εD⫫εY. In models (1a) and (1b), α1 ≠ 0 such that Z is 

associated with the treatment, and the fact that conditional on D, X and U, Z is excluded 

from the outcome model encodes the assumption that Z has no direct effect on Y. One can 

then show the parameter β1 is identifiable and equals the ATE. Furthermore, it can be 

consistently estimated via two-stage least squares (Theil, 1953), in which one first obtains 

estimates of E[D | Z, X] through a linear regression, and then regresses Y on Ê[D | Z, X] and 

X to get the treatment effect estimate β̂1. However, (1a) and (1b) impose strong parametric 

assumptions on the underlying data generating process. Moreover, a fundamental limitation 

with relying on models like (1a) and (1b) is that they impose one set of assumptions, which 

conflates the definition, identification and estimation of the treatment effect. For example, 

the target parameter β1 may not even be well-defined if model (1b) is misspecified.

More recently, starting with the seminal work of Imbens and Angrist (1994) and Angrist et 

al. (1996), more attention has been drawn to using the IV model to estimate the local 

average treatment effect (LATE) (e.g. Abadie et al., 2002; Abadie, 2003; Tan, 2006; Cheng 

et al., 2009; Ogburn et al., 2015), defined as the average treatment effect for the so-called 

complier subgroup, partly because it is nonparametrically defined and can be identified 

under an assumption that the effect of the IV on the treatment is not confounded and a 

certain monotonicity assumption described in Section 2. In this approach, assumptions 

needed for identification are usually clearly separated from assumptions needed for 

estimation, so that a researcher is not required to commit to a specific observed data model 

in establishing identification. One may then construct multiple estimators that are consistent 

under different observed data models, or even estimators that are doubly robust in the sense 

that they are consistent in the union of two observed data models. However, the LATE 

concerns an unknown subset of the population which may be highly selective: the compliers 

may be more likely to believe that they would benefit from the treatment (e.g. Robins and 

Greenland, 1996). Furthermore, the definition of LATE depends on the particular IV that is 

available (Wooldridge, 2010, p. 605). As a result, the LATE would in general differ from the 

ATE, which is arguably the causal parameter of interest in most observational studies 
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(Imbens, 2010). We refer interested readers to Deaton (2009), Heckman and Urzua (2010), 

Pearl (2011) and Aronow and Carnegie (2013) for additional discussions on whether the 

LATE is of genuine scientific interest.

To the best of our knowledge, to date there has only been limited work focusing on ATE in 

the context of an IV, while successfully maintaining identification and estimation 

assumptions clearly separated. Prior to our work, Angrist and Fernandez-Val (2013) and 

Aronow and Carnegie (2013) assume that conditional on a covariate profile, the ATE is the 

same as the LATE, so that it can be identified under a monotonicity assumption, provided 

that the causal effect of the IV on the treatment is not confounded. Hernán and Robins 

(2006) and Vansteelandt and Didelez (2015) instead assume absence of treatment effect 

modification by the instrument among the treated and untreated population, respectively. In 

this paper, we propose two alternative no-interaction assumptions involving the unobserved 

confounders that allow for identification of the ATE. Our first assumption is a generalization 

of linear model (1a); our second assumption is similar to Hernán and Robins (2006)’s 

treatment homogeneity assumption in that it is guaranteed to hold under the null of no 

treatment effect, but it applies to the whole population rather than the treated (or untreated) 

population. We also do not rely on the monotonicity assumption for identification, and allow 

for instruments that are confounded with the treatment. One interesting observation is that 

under both of our identification assumptions, the ATE can be represented by the same 

observed data functional so that in the estimation stage, we can target a single statistical 

parameter. This parameter is called the average Wald estimand, a generalization of the Wald 

estimand (Wald, 1940) to accommodate baseline covariates X. By carefully parameterizing 

the efficient influence function for the average Wald estimand, we derive locally 

semiparametric efficient estimators that are multiply robust in the sense that they are 

consistent in the union of three different observed data models. This is in contrast to 

previous estimators for the LATE (e.g. Tan, 2006; Ogburn et al., 2015), the ATE (e.g. Okui 

et al., 2012; Vansteelandt and Didelez, 2015) and a related causal parameter, the effect of 

treatment on the treated (ETT) (Tchetgen Tchetgen and Vansteelandt, 2013; Liu et al., 

2015), wherein researchers only obtain doubly robust estimators. Furthermore, we discuss 

the setting of binary outcomes in detail, for which IV methods are not well developed. 

Towards that end, we propose variation independent parameterizations of the likelihood so 

that the parameter space under our model specification is unconstrained. We also propose 

bounded estimators for the ATE that always lie in the parameter space, which is [−1, 1] for a 

binary outcome. Throughout we assume both the instrument and the treatment to be binary.

The rest of this article is organized as follows. In Section 2, we introduce the IV set-up, 

provide various potential outcomes definitions we shall refer to throughout the paper and 

discuss existing results on partial identification. We provide formal identification conditions 

and corresponding estimation approaches in Sections 3 and 4, respectively. In Section 5, we 

evaluate the finite sample performance of the proposed estimators via simulations. In 

Section 6, we apply the proposed methods to estimate the causal effect of education on 

earnings using data from the National Longitudinal Study of Young Men. We end with a 

brief discussion in Section 7.
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The R programs that were used to analyse the data can be obtained from https://

dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BIJWCU.

2 Framework and notation

Consider an observational study with a single follow-up visit. Suppose we are interested in 

estimating the effect of a binary exposure D on an outcome variable Y, but the effect of D on 

Y is subject to confounding by observed variables X as well as unobserved variables U. A 

variable Z is called an IV if it satisfies the following assumptions (e.g. Didelez and Sheehan, 

2007):

A1 Exclusion restriction: Z⫫Y | (D, U, X);

A2 Independence: Z⫫U | X ;

A3 Instrumental variable relevance: Z ⫫̸ D | X.

Figure 1 gives causal graph representations (Pearl, 2009; Richardson and Robins, 2013) of 

the (conditional) IV model.

An alternative definition of IV is based on the potential outcome framework (Neyman, 1923; 

Rubin, 1974), under which we assume D(z), the potential exposure if the instrument would 

take value z to be well-defined (the Stable Unit Treatment Value Assumption, Rubin, 1980). 

Similarly, we assume Y(d, z), the response that would be observed if a unit were exposed to 

d and the instrument had taken value z to be well-defined. The definition of IV under this 

framework can be derived from a single-world intervention graph (SWIG) (Richardson and 

Robins, 2013) similar to the one in Figure 1(b), but without the bi-directed arrow Z ↔ D(z). 

In particular, A1 is replaced with the assumption A1′ that ∀z, Y(z, d) = Y(d) and A2 is 

replaced with the assumption A2′ that ∀z, d, Z⫫(D(z), Y(d)) | X. We refer interested 

readers to Dawid (2003) and Richardson and Robins (2014) for discussions on the 

connections and differences between these two definitions.

In this article, we assume A1′, A2, A3 and the additional assumption A4 that Y(d) ⫫(D, Z) | 

(X, U). The last assumption may also be read (via d-separation) from the SWIG in Figure 

1(b). Note we allow for unmeasured common causes of Z and D, so that the instrument Z 
and exposure D may be associated simply because they share a latent common cause. This is 

important as in observational settings, it may be difficult to ensure that one has measured all 

common causes of Z and D. However, if Z represents a randomized experiment, then one 

might be willing to make the stronger assumption that the causal effect of Z on D is 

unconfounded so that Z⫫D(z) | X. This would allow us to remove the bi-directed arrow from 

the graph in Figure 1. Hernán and Robins (2006) refer to such IVs as “causal” IVs. In this 

case, under the principal stratum framework (Frangakis and Rubin, 2002), the population 

can be divided into four strata based on values of (D(1), D(0)) as in Table 1. Under a further 

monotonicity assumption that P(D(1) ≥ D(0)) = 1, one is able to identify the local average 

treatment effect LATE = E[Y(1) − Y(0) | D(1) > D(0)] (Imbens and Angrist, 1994; Abadie, 

2003). However, even with a causal IV and the monotonicity assumption, the average 

treatment effect is not identifiable. The fundamental difficulty is that without further 

assumptions, it is not possible to identify the treatment effect in stratum AT or NT as the 
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subjects in these strata always (or never) take the treatment. Instead, in the case where Z, D, 
Y are binary and X is an empty set, Richardson and Robins (2014) derive sharp bounds for 

the ATE under our IV assumptions. See also Balke and Pearl (1997) and Chesher (2010) for 

sharp bounds under other definitions of IV.

3 Identification of the average treatment effect

In this section, we consider the identification problem for the average treatment effect

ATE = E[Y(1) − Y(0)] .

Specifically, in the following Theorem 1, we give two general no-interaction assumptions for 

identification of the ATE. The proof is left to the Appendix.

Theorem 1

Under our IV model that assumes A1′, A2, A3 and A4, the ATE is identifiable if either of 
the following assumptions holds:

A5.a There is no additive U − Z interaction in E[D | Z, X, U]:

E[D |Z = 1, X, U] − E[D |Z = 0, X, U] = E[D |Z = 1, X] − E[D |Z = 0, X];

A5.b There is no additive U − d interaction in E[Y(d) | X, U]:

E[Y(1) − Y(0) | X, U] = E[Y(1) − Y(0) | X] .

Furthermore, under either of these assumptions, the conditional ATE equals the conditional 

Wald estimand

ATE(x) = E[Y(1) − Y(0) | X = x] = E[Y |Z = 1, X = x] − E[Y |Z = 0, X = x]
E[D |Z = 1, X = x] − E[D |Z = 0, X = x] ≜ δY(x)

δD(x)
≜ δ(x)

and the marginal ATE equals the average Wald estimand ATE = EXδ(X) ≜ Δ.

Throughout for notation convenience, we say A5 holds if either A5.a or A5.b holds. A5.a is 

a generalization of the stage-I model (1a). It states that upon conditioning on measured 

covariates, no unmeasured confounder of the D − Y association interacts with the IV on the 

additive scale in predicting the exposure. With a causal IV such that Z⫫D(z) | (X, U) and 

Z⫫D(z) | X, A5.a can be written in a similar form as A5.b: E[D(1) − D(0) | X,U] = E[D(1) − 

D(0) | X]. On the other hand, A5.b states that conditioning on measured covariates, no 

unmeasured confounder of the D − Y association modifies the causal effect of D on the 

mean of Y on the additive scale. Similar to Hernán and Robins (2006)’s treatment 

homogeneity assumption, A5.b has the attractive property that it is guaranteed to hold under 

the null hypothesis of no causal effect for all units. Assumptions A5 has an important 

implication for the design of observational studies: even if a randomized instrument is 

available, it is still important to collect as many causes of the exposure and outcome as 
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possible in the hope that no residual effect modification remains within strata defined by 

covariates X.

It is interesting to note that with a causal IV, δ(X) may also be interpreted as LATE(X) = 

E[Y(1) − Y(0) | D(1) = 1, D(0) = 0, X] under the monotonicity assumption that D(1) ≥ D(0), 

a.e. (Imbens and Angrist, 1994). Hence with a causal IV, the monotonicity assumption and 

A5 together imply the latent ignorability assumption LATE(X) = ATE(X) (Frangakis and 

Rubin, 1999; Angrist and Fernandez-Val, 2013; Aronow and Carnegie, 2013). Similarly, 

under a no-current-treatment-value-interaction assumption, δ(X) can also be interpreted as 

ETT(X) = E[Y(1) − Y(0) | D = 1, X] (Hernán and Robins, 2006). Consequently the no-

current-treatment-value-interaction assumption and A5 together imply that ETT(X) = 

ATE(X).

However, even under the monotonicity assumption or the no-current-treatment-value-

interaction assumption, our assumption does not imply that the marginal ATE is the same as 

the marginal LATE or the marginal ETT. The latter assumption is questionable as the 

complier and the treated arm may both be highly selective groups of the population. To see 

their differences, note that under different sets of identification assumptions described above,

ATE = EXATE(X) = EX
δY(X)
δD(X)

;

LATE = EX |D(1) > D(0)LATE(X) =
EXδY(X)
EXδD(X)

; (2)

ETT = EX |D = 1ETT(X) = EX |D = 1
δY(X)
δD(X)

,

where the second equality in (2) is due to Abadie (2003, Theorem 3.1). One can also see 

from (2) that with a causal IV, in the case where A5.a and A5.b are incorrect but the 

monotonicity assumption is correct, our estimand EXδ(X) can still be interpreted as the 

LATE for a complier population whose covariate distribution matches that of the full study 

population (Aronow and Carnegie, 2013); similarly for the case where only the no-current-

treatment-value-interaction assumption is correct.

Remark 1

When neither A5.a or A5.b holds, in general the Wald estimand differs from ATE. In this 

case, using a similar argument as VanderWeele (2008)’s, one may show that under additional 

assumptions, it is still possible to determine the sign of the bias for estimating the ATE using 

an unbiased estimator of the Wald estimand. We defer the detailed discussion to Proposition 

3 in Appendix B.
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4 Bounded, efficient and multiply robust estimation

In this section we describe estimation methods for the average Wald estimand EXδ(X) ≜ Δ. 

In principle, one can estimate Δ by first estimating δ(x) and then taking expectation with 

respect to the empirical distribution of X. The quantity δ(x) has been the inferential target of 

previous papers since under the identification assumptions discussed above, it can be 

interpreted as the conditional LATE (Imbens and Angrist, 1994) or the conditional ETT 

(Hernán and Robins, 2006). However, with the exception of g-estimators, existing estimators 

for δ(x) are not guaranteed to be bounded (Robins et al., 2007) in the sense that they do not 

necessarily fall within the parameter space of E[Y(1) − Y(0) | X = x]. This is particularly 

relevant when the outcome Y is binary, in which case the parameter space for both δ(x) and 

Δ is [−1, 1].

In what follows we introduce three classes of estimators for Δ. We also propose bounded 

versions of these estimators which are guaranteed to fall within the parameter space with 

binary Y. In addition, we show that these estimators are consistent and asymptotically 

normal (CAN) under different sets of model assumptions:

ℳ1: models for δ(X), δD(X), p0
Y(X) ≡ E[Y |Z = 0, X] and p0

D(X) ≡ E[D |Z = 0, X] are 

correct;

ℳ2: models for δD(X) and the conditional density of Z given X, denoted as f(Z | X) 

are correct;

ℳ3: models for δ(X) and f(Z | X) are correct.

We then propose estimators that are multiply robust in the sense that they are CAN if one, 

but not necessarily more than one of models ℳ1, ℳ2, ℳ3 is correct. Moreover, they are 

locally efficient in that they achieve the semiparametric efficiency bound for the union of 

ℳ1, ℳ2, ℳ3, denoted as ℳunion, at the intersection of ℳ1, ℳ2, ℳ3.

We note that in general, the identification assumptions A1′ – A5 imply certain constraints 

on the observed data law, known as instrumental inequalities (Pearl, 1995). In Proposition 1 

we discuss these constraints for the binary IV model, in which case the instrumental 

inequalities are known to be sharp (Bonet, 2001). The proof is left to the on-line 

supplementary materials.

Proposition 1

a. If Z, D, Y are binary, then the canonical IV assumptions A1′, A2, A3 and A4 

impose testable implications on the law of (Z, D, Y, X):

P(Y = y, D = d |Z = 1, X) + P(Y = 1 − y, D = d |Z = 0, X) ≤ 1, y = 0, 1, d
= 0, 1 .

(3)

However, they do not have testable implications on the laws modeled in ℳ1, ℳ2, 

ℳ3, which are P(Y = 1 | Z, X), P(D = 1 | Z, X) and f(Z | X).
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b. The no-interaction assumption A5 does not have testable implications on the law 

of observed data (Z, D, Y, X).

4.1 Regression-based estimators

We first discuss regression-based estimation of Δ. Some existing proposals for estimating 

δ(x) and hence Δ have relied on separate regression-based estimators for δY(x) and δD(x). 

For example, Frölich (2007) imposes models on E[Y | Z = z, X] and E[D | Z = z, X], while 

Tan (2006) places models on E[Y | Z = z, D = d, X] and E[D | Z = z, X]. These models, 

although intuitive, may produce estimators of δ(x) that are not bounded with Y binary. 

Although one can choose suitable models for E[Y | Z = z, X] (or E[Y | Z = z, D = d, X]) and 

E[D | Z = z, X] to constrain δY(X) and δD(X) within [−1, 1], generally there is no guarantee 

that δ(x) = δY(x)/δD(x) and hence Δ = EXδ(X) lie between −1 and 1.

To remedy this difficulty in the case of binary Y, we instead impose models on δ(X) directly, 

such as

δ(X; α) = tanh(αTX) = e2αTX − 1
e2αTX + 1

, (4)

which guarantees that δ(X) ∈ [−1, 1]. Nuisance models are then needed to allow for 

maximum likelihood estimation of α. Prior to our work, Okui et al. (2012) and Vansteelandt 

and Didelez (2015) choose the nuisance model to be E[Y − δ (X)D | X; βokui]. However, 

with a binary Y, a model such as (4) is variation dependent with E[Y − δ(X)D | X; βokui], as 

with an arbitrary choice of (α, βokui), E[Y | X, α, βokui] = E[Y − δ(X)D | X; βokui] + δ(X; 

α)E[D | X] may not lie between 0 and 1. Consequently, the parameter space of (α, βokui) is a 

constrained space in ℝ2p, making maximum likelihood estimation and asymptotic analysis 

difficult; here p refers to the dimension of X. Instead, following Richardson et al. (2017), our 

choice of nuisance models is

(δD(X; β), OPD(X; ζ), OPY(X; η)),

where 

OPD(X) = [p1
D(X)p0

D(X)]/[(1 − p1
D(X))(1 − p0

D(X))], OPY(X) = [p1
Y(X)p0

Y(X)]/[(1 − p1
Y(X))(1 − p0

Y

(X))], p1
D(X) ≡ P(D = 1|Z = 1, X), p1

Y(X) ≡ P(Y = 1|Z = 1, X)
, 

and δD(X; β) = tanh(βTX) ∈ [−1, 1]. Proposition 2 shows that our models provide a variation 

independent parameterization of the likelihood (P(Y = 1 | Z, X), P(D = 1 | Z, X)) so that the 

parameter space of (α, β, ζ, η) is unconstrained.

Proposition 2—For any realization of X, the mapping given by

(δ(X), δD(X), OPD(X), OPY(X)) (p0
D(X), p1

D(X), p0
Y(X), p1

Y(X)) (5)
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is a diffeomorphism between the interiors of their domains, which are (−1, 1)2 × (ℝ+)2 and 

(0, 1)4, respectively, where ℝ+ = (0, ∞). Moreover, it is available in closed form:

p0
D(X) = 1

2(OPD(X) − 1)
OPD(X)(2 − δD(X)) + δD(X) −

{OPD(X)(δD(X) − 2) − δD(X)}2 + 4OPD(X)(1 − δD(X))(1 − OPD(X)) ;

(6)

p1
D(X) = p0

D(X) + δD(X);

p0
Y(X) = 1

2(OPY(X) − 1)
OPY(X)(2 − δ(X)δD(X)) + δ(X)δD(X) −

{OPY(X)(δ(X)δD(X) − 2) − δ(X)δD(X)}2 + 4OPY(X)(1 − δ(X)δD(X))(1 − OPY(X)) ;

(7)

p1
Y(X) = p0

Y(X) + δ(X)δD(X) .

In principle, any choice of nuisance functions that make the mapping (5) a diffeomorphism 

would suffice. We choose odds products as they are simple and the mapping (5) is available 

in closed form. Under this parameterization, in model ℳ1 we say p0
D(X; β, η) is correctly 

specified if the models δD(X; β) and OPD(X; η) are correct, and p0
Y(X; α, β, ζ) is correctly 

specified if the models δ(X; α), δD(X; β) and OPY(X; ζ) are correct.

Two-step (unconstrained) maximum likelihood can then be used for estimation of these 

parameters. Specifically, let (β̂2mle,η̂2mle) denote the solution to the score equations 

corresponding to the likelihood of D conditional on Z and X: ℙnS(D | Z, X; β, η) = 0, and 

(α̂
2mle, ζ̂2mle) denote the solution to the score equations corresponding to the likelihood of 

Y conditional on Z, X and β̂2mle: ℙnS(Y | Z, X; α, β̂2mle, ζ) = 0. The bounded regression-

based estimator of Δ is given as

Δb − reg = ℙnδ(X; α2mle),

where ℙn denotes the empirical average: ℙnX = 1
n ∑i = 1

n Xi. Theorem 2 summarizes the key 

properties of Δ̂
b-reg. The proof is left to the on-line supplementary materials.

Theorem 2—Under standard regularity conditions, Δb̂-reg is CAN in model ℳ1.
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In some settings researchers may be willing to assume a causal IV and make the 

monotonicity assumption, under which δD(X) lies between 0 and 1. To respect this range, 

one may instead fit a logistic model δD(X; β) = expit(βTX) and one can show that the 

mapping (5) is still a diffeomorphism between their domains.

4.2 Inverse probability weighting estimation

In contrast with regression-based estimation, inverse probability weighting (IPW) avoids 

placing modeling restrictions on the outcome. Instead, it only assumes models in ℳ2. This is 

considered advantageous as IPW separates the design stage from the analysis stage in the 

sense that models in ℳ2 are specified prior to seeing any outcome data, and thus helps 

prevent selecting models that favor “publishable” results (Rubin, 2007).

IPW estimation assumes models δD(X; β) and f(Z | X; γ). Let γ̂
mle be the maximum 

likelihood estimator of γ, and β̂ipw solves the following equation:

ℙn h1(X) D(2Z − 1)
f (Z | X; γmle)

− δD(X; β) = 0, (8)

where h1(X) is a vector function of the same dimension as β, such as h1(X) = X. An IPW 

estimator of Δ is defined as follows:

Δipw = ℙn
Y

δD(X; βipw)
2Z − 1

f (Z | X; γmle)
. (9)

One problem with Δ̂ipw is that it is not bounded with a binary Y. To remedy this, one may 

project (9) onto a bounded working model. Specifically, let α̂
working solve the following 

equation:

ℙn h2(X) Y

δD(X; βipw)
2Z − 1

f (Z | X; γmle) − δ(X; α) = 0,

where δ(X; α) falls within [−1, 1] and h2(X) is a vector function of the same dimension as 

α, such as h2(X) = X. A bounded IPW estimator is then defined as

Δb − ipw = ℙnδ(X; αworking) . (10)

Theorem 3 summarizes the properties of Δ̂
ipw and Δ̂

b-ipw. The proof is left to the on-line 

supplementary materials.

Theorem 3—Under standard regularity conditions and the positivity assumption that both 

δD(X) and f(Z | X) are bounded away from 0, Δ̂
ipw and Δ̂

b-ipw are CAN in ℳ2, regardless of 

whether or not the model δ(X; α) is correct.
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4.3 G-estimation

Estimation of Δ can also be based on g-estimation under model ℳ3. Specifically, let α̂
g solve 

the following equation:

ℙn h3(X)(Y − Dδ(X; α)) 2Z − 1
f (Z | X; γmle)

= 0, (11)

where f(Z | X; γ̂
mle) is defined in Section 4.2 and h3(X) is a vector function of the same 

dimension as α, such as h3(X) = X. The g-estimator of Δ is given as

Δg = ℙnδ(X; αg) .

It is interesting to note that (11) coincides with the g-estimating equation (Robins, 1994) for 

estimating parameter α in the following structural mean model for the conditional ETT:

E[Y(1) − Y(0) |D = 1, Z, X] = ψ0
∗(X; α), (12)

replacing ψ0
∗(X; α) with δ(X; α). This is because (12) implies the no-current-treatment-value-

interaction assumption, so that ψ0
∗(X; α) = δ(X; α).

Theorem 4 summarizes the properties of Δ̂
g. The proof is very similar to that of Theorem 2 

and hence omitted.

Theorem 4—Under standard regularity conditions and the positivity assumption that f(Z | 

X) is bounded away from 0, Δ̂
g is CAN in model ℳ3.

G-estimation provides a plug-in estimator. When Y is binary, to ensure that Δĝ lies between 

−1 and 1, one only needs to choose an appropriate model for δ(X) that respects the model 

constraints, such as model (4).

4.4 Multiply robust estimation

We have so far described three classes of estimators that are CAN in three different models 

ℳ1, ℳ2, ℳ3. Because when X is sufficiently high dimensional, one cannot be confident that 

any of these models is correctly specified, it is of interest to develop a multiply robust 

estimation approach, which is guaranteed to deliver valid inferences about Δ provided that 

one, but not necessarily more than one of models ℳ1, ℳ2, ℳ3 is correctly specified. That is, 

we aim to construct an estimator that is CAN in the union model ℳunion. The following 

theorem provides the basis for our estimator.

Theorem 5—The efficient influence function for Δ in the union model ℳunion is given by
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EIFΔ = 2Z − 1
f (Z | X)

1
δD(X)

(Y − Dδ(X) − p0
Y(X) + p0

D(X)δ(X)) + δ(X) − Δ .

This coincides with the efficient influence function for Δ in the nonparametric model ℳnon, 

in which no restrictions are placed on the distribution of observed data (Y, D, Z, X).

We now construct a locally efficient estimator based on EIFΔ and show that it is CAN in 

ℳunion. We first discuss the case of continuous outcomes, for which the range of Y is 

unrestricted. Our estimator requires estimation of parameters in models δ(X; α), δD(X; β), 

f(Z | X; γ), p0
D(X; θ) and p0

Y(X; ι), where θ and ι are parameters indexing models for p0
D(X)

and p0
Y(X), respectively. To show that our estimator is multiply robust, it must be established 

that consistent estimators of model parameters can be obtained under each of ℳ1, ℳ2, ℳ3 

without further model assumptions. Although γ, θ and ι can be estimated based on 

maximum likelihood, estimation of α or β relies on additional nuisance models as the model 

δ(X; α) or δD(X; β) does not give rise to any partial likelihood by itself. Multiply robust 

estimation requires construction of a consistent estimator of β in the union of ℳ1 and ℳ2, 

and likewise, a consistent estimator of α in the union of ℳ1 and ℳ3.

We achieve these goals using doubly robust g-estimation (Robins, 1994). Specifically, let β̂dr 

solve

ℙnh(X) D − δD(X; β)Z − p0
D(X; θmle)

2Z − 1
f (Z | X; γmle)

= 0 (13)

and α̂
dr solve

ℙng(X) Y − Dδ(X; α) − p0
Y(X; ι mle) + p0

D(X; θmle)δ(X; α) 2Z − 1
f (Z | X; γmle)

= 0, (14)

where h and g are vector functions of the right dimension, such as the identity function; 

γ̂
mle, θ̂mle and ι̂mle are maximum likelihood estimators of γ, θ and ι, respectively. It can be 

shown that βd̂r is CAN in the union model of ℳ1 and ℳ2, and α̂
dr is CAN in the union model 

of ℳ1 and ℳ3 (Robins and Rotnitzky, 2001).

A multiply robust estimator Δ̂
mr is given as follows:
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Δ
^

mr = ℙn
1

δD(X; β
^

dr)
Y − Dδ(X; α

^
dr) − p0

Y(X; ι mle) + p0
D(X; θmle)δ(X; αdr)

2Z − 1
f (Z | X; γmle)

+ δ(X; αdr) .

(15)

Theorem 6 summarizes the key properties of Δ̂
mr. The proof is left to the on-line 

supplementary materials.

Theorem 6—Under standard regularity conditions and the positivity assumption that both 

δD(X) and f(Z | X) are bounded away from 0, Δ ̂
mr is a CAN estimator of Δ in the union 

model of ℳ1, ℳ2, ℳ3. Furthermore, if all models ℳ1, ℳ2, ℳ3 are correct, then the variance 

of Δ̂
mr attains the semiparametric efficiency bound in the union model ℳunion, regardless of 

the choice of h and g.

We now discuss the more challenging case of binary Y. As noted by Richardson et al. (2017, 

Remark 3.1), multiple robustness is a useful property only if it is possible for models ℳ1, 

ℳ2, ℳ3 to be correct a priori. Specifically, the model parameters in each of ℳ1, ℳ2, ℳ3 need 

to be variation independent of each other. Hence when Y is binary, rather than specifying 

models p0
D(X; θ) and p0

Y(X; ι), we assume models OPD(X; η) and OPY(X; ζ) instead. As 

explained in Section 4.1, together with models δY(X; α) and δD(X; β), these odds product 

models imply p0
D(X; β, η) and p0

Y(X; α, β, ζ). Theorem 6 holds if in (13) – (15), p0
D(X; θmle) is 

replaced with p0
D(X; β2mle, η2mle) and p0

Y(X; ι mle) is replaced with p0
Y(X; α2mle, β2mle, ζ 2mle).

We also note that Δ̂mr is (locally) efficient and multiply robust but may not be bounded. To 

remedy this, we note that if we choose the first element of the vector function g(X) to be 
1

δD(X; βdr)
, then α̂

dr solves

ℙn
1

δD(X; βdr)
Y − Dδ(X; α) − p0

Y(X; α2mle, β2mle, ζ2mle) + p0
D(X; β2mle)δ(X; α) 2Z − 1

f (Z | X; γmle) = 0 .

Together with (15), this implies a bounded multiply robust estimator

Δb − mr = ℙnδ(X; αdr) .
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The asymptotic variance formula of each estimator described in this section follows from 

standard M-estimation theory. Alternatively, bootstrapping methods may be used for 

variance estimation in practice.

Remark 2—In some contexts interest may lie in estimating the conditional Wald estimand 

δ(x), especially when X contains effect modifiers. We note that given a model δ(X; α), α̂
dr 

that solves (14) is a doubly robust estimator, meaning that it is CAN in the union of models 

ℳ1 and ℳ3.

Remark 3—Our construction of Δ ̂
b−mr is motivated by Robins et al. (2007). There are also 

other constructions of bounded estimators available for estimating the average treatment 

effect in the absence of unmeasured confounding; see for example, Tan (2010) and 

Vermeulen and Vansteelandt (2015). In principle, these approaches may also be applied in 

our context.

4.5 Discussions on multiple robustness

Multiply robust estimators have been proposed previously in the literature. Prior to our 

work, Vansteelandt et al. (2007) propose 2T-multiply robust estimators in the context of 

longitudinal measurements with non-monotone missingness, Vansteelandt et al. (2008) 

propose multiply robust estimators for statistical interactions, Tchetgen Tchetgen (2009) 

proposes a multiply robust estimator to adjust for drop-out in randomized trials and 

Tchetgen Tchetgen and Shpitser (2012) propose multiply robust estimators for the marginal 

natural indirect and direct causal effects. These estimators have in common that they are 

CAN if the analyst correctly specifies the models for one, but not necessarily more than one 

components of the observed data law. As in our case, these components may contain 

multiple elements with possible overlaps.

We remark that the multiple robustness result in Theorem 6 is non-trivial. In particular, it 

relies on a novel parameterization of the efficient influence function in term of functions 

δ(X), δD(X), p0
Y(X), p0

D(X) and f(Z | X). The intuition for this parameterization comes from 

Sections 4.1 – 4.3, where we show that it is possible to construct CAN estimators of Δ in 

each of models ℳ1, ℳ2, ℳ3. To see why our parameterization is important, consider an 

alternative parameterization of EIFΔ:

EIFΔ = 2Z − 1
f (Z | X)

Y
δD(X)

−
p0

Y(X)
δD(X)

− D

(δD(X))2δY(X) + p0
D(X) δY(X)

(δD(X))2 + δY(X)
δD(X)

− Δ, (16)

which is a function of δY(X) rather than δ(X). The analogue of ℳ1 is hence ℳ1′  that models 

for δY(X), δD(X), p0
Y(X) and p0

D(X) are correct, and the analogue of ℳ3 is hence ℳ3′  that 

models for f(Z | X) and δY(X) are correct. Although EIFΔ has zero expectation when 

evaluated in the union of ℳ1′  and ℳ2, the multiple robustness property is less obvious with 

representation (16) as the expectation of EIFΔ is not necessarily zero in model ℳ3′ . More 
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generally speaking, given an observed data model and a parameter of interest, the efficient 

influence function is a unique random variable (Bickel et al., 1998). However, different 

parameterizations of the same efficient influence function may lead to different conclusions 

about its robustness property. We refer interested readers to Tchetgen Tchetgen et al. (2010) 

for another example of this phenomenon. It remains an open problem whether one can 

construct an estimator for Δ that are robust to models for more components of the likelihood.

We also clarify the conceptual difference between the multiple robustness property discussed 

in this article and the improved double robustness property discussed in some recent papers 

in the missing data literature (Han and Wang, 2013; Cefalu et al., 2017; Naik et al., 2016). 

These improved doubly robust estimators are constructed based on multiple working models 

for two components of the likelihood: the outcome regression and the propensity score. They 

remain CAN if at least one of the working models is correct. As pointed out by Molina et al. 

(2017) and Li et al. (2017), technically these estimators are still doubly robust rather than 

multiply robust, because they require specification of a large model for each of the two 
components of the likelihood, each of them being the union of several smaller models. In 

contrast, our multiply robust estimators allow for specification of models for multiple 
components of the likelihood.

It is natural to ask whether one can construct estimators that enjoy the improved multiple 

robustness property in our context. In principle, the answer is positive. For example, suppose 

fj(Z | X; γj), j = 1 …, J are multiple parametric models for f(Z | X) but only the first one is 

correct. To construct a consistent estimator for f(Z | X) in this case, consider the parametric 

model

f (Z | X; α j, γ j, j = 1, …, J) = ∑
j = 1

J
α j f j(Z | X; γ j) .

One can estimate the model parameters in two steps. In the first step, one obtains the 

maximum likelihood estimates of γj, denoted as γ̂
j. In the second step, one fits a linear 

regression of Z on fj(Z | X; γ̂
j), j = 1, …, J. It is not hard to see that α̂

j →p 1(j = 1) wherein 

1(·) is the indicator function, and f(Z | X; α̂
j, γ̂

j, j = 1, …, J) estimates f(Z | X) consistently. 

Estimators for other parts of the observed data law can be constructed in a similar way.

Finally, we emphasize that multiply robust estimation is possible as we do not commit to any 

observed data model in establishing identification. In contrast, the linear models (1a) and 

(1b) imply models in ℳ1, so that the corresponding two-stage least square estimator may not 

be consistent outside of ℳ1. Similarly, Okui et al. (2012) and Vansteelandt and Didelez 

(2015) also implicitly consider estimation of the average Wald estimand, but they assume 

that a model for δ(X) is correctly specified. It follows that their estimators are only CAN in 

the union of ℳ1 and ℳ3 and therefore only doubly robust.

5 Simulation studies

In this section, we evaluate the finite sample performance of the proposed estimators. In our 

simulations, the baseline covariates X include an intercept and a continuous variable X2 
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uniformly distributed on the interval (−1, −0.5) ⋃ (0.5, 1). The unmeasured confounder U is 

Bernoulli distributed with mean 0.5. Conditional on X and U, the instrument Z, treatment D 
and outcome Y are generated from the following models:

P(Z = 1| X, U) = π(X) = expit(γTX);

δD(X) = tanh(βTX);

OPD(X) = exp(ηTX);

P(D = 1|Z, X, U) = p0
D(X) + ZδD(X) + κ(2U − 1),

δ(X) = tanh(αTX);

OPY(X) = exp(ζTX);

P(Y = 1|Z, X, U) = p0
Y(X) + ZδD(X)δ(X) + κ(2U − 1),

where p0
D(X) is obtained from δD(X) and OPD(X) using (6), p0

Y(X) is obtained from δD(X), 

δ(X) and OPY(X) using (7), α = (0.1, 0.5)T, β = (0, −0.5)T, γ = (0.1, −0.5)T, ζ = (0, −1)T, η 
= (−0.5, 1)T and κ = 0.1. We are interested in estimating the average Wald estimand Δ = 

EXδ(X), whose true value is 0.087.

We consider five estimators:

b-reg: The bounded regression estimator placing models on δ(X), δD(X), OPD(X) 

and OPY(X).

b-ipw: The bounded inverse probability estimator solving equation (10) with h1(X) = 

h2(X) = X.

g: The g estimator solving equation (11) with h3(X) = X.

mr: The multiply robust estimator obtained by solving equations (13), (14) and (15) 

with h(X) = g(X) = X.

b-mr: The bounded multiply robust estimator obtained by solving equations (13), 

(14) and (15) with h(X) = X, g(X) = (X2, 1/δD(X; β̂dr)).
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We also consider scenarios in which the models in ℳ1, ℳ2, ℳ3 are misspecified. In these 

cases, instead of using X, the analyst uses covariates X† that consists of an intercept and X2
†; 

the latter covariate is generated from an independent standard normal distribution. 

Specifically, in the following we report results from the following five scenarios:

All correct: X is used in models ℳ1, ℳ2, ℳ3;

ℳ1 correct: X is used in model ℳ1, but X† is used in the model for P(Z = 1 | X);

ℳ2 correct: X is used in model ℳ2, but X† is used in the models for δ(X), OPD(X), 

OPY(X);

ℳ3 correct: X is used in model ℳ3, but X† is used in the models for δD(X), OPD(X), 

OPY(X);

All wrong: X† is used in the models for δ(X), δD(X), OPD(X), OPY(X) and P(Z = 1 | 

X).

Motivated by a reviewer’s comment, in the on-line supplementary materials we report results 

for all 16 combinations of correct/incorrect specifications of the following four sets of 

models: δ(X), δD(X), f(Z|X) and (OPY(X), OPD(X)). In all these settings, the working model 

for computing b-ipw uses the same covariate as the model for δD(X).

All simulation results are based on 1000 Monte-Carlo runs of n = 500 units each. Table 2 

summarizes the simulation results. As predicted by our theoretical results, b-reg has small 

bias only when model ℳ1 is correct, b-ipw has small bias only when model ℳ2 is correct, g 

has small bias only when model ℳ3 is correct, while b-mr has small bias when one, but not 

necessarily more than one of models ℳ1, ℳ2, ℳ3 is correct. We also note that mr is more 

variable than b-mr, especially when model ℳ1 and ℳ2 are both misspecified. This is 

because under these scenarios, δD(X) is misspecified. Although in our simulation settings, 

the true value of δD(X) is bounded away from 0, under model misspecification the estimated 

value for δD(X) may be close to 0, leading to instability in the naive multiply robust 

estimator. There is also no guarantee that mr falls within the interval [−1,1]. In fact, when 

only ℳ3 is correct, in which case mr is supposed to be consistent, it produces an estimate 

outside of [−1,1] for 77.6% of the simulation samples. In contrast, Figure 2 plots the 

distribution of b-mr for these 776 simulation samples. One can see that even for these 

challenging samples, b-mr performs quite well.

6 The causal effect of education on earnings

To illustrate the proposed methods, we reanalyze data from the National Longitudinal 

Survey of Young Men (NLS) (Card, 1995; Tan, 2006; Okui et al., 2012; Wang et al., 2017), 

which consist of observations on 5525 men aged between 14 and 24 in 1966. Among them, 

3010 provided valid education and wage responses in the 1976 follow-up. We are interested 

in estimating the causal effect of education on earnings, which might be confounded by 

unobserved preferences for education levels. Card (1995) proposes to use presence of a 

nearby 4-year college as an instrument. Following Tan (2006), we consider education 

beyond high school as the treatment. In this data set, 2053 (68.2%) lived close to a 4-year 
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college, and 1521 (50.5%) had education beyond high school. To illustrate the proposed 

methods with binary outcomes, we follow Wang et al. (2017) to dichotomize the outcome 

wage at its median, that is 5.375 dollars per hour.

We adjust for age, race, father and mother’s education levels, indicators for residence in the 

south and a metropolitan area and IQ scores, all measured in 1966. Among them, race, 

parents’ education levels and residence are included as they may affect both the instrument 

and outcome; age is included as it is likely to modify the effect of education on earnings, and 

IQ scores, as a measure of underlying ability, are included as they may modify both the 

effect of proximity to college on education, and the effect of education on earnings. 

Following Card (1995), we use mean imputation for missing values, and include indicators 

of imputation in the models. The NLS was also not a representative sample of the US 

population. We account for this by reweighing observations using their sampling weights.

We first apply the test of Wang et al. (2017) to check the proposed instrumental variable 

model. Analysis results show that the proposed IV model cannot be falsified with the 

observed data. We then apply the proposed methods to estimate the causal effect of 

education on earnings. In addition to the estimators included in Section 5, we report the 

crude estimate which does not account for any confounding, and the Risk Difference 

Regression (RDReg) estimate (Richardson et al., 2017), which only accounts for observed 

confounders; the RDReg estimate was obtained using R package brm (Wang and 

Richardson, 2016). We also report the two-stage least square (2SLS) estimate, which is 

believed to approximate the causal relation of interest (Angrist and Pischke, 2008) despite 

not respecting the natural model constraints of a binary outcome. The results are 

summarized in Table 3, wherein the confidence intervals are obtained by quantile-based 

nonparametric bootstrap.

Table 3 summarizes the results. The bootstrapped estimates are based on 1000 bootstrap 

samples. Both 2SLS and bounded multiply robust estimation yield substantially higher point 

estimates than Risk Difference Regression, suggesting that unmeasured confounding leads 

to a downward bias in the regression estimate of causal effect; this is consistent with 

previous findings using the log wage as the outcome (Card, 1995; Okui et al., 2012). Unlike 

2SLS, the confidence interval given by the bounded multiply robust estimation is contained 

within the interval [−1, 1], confirming boundedness of the proposed estimator. The bounded 

IV regression estimate is very close to 1, which is unlikely given that the outcome takes 

value 0 or 1. This is probably due to misspecification of one or more models contained in 

ℳ1. Despite this possible misspecification, the multiply robust methods still yield reasonable 

estimates. This indicates that multiply robust estimation does provide some protection 

against model misspecification. Furthermore, the multiply robust estimates are close to the 

bounded IPW estimate. This suggests that the models in ℳ2, that are δD(X; β) and f(Z | X; 
γ), may be close to the truth (Tchetgen Tchetgen and Robins, 2010).

7 Discussion

IV methods are widely used to identify causal effects in the presence of unmeasured 

confounding. In practice, applied researchers are primarily interested in estimating the ATE. 
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In contrast, the majority of statistical IV literature focuses on estimating the LATE, a 

legitimate causal parameter but often of secondary interest. We address this discrepancy by 

proposing novel assumptions that allow for identification of the ATE. We have argued that 

our novel identification assumptions are often more plausible than previous assumptions as 

they do not place constraints on the observed data distribution and do not suffer from the 

same limitations as previous identification approaches. Nevertheless, our identification 

assumptions lead to the same observed data functional as previous methods targeting the 

ATE, so that our proposed estimators can also be used to estimate the ATE under previous 

identification frameworks.

In this paper we discuss in detail how to obtain bounded estimators of the additive ATE with 

binary outcomes. This is especially relevant as most previous semiparametric IV methods 

primarily deal with continuous outcomes. Correspondingly, it is of interest to develop 

bounded estimators of the LATE with binary outcomes. Our approach in this paper can also 

be extended to improve causal effect estimation in the case of the multiplicative ATE, as 

well as to the context of a failure time outcome under additive or multiplicative hazards 

models. Finally, we have focused on the case of binary instrument and treatment in this 

paper. Extension of the proposed methodology to the case of general instrument or treatment 

is an interesting topic for future research.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

A Proof of Theorem 1

To simplify notation, conditioning on X is implicit in our proof. We first note that
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δY = ∑
z = 0, 1

(2z − 1)E[Y |Z = z] = ∑
z = 0, 1

(2z − 1)EUE[Y |Z = z, U](Z ⫫ U)

= ∑
z = 0, 1

(2z − 1)EU{E[YD |Z = z, U] + E[Y(1 − D) |Z = z, U]}

= EU ∑
z = 0, 1

(2z − 1){E[Y(1)D |Z = z, U] + E[Y(0)(1 − D) |Z = z, U]}

= EU ∑
z = 0, 1

(2z − 1){E[Y(1) |Z = z, U]P(D = 1|Z = z, U) + E[Y(0) |Z = z, U]P(D = 0|Z

= z, U)}(Y(d) ⫫ D | (Z, U)) = EU ∑
z = 0, 1

(2z − 1){E[Y(1) |U]P(D = 1|Z = z, U) + E[Y(0) |U

]P(D = 0|Z = z, U)}(Y(d) ⫫ Z |U) = EU(E[Y(1) − Y(0) |U]{E[D |Z = 1, U] − E[D |Z = 0,

U]}) .

(17)

Under A5.a,

E[D |Z = 1, U] − E[D |Z = 0, U] = E[D |Z = 1] − E[D |Z = 0] = δD;

under A5.b,

E[Y(1) − Y(0) |U] = E[Y(1) − Y(0)] .

and due to Z⫫U, EU{E[D | Z = 1, U] − E[D | Z = 0, U]} = E[D | Z = 1] − E[D | Z = 0] = δD. 

Hence under either A5.a or A5.b, δY = δDE[Y(1) − Y(0)]. This concludes our proof.

B Interpretation of the average Wald estimand when A5.a and A5.b both fail

Proposition 3

Suppose U is univariate and that for all X, E[Y(1) − Y(0) | U, X] and (E[D | Z = 1, U, X] − 

E[D | Z = 0, U, X]) / (E[D | Z = 1, X] − E[D | Z = 0, X]) are both non-decreasing/non-

increasing in U. Then the average Wald estimand

Δ ≥ ATE .

Furthermore, if U is multivariate, then the conclusion still holds if the components of U are 

conditionally independent given X.

The proof follows by noting that (17) implies

Wang and Tchetgen Tchetgen Page 20

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



δ(X) − ATE(X) = δY(X)
δD(X)

− ATE(X) = 1
δD(X)

(EU | X(E[Y(1) − Y(0) |U, X]{E[D |Z = 1, U, X] − E[D |Z = 0, U, X]}

) − EU | X(E[Y(1) − Y(0) |U, X])EU | X{E[D |Z = 1, U, X] − E[D |Z = 0, U, X]})

= CovU | X E[Y(1) − Y(0) |U, X], 1
δD(X)

{E[D |Z = 1, U, X] − E[D |Z = 0, U, X]} .
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Figure 1. 
Causal graphs representing an instrumental variable model. The bi-directed arrow between Z 
and D indicates potential unmeasured common causes of Z and D. Variables X, Z, D, Y are 

observed; U is unobserved. The left panel gives a causal Directed Acyclic Graph (Pearl, 

2009) with a bi-directed arrow, and the right panel gives a Single World Intervention Graph 

(Richardson and Robins, 2013) with a bi-directed arrow.
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Figure 2. 
Estimates of b-mr when mr estimates go outside of [−1,1]. The red vertical line indicates the 

true value.
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Table 1

Principal stratum describing potential complier status (D(1), D(0))

D(1) D(0) Principal stratum Abbreviation

1 1 Always taker AT

1 0 Complier CO

0 1 Defier DE

0 0 Never taker NT
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Table 3

Estimates of the effect of education beyond high school on earnings (dichotomized at median)

Method Point Estimate 95% Confidence Interval

naive 0.122 (0.085,0.162)

RDReg 0.037 (−0.009,0.080)

2SLS 0.469 (−0.140,1.327)

b-reg 0.849 (0.239,0.978)

b-ipw 0.424 (−1.000,1.000)

g 0.079 (−0.355,1.000)

mr 0.328 (−60.394,65.339)

b-mr 0.344 (−0.373,0.938)
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