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Abstract

This paper studies hypothesis testing and parameter estimation in the context of the divide-and-

conquer algorithm. In a unified likelihood based framework, we propose new test statistics and 

point estimators obtained by aggregating various statistics from k subsamples of size n/k, where n 
is the sample size. In both low dimensional and sparse high dimensional settings, we address the 

important question of how large k can be, as n grows large, such that the loss of efficiency due to 

the divide-and-conquer algorithm is negligible. In other words, the resulting estimators have the 

same inferential efficiencies and estimation rates as an oracle with access to the full sample. 

Thorough numerical results are provided to back up the theory.
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1. Introduction

In recent years, the field of statistics has developed apace in response to the opportunities 

and challenges spawned from the ‘data revolution’, which marked the dawn of an era 

characterized by the availability of enormous datasets. An extensive toolkit of methodology 

is now in place for addressing a wide range of high dimensional problems, whereby the 

number of unknown parameters, d, is much larger than the number of observations, n. 

However, many modern datasets are instead characterized by n and d both large. The latter 

presents intimidating practical challenges resulting from storage and computational 

limitations, as well as numerous statistical challenges (Fan et al., 2014). It is important that 
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statistical methodology targeting modern application areas does not lose sight of the 

practical burdens associated with manipulating such large scale datasets. In this vein, 

incisive new algorithms have been developed for exploiting modern computing architectures 

and recent advances in distributed computing. These algorithms enjoy computational or 

communication efficiency and facilitate data handling and storage, but come with a 

statistical overhead if inappropriately tuned.

With increased mindfulness of the algorithmic difficulties associated with large datasets, the 

statistical community has witnessed a surge in recent activity in the statistical analysis of 

various divide and conquer (DC) algorithms, which randomly partition the n observations 

into k subsamples of size nk = n/k, construct statistics based on each subsample, and 

aggregate them in a suitable way. In splitting the dataset, a single, very large scale estimation 

or testing problem with computational complexity O(γ(n)), for a given function γ(·) that 

depends on the underlying problem, is transformed into k smaller problems with 

computational complexity O(γ(n/k)) on each machine. What get lost in this process are the 

interactions of split subsamples in each machine. They are not recoverable without 

additional rounds of communication or without additional communication between the 

machines. Since every additional split of the dataset incurs some efficiency loss, it is of 

significant practical interest to derive a theoretical upper bound on the number of 

subsamples k that delivers the same asymptotic statistical performance as the practically 

unavailable “oracle” procedure based on the full sample.

We develop communication efficient generalizations of the Wald and Rao’s score tests for 

the sparse high dimensional scheme, as well as communication efficient estimators for the 

parameters of the sparse high dimensional and low dimensional linear and generalized linear 

models. In all cases we give the upper bound on k for preserving the statistical error of the 

analogous full sample procedure. While hypothesis testing in a low dimensional context is 

straightforward, in the sparse high dimensional setting, nuisance parameters introduce a non-

negligible bias, causing classical low dimensional theory to break down. In our high 

dimensional Wald construction, the phenomenon is remedied through a debiasing of the 

estimator, which gives rise to a test statistic with tractable limiting distribution, as 

documented in the k = 1 (no sample split) setting in Zhang and Zhang (2014) and van de 

Geer et al. (2014). For the high dimensional analogue of Rao’s score statistic, the 

incorporation of a correction factor increases the convergence rate of higher order terms, 

thereby vanquishing the effect of the nuisance parameters. The approach is introduced in the 

k = 1 setting in Ning and Liu (2014), where the test statistic is shown to possess a tractable 

limit distribution. However, the computation complexity for the debiased estimators 

increases by an order of magnitude, due to solving d high-dimensional regularization 

problems. This motivates us to appeal to the divide and conquer strategy.

We develop the theory and methodology for DC versions of these tests. In the case of k = 1, 

each of the above test statistics can be decomposed into a dominant term with tractable limit 

distribution and a negligible remainder term. The DC extension requires delicate control of 

these remainder terms to ensure the error accumulation remains sufficiently small so as not 

to materially contaminate the leading term. We obtain an upper bound on the number of 

permitted subsamples, k, subject to a statistical guarantee. More specifically, we find that the 
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theoretical upper bound on the number of subsamples guaranteeing the same inferential or 

estimation efficiency as the whole-sample procedure is k = o((s log d)−1 n) in the linear 

model, where s is the sparsity of the parameter vector. In the generalized linear model the 

scaling is k = o(((s ∨ s1) log d)−1 n), where s1 is the sparsity of the inverse information 

matrix.

For sparse high dimensional estimation problems, we use the same debiasing technique 

introduced in the high dimensional testing problems to obtain a thresholded divide and 

conquer estimator that achieves the full sample minimax rate. The appropriate scaling is 

found to be k = O( n/(s2 log d)) for the estimation of the sparse parameter vector in the high 

dimensional linear model and k = O( n/((s ∨ s1)2 log d)) for the high dimensional generalized 

linear model. Moreover, we find that the loss incurred by the divide and conquer strategy, as 

quantified by the distance between the DC estimator and the full sample estimator, is 

negligible in comparison to the statistical error of the full sample estimator provided that k is 

not too large. In the context of estimation, the optimal scaling of k with n and d is also 

developed for the low dimensional linear and generalized linear model. This theory is of 

independent interest. It also allows us to study a refitted estimation procedure under a 

minimal signal strength assumption.

1.1. Related Literature

A partial list of references covering DC algorithms from a statistical perspective is Chen and 

Xie (2012), Zhang et al. (2013), Kleiner et al. (2014), Liu and Ihler (2014) and Zhao et al. 

(2014a). The closest works to ours are Zhang et al. (2013), Lee et al. (2015) and Rosenblatt 

and Nadler (2016). Zhang et al. (2013) consider the distributed estimator for kernel ridge 

regression. In the context of d < n, Zhang et al. (2013) propose the distributed estimator by 

averaging the kernel ridge regression estimators for each data split. They obtain an explicit 

upper bound on the number of splits yielding the minimax optimal rates for the mean 

squared error. However, it is not straightforward to generalize their estimator to the high 

dimensional setting. In an independent work, Lee et al. (2015) propose the same debiasing 

approach of van de Geer et al. (2014) to allow aggregation of local estimates on distributed 

data splits in the context of sparse high dimensional linear and generalized linear models. 

Though using different techniques of proofs, the conclusions of Lee et al. (2015) in terms of 

the optimal choice of tuning parameter scaling and the upper bound on the permissible 

number of sample splits is of the same order. Our work differs from theirs in two aspects: (1) 

our work also contributes to the distributed testing in sparse high dimensional models and 

(2) we propose a refitted distributed estimator which has the oracle rate. Our results on 

hypothesis testing reveal a different phenomenon to that found in estimation, as we observe 

through the different requirements on the scaling of k. On the estimation side, our results 

also differ from those of Lee et al. (2015) in that our additional refitting step allows us to 

achieve the oracle rate. Rosenblatt and Nadler (2016) consider the distributed empirical risk 

minimization for M-estimators. They require the dimension of the interest parameter to 

satisfy the scaling condition d/n → κ ∈ (0, 1), which rules out the d ≫ n case. They 

quantify the accuracy loss over the full sample estimator in terms of the number of splits.
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1.2. Organization of the paper

The rest of the paper is organized as follows. Section 2 collects notation and details of a 

generic likelihood based framework. Section 3 covers testing, providing high dimensional 

DC analogues of the Wald test (Section 3.1) and Rao’s score test (Section 3.2), in each case 

deriving a tractable limit distribution for the corresponding test statistic under standard 

assumptions. Section 4 covers distributed estimation, proposing an aggregated estimator of 

the unknown parameters of linear and generalized linear models in low dimensional and 

sparse high dimensional scenarios, as well as a refitting procedure that improves the 

estimation rate, with the same scaling, under a minimal signal strength assumption. Section 

5 provides numerical experiments to back up the developed theory. In Section 6 we discuss 

our results together with remaining future challenges. Proofs of our main results are 

collected in Section 7, while the statement and proofs of a number of technical lemmas are 

deferred to the Supplementary Material.

2. Background and Notation

We first collect the general notation, before providing a formal statement of our statistical 

problems. More specialized notation is introduced in context.

2.1. Generic Notation

We adopt the common convention of using bold-face letters for vectors only, while regular 

font is used for both matrices and scalars. |·| denotes both absolute value and cardinality of a 

set, with the context ensuring no ambiguity. For x = (x1, …, xd)T ∈ ℝd, and 1 ≤ q ≤ ∞, we 

define ‖x‖q = (∑ j = 1
d ∣ x j ∣q)1/q

, ||x||0 = |supp(x)|, where supp(x) = {j : xj ≠ 0}. Write ||x||∞ = 

max1≤j≤d |xj|, while for a matrix M = [Mjk], let ||M||max = maxj,k |Mjk|, ||M||1 = Σj,k |Mjk|. For 

any matrix M we use Mℓ to index the transposed ℓth row of M and [M]ℓ to index the ℓth 

column. The sub-Gaussian norm of a scalar random variable X is defined as ||X||ψ2 = supq≥1 

q−1/2( |X|q)1/q. For a random vector X ∈ ℝd, its sub-Gaussian norm is defined as ||X||ψ2 = 

supx∈ d−1||〈X, x〉||ψ2, where d−1 denotes the unit sphere in ℝd. Let Id denote the d × d 
identity matrix; when the dimension is clear from the context, we omit the subscript. We 

also denote the Hadamard product of two matrices A and B as A ∘ B and (A ∘ B)jk = AjkBjk 

for any j, k. {e1, …, ed} denotes the canonical basis for ℝd. For a vector v ∈ ℝd and a set of 

indices  ⊆ {1, …, d}, v  is the vector of length | | whose components are {vj : j ∈ }. 

Additionally, for a vector v with jth element vj, we use the notation v−j to denote the 

remaining vector when the jth element is removed. With slight abuse of notation, we write v 
= (vj, v−j) when we wish to emphasize the dependence of v on vj and v−j individually. The 

gradient of a function f(x) is denoted by ∇f(x), while ∇xf(x, y) denotes the gradient of f(x, y) 

with respect to x, and ∇xy
2 f (x, y) denotes the matrix of cross partial derivatives with respect 

to the elements of x and y. For a scalar η, we simply write f′(η) := ∇ηf(η) and 

f ″(η): = ∇ηη
2 f (η). For a random variable X and a sequence of random variables, {Xn}, we 

write Xn ⇝ X when {Xn} converges weakly to X. If X is a random variable with standard 

distribution, say FX, we simply write Xn ⇝ FX. Given a, b ∈ ℝ, let a ∨ b and a ∧ b denote 
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the maximum and minimum of a and b. We also make use of the notation an ≲ bn (an ≳ bn) if 

an is less than (greater than) bn up to a constant, and an ≍ bn if an is the same order as bn.

2.2. General Likelihood based Framework

Let (X1
T, Y1)T, …, (Xn

T, Yn)T be n i.i.d. copies of the random vector (XT, Y)T, whose 

realizations take values in ℝd × . Write the collection of these n i.i.d. random couples as 

𝒟 = {(X1
T, Y1)T, …, (Xn

T, Yn)T} with Y = (Y1, …, Yn)T and X = (X1, …,Xn)T ∈ ℝn×d. 

Conditional on Xi, we assume Yi is distributed as Fβ* for all i ∈ {1, …, n}, where Fβ* is a 

known distribution parameterized by a sparse d-dimensional vector β* and has a density or 

mass function fβ*. We thus define the negative log-likelihood function, ℓn(β), as

ℓn(β) = 1
n ∑

i = 1

n
ℓi(β) = − 1

n ∑
i = 1

n
log f β(Y i ∣ Xi) . (2.1)

We use J* = J(β*) to denote the information matrix and Θ* to denote (J*)−1, where 

J(β) = 𝔼[∇ββ
2 ℓn(β)].

For testing problems, our goal is to test H0: βv
∗ = βv

H for a specific fixed index v ∈ {1, …, d}. 

We partition β* as β∗ = (βv
∗, β−v

∗ T)T ∈ ℝd, where β−v
∗ ∈ ℝd − 1 is a vector of nuisance 

parameters and βv
∗ is the parameter of interest. To handle the curse of dimensionality, we 

exploit a penalized M-estimator defined as,

βλ = argmin
β

{ℓn(β) + 𝒫λ(β)}, (2.2)

with Pλ(β) a sparsity inducing penalty function with a regularization parameter λ. Examples 

of Pλ(β) include the convex ℓ1 penalty, 𝒫λ(β) = λ‖β‖1 = λ∑ j = 1
d ∣ β j ∣ which, in the context 

of the linear model, gives rise to the Lasso estimator (Tibshirani, 1996),

βLasso
λ = argmin

β

1
2n‖Y − X β‖2

2 + λ‖β‖1 . (2.3)

Other penalties include folded concave penalties such as the smoothly clipped absolute 

deviation (SCAD) penalty (Fan and Li, 2001) and minimax concave MCP penalty (Zhang, 

2010), which eliminate the estimation bias and attain the oracle rates of convergence (Loh 

and Wainwright, 2013; Wang et al., 2014a). The SCAD penalty is defined as
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𝒫λ(β) = ∑
j = 1

d
pλ(β j), where pλ(t) = ∫

0

∣ t ∣
λ 𝟙 (z ≤ λ) + aλ − z

a − 1 𝟙 (z > λ) dz, (2.4)

for a given parameter a > 0 and MCP penalty is given by

𝒫λ(β) = ∑
j = 1

d
pλ(β j), where pλ(t) = λ∫

0

∣ t ∣
1 − z

λb +
dz (2.5)

where b > 0 is a fixed parameter. The only requirement we have on Pλ(β) is that it induces 

an estimator satisfying the following condition.

Condition 2.1: For any δ ∈ (0, 1), if λ ≍ log (d /δ)/n,

ℙ ‖βλ − β∗‖1 > Csn−1/2 log (d /δ) ≤ δ, (2.6)

where s is the sparsity of β*, i.e., s = ||β*||0.

Condition 2.1 is crucial for the theory developed in Sections 3 and 4. Under suitable 

conditions on the design matrix X, it holds for the Lasso, SCAD and MCP. See Bühlmann 

and van de Geer (2011); Fan and Li (2001); Zhang (2010) respectively and Zhang and 

Zhang (2012).

The DC algorithm randomly and evenly partitions  into k disjoint subsets 1, …, k, so 

that 𝒟 = ∪ j = 1
k 𝒟 j, j ∩ ℓ = Ø for all j, ℓ ∈ {1, …, k}, and | 1| = | 2| = ··· = | k| = nk = n/k, 

where it is implicitly assumed that n can be divided evenly. Let ℐj ⊂ {1, …, n} be the index 

set corresponding to the elements of j. Then for an arbitrary n × d matrix A, A(j) = 

[Aiℓ]i∈ℐj,1≤ℓ≤d. For an arbitrary estimator τ̂, we write τ̂ ( j) when the estimator is constructed 

based only on j. Finally, we write ℓnk
( j)(β) = ∑i ∈ ℐ j

ℓi(β) to denote the negative log-

likelihood function based on j.

While the results of this paper hold in a general likelihood based framework, for simplicity 

we state conditions at the population level for the generalized linear model (GLM) with 

canonical link. A much more general set of statements appear in the auxiliary lemmas upon 

which our main results are based. Under GLM with the canonical link, the response follows 

the distribution,

Battey et al. Page 6

Ann Stat. Author manuscript; available in PMC 2018 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f n(Y; X, β∗) = ∏
i = 1

n
f (Y i; ηi

∗) = ∏
i = 1

n
c(Y i) exp

Y iηi
∗ − b(ηi

∗)
ϕ , (2.7)

where ηi
∗ = Xi

T β∗. The negative log-likelihood corresponding to (2.7) is given, up to an affine 

transformation, by

ℓn(β) = 1
n ∑

i = 1

n
−Y iXi

T β + b(Xi
T β) = 1

n ∑
i = 1

n
−Y iηi + b(ηi) = 1

n ∑
i = 1

n
ℓi(β), (2.8)

and the gradient and Hessian of ℓn(β) are respectively

∇ℓn(β) = − 1
n XT(Y − μ(X β)) and ∇2ℓn(β) = 1

n XTD(X β)X,

where μ(β) = (b′(η1), …, b′(ηn))T and D(β) = diag{b″(η1), …, b″(ηn)}. In this setting, 

J(β) = 𝔼[b″(X1
T β)X1X1

T] and J∗ = 𝔼[b″(X1
T β∗)X1X1

T].

3. Divide and Conquer Hypothesis Tests

In the context of the two classical testing frameworks, the Wald and Rao’s score tests, our 

objective is to construct a test statistic S̄
n with low communication cost and a tractable 

limiting distribution F. From this statistic we define a test of size α of the null hypothesis, 

H0: βv
∗ = βv

H, against the alternative, H1: βv
∗ ≠ βv

H, as a partition of the sample space described 

by

Tn
α =

0 if ∣ Sn ∣ ≤ F−1(1 − α/2)

1 if ∣ Sn ∣ > F−1(1 − α/2)
(3.1)

for a two sided test.

3.1. Two Divide and Conquer Wald Type Constructions

For the high dimensional linear model, Zhang and Zhang (2014), van de Geer et al. (2014) 

and Javanmard and Montanari (2014) propose methods for debiasing the Lasso estimator 

with a view to constructing high dimensional analogues of Wald statistics and confidence 

intervals for low-dimensional coordinates. As pointed out by Zhang and Zhang (2014), the 

debiased estimator does not impose the minimum signal condition used in establishing 

oracle properties of regularized estimators (Fan and Li, 2001; Fan and Lv, 2011; Loh and 
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Wainwright, 2015; Wang et al., 2014b; Zhang and Zhang, 2012) and hence has wider 

applicability than those inferences based on the oracle properties. The method of van de 

Geer et al. (2014) is appealing in that it accommodates a general penalized likelihood based 

framework, while the Javanmard and Montanari (2014) approach is appealing in that it 

optimizes asymptotic variance and requires a weaker condition than van de Geer et al. 

(2014) in the specific case of the linear model. We consider the DC analogues of Javanmard 

and Montanari (2014) and van de Geer et al. (2014) in Sections 3.1.1 and 3.1.2 respectively.

3.1.1. Lasso based Wald Test for the Linear Model—The linear model assumes

Y i = Xi
T β∗ + εi, (3.2)

where {εi}i = 1
n  are i.i.d. with (εi) = 0 and variance σ2. For concreteness, we focus on a 

Lasso based method, but our procedure is also valid when other pilot estimators are used. 

We describe a modification of the bias correction method introduced in Javanmard and 

Montanari (2014) as a means to testing hypotheses on low dimensional coordinates of β* via 

pivotal test statistics.

On each subset j, we compute the debiased estimator of β* as in Javanmard and Montanari 

(2014) as

βd(𝒟 j) = βLasso
λ (𝒟 j) + 1

nk
M( j) X( j) T Y( j) − X( j)βLasso

λ (𝒟 j) , (3.3)

where the superscript d is used to indicate the debiased version of the estimator, 

M( j) = (m1
( j), …, md

( j))T and mv is the solution of

mv
( j) = argmin

m
mT∑( j)m s.t. ‖∑( j)m − ev‖∞ ≤ ϑ1, ‖X( j)m‖∞ ≤ ϑ2 . (3.4)

The choice of tuning parameters ϑ1 and ϑ2 is discussed in Javanmard and Montanari (2014) 

and Zhao et al. (2014a) and they suggest to choose ϑ1 ≍ log d /n, ϑ2n−1/2 = o(1). In the 

context of our DC procedure, ϑ1 and ϑ2 rely on k and should be chosen as ϑ1 ≍ k log d /n, 

ϑ2n−1/2 = o(1), as quantified in Theorem 3.3. Above, ∑( j) = nk
−1∑i ∈ ℐ j

Xi
( j)Xi

( j)T is the 

sample covariance based on j, whose population counterpart is ∑ = 𝔼(X1X1
T) and M(j) is its 

regularized inverse. The second term in (3.3) is a bias correction term, while 

σ2mv
( j)T∑( j)mv

( j)/nk is shown in Javanmard and Montanari (2014) to be the variance of the vth 
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component of βd̂( j). The parameter ϑ1, which tends to zero, controls the bias of the 

debiased estimator (3.3) and the optimization in (3.4) minimizes the variance of the resulting 

estimator.

Solving d optimization problems in (3.4) increases an order of magnitude of computation 

complexity even for k = 1. Thus, it is necessary to appeal to the divide and conquer strategy 

to reduce the computation burden. This gives rise to the question how large k can be in order 

to maintain the same statistical properties as the whole sample one (k = 1).

Because our DC procedure gives rise to smaller samples, Σ̂ is singular. This singularity does 

not pose a statistical problem but it does make the optimization problem ill-posed. To 

overcome the singularity in Σ̂ and the resulting instability of the algorithm, we propose a 

change of variables. More specifically, noting that M(j) is not required explicitly, but rather 

the product M(j)(X(j))T, we propose

bv
( j) = argmin

b

b( j)Tb( j)

nk
s.t. X( j)Tb( j)

nk
− ev

∞
≤ ϑ1, ‖b( j)‖∞ ≤ ϑ2, (3.5)

from which we construct M(j)(X(j))T = BT, where B = (b1, …, bd). The algorithm in equation 

(3.5) is crucial to the success of our procedure in practice.

The following conditions on the data generating process and the tail behavior of the design 

vectors are imposed in Javanmard and Montanari (2014). Both conditions are used to derive 

the theoretical properties of the DC Wald test statistic based on the aggregated debiased 

estimator, βd = k−1∑ j = 1
k βd(𝒟 j).

Condition 3.1:  {(Y i, Xi)}i = 1
n  are i.i.d. and Σ satisfies 0 < Cmin ≤ λmin(Σ) ≤ λmax(Σ) ≤ Cmax.

Condition 3.2: The rows of X are sub-Gaussian with ||Xi||ψ2 ≤ κ, i = 1, …, n.

Note that under the two conditions above, there exists a constant κ1 > 0 such that 

‖X1∑
− 1

2‖
ψ2

≤ κ1. Without loss of generality, we set κ1 = κ. Our first main theorem provides 

the relative scaling of the various tuning parameters involved in the construction of β̄d.

Theorem 3.3: Suppose Conditions 2.1, 3.1 and 3.2 are fulfilled. Suppose 𝔼[ε1
4] < ∞ and 

choose ϑ1, ϑ2 and k such that ϑ1 ≍ k log d /n, ϑ2n−1/2 = o(1) and k = o((s log d)−1 n). For 

any v ∈ {1, …, d}, we have
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n1
k ∑

j = 1

k βv
d(𝒟 j) − βv

∗

Qv
( j) N(0, σ2), (3.6)

where Qv
( j) = (mv

( j)T∑( j)mv
( j))

1/2
.

Theorem 3.3 entertains the prospect of a divide and conquer Wald statistic of the form

Sn = n1
k ∑

j = 1

k βv
d(𝒟 j) − βv

H

σ(mv
( j)T∑( j)mv

( j))
1/2 (3.7)

for βv
∗, where σ̄ is an estimator for σ based on the k subsamples. On the left hand side of 

equation (3.7) we suppress the dependence on v to simplify notation. As an estimator for σ, 

a simple suggestion with the same computational complexity is σ̄ where

σ2 = 1
k ∑

j = 1

k
σ2(𝒟 j) and σ2(𝒟 j) = 1

nk
∑

i ∈ ℐ j

(Y i
( j) − Xi

( j)T βLasso
λ (𝒟 j))

2
. (3.8)

One can use the refitted cross-validation procedure of Fan et al. (2012) to reduce the bias of 

the estimate. In Lemma 3.4 we show that with the scaling of k and λ required for the weak 

convergence results of Theorem 3.3, consistency of σ̄2 is also achieved.

Lemma 3.4: Suppose [εi|Xi] = 0 for all i ∈ {1, …, n}. Then with λ ≍ k log d /n and 

k = o n(s log d)−1 , |σ̄2 − σ2| = oℙ(1).

With Lemma 3.4 and Theorem 3.3 at hand, we establish in Corollary 3.5 the asymptotic 

distribution of S̄
n under the null hypothesis H0: βv

∗ = βv
H. This holds for each component v ∈ 

{1, …, d}.

Corollary 3.5: Suppose Conditions 3.1 and 3.2 are fulfilled, 𝔼[ε1
4] < ∞, and λ, ϑ1 and ϑ2 

are chosen as λ ≍ k log d /n, ϑ1 ≍ k log d /n and ϑ2n−1/2 = o(1). Then provided 

k = o((s log d)−1 n), under H0: βv
∗ = βv

H, we have

lim
n ∞ ∣ ℙ(Sn ≤ t) − Φ(t) ∣ = 0, (3.9)
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where Φ(·) is the cdf of a standard normal distribution.

3.1.2. Wald Test in the Likelihood Based Framework—An alternative route to 

debiasing the Lasso estimator of β* is the one proposed in van de Geer et al. (2014). Their so 

called desparsified estimator of β* is more general than the debiased estimator of Javanmard 

and Montanari (2014) in that it accommodates generic estimators of the form (2.2) as pilot 

estimators, but the latter optimizes the variance of the resulting estimator. The desparsified 

estimator for subsample j is

βd(𝒟 j) = βλ(𝒟 j) − Θ( j)∇ℓnk
( j)(βλ(𝒟 j)), (3.10)

where Θ̂(j) is a regularized inverse of the Hessian matrix of second order derivatives of 

ℓnk
( j)(β) at β̂λ( j), denoted by J ( j) = ∇2ℓnk

( j)(βλ(𝒟 j)). We will make this explicit in due course. 

The estimator resembles the classical one-step estimator (Bickel, 1975), but now in the high-

dimensional setting via regularized inverse of the Hessian matrix Ĵ(j), which reduces to the 

empirical covariance of the design matrix in the case of the linear model. From equation 

(3.10), the aggregated debiased estimator over the k subsamples is defined as 

βd = k−1∑ j = 1
k βd(𝒟 j).

We now use the nodewise Lasso (Meinshausen and Bühlmann, 2006) to approximately 

invert Ĵ(j) via L1-regularization. The basic idea is to find the regularized invert row by row 

via a penalized L1-regression, which is the same as regressing the variable Xv on X−v but 

expressed in the sample covariance form. For each row v ∈ 1, …, d, consider the 

optimization

κv(𝒟 j) = argmin
κ ∈ ℝd − 1

J vv
( j) − 2J v, − v

( j) κ + κTJ −v, − v
( j) κ + 2λv‖κ‖1 , (3.11)

where J v, − v
( j)  denotes the vth row of Ĵ(j) without the (v, v)th diagonal element, and J −v, − v

( j)  is 

the principal submatrix without the vth row and vth column. Introduce

C( j): =

1 −κ1, 2(𝒟 j) … −κ1, d(𝒟 j)
−κ2, 1(𝒟 j) 1 … −κ2, d(𝒟 j)

⋮ ⋮ ⋱ ⋮
−κd, 1(𝒟 j) −κd, 2(𝒟 j) … 1

(3.12)
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and Ξ̂(j) = diag(τ̂1( j), …, τ̂d( j)), where τv(𝒟 j)
2 = J vv

( j) − J v, − v
( j) κv(𝒟 j). Θ̂(j) in equation 

(3.10) is given by

Θ( j) = (Ξ( j))
−2

C( j), (3.13)

and we define Θv
( j) as the transposed vth row of Θ̂(j).

Theorem 3.8 establishes the limit distribution of the term,

Sn = n1
k ∑

j = 1

k βv
d(𝒟 j) − βv

H

Θvv
∗ (3.14)

for any v ∈ {1, …, d} under the null hypothesis H0: βv
∗ = βv

H. This provides the basis for the 

statistical testing based on divide-and-conquer. We need the following condition. Recall that 

J* = [∇ββℓn(β*)] and consider the generalized linear model (2.7).

Condition 3.6: (i) {(Y i, Xi)}i = 1
n  are i.i.d., 0 < Cmin ≤ λmin(Σ) ≤ λmax(Σ) ≤ Cmax, λmin(J*) ≥ 

Lmin > 0, ||J*||max < U1 < ∞. (ii) For some constant M < ∞, max1 ≤ i ≤ n ∣ Xi
T β∗ ∣ ≤ M and 

max1≤i≤n ||Xi||∞ ≤ M. (iii) There exist finite constants U2, U3 > 0 such that b″(η) < U2 and b
‴(η) < U3 for all η ∈ ℝ.

The same assumptions appear in van de Geer et al. (2014). In the case of the Gaussian GLM, 

the condition on λmin(J*) reduces to the requirement that the covariance of the design has 

minimal eigenvalue bounded away from zero, which is a standard assumption. We require ||

J*||max < ∞ to control the estimation error of different functionals of J*. The restriction in 

(ii) on the covariates and the projection of the covariates are imposed for technical 

simplicity; it can be extended to the case of exponential tails (see Fan and Song, 2010). Note 

that Var(Y i) = ϕb″(Xi
T β∗) where ϕ is the dispersion parameter in (2.7), so b″(η) < U2 

essentially implies an upper bound on the variance of the response. In fact, Lemma E.2 

shows that b″(η) < U2 can guarantee that the response is sub-Gaussian. b‴(η) < U3 is used 

to derive the Lipschitz property of b″(Xi
T β) with respect to β as shown in Lemma E.5. We 

emphasize that no requirement in Condition 3.6 is specific to the divide and conquer 

framework.

The assumption of bounded design in (ii) can be relaxed to the sub- Gaussian design. 

However, the price to pay is that the allowable number of subsets k is smaller than the 

bounded case, which means we need a larger sub-sample size. To be more precise, the order 

of maximum k for the sub-Gaussian design has an extra factor, which is a polynomial of 

log d, compared to the order for the bounded design. This logarithmic factor comes from 
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different Lipschitz properties of b″(Xi
T β) in the two designs, which is fully explained in 

Lemma E.5 in the Supplementary Material. In the following theorems, we only present 

results for the case of bounded design for technical simplicity.

In addition, recalling that Θ* = (J*)−1, where J∗: = J(β∗) = 𝔼[∇ββ
2 ℓn(β∗)], we impose 

Condition 3.7 on Θ* and its estimator Θ̂.

Condition 3.7: (i) min1 ≤ v ≤ d Θvv
∗ > θmin > 0. (ii) max1 ≤ i ≤ n ‖Xi

TΘ∗‖∞ ≤ M. (iii) For v = 1, 

…, d, whenever λv ≍ k log d /n in (3.11), we have

ℙ ‖Θv − Θv
∗‖1 ≥ Cs1 log d /n ≤ d−1,

where C is a constant and s1 is such that ‖Θv
∗‖0 ≾ s1 for all v ∈ {1, …, d}.

Part (i) of Corollary 3.7 ensures that the variances of each component of the debiased 

estimator exist, guaranteeing the existence of the Wald statistic. Parts (ii) and (iii) are 

imposed directly for technical simplicity. Results of this nature have been established under 

a similar set of assumptions in van de Geer et al. (2014) and Negahban et al. (2009) for 

convex penalties and in Wang et al. (2014a) and Loh and Wainwright (2015) for folded 

concave penalties.

As a step towards deriving the limit distribution of the proposed divide and conquer Wald 

statistic in the GLM framework, we establish the asymptotic behavior of the aggregated 

debiased estimator βv
d for every given v ∈ [d].

Theorem 3.8: Under Conditions 2.1, 3.6 and 3.7, with λ ≍ k log d /n, we have

βv
d − βv

∗ = − 1
k ∑

j = 1

k
Θv

( j)T ∇ℓnk
( j)(β∗) + oℙ(n−1/2) (3.15)

for any k ≪ d satisfying k = o ((s ∨ s1) log d)−1 n , where Θv
( j) is the transposed vth row of 

Θ̂(j).

The proof of Theorem 3.8 shows that for the Wald test procedure, the divide and conquer 

estimator βv
d is asymptotically as efficient as the full sample estimator β̂v, i.e.,

lim
n ∞

Var(βv
d)

Var(βv
d)

− 1 = 0.
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A corollary of Theorem 3.8 provides the asymptotic distribution of the Wald statistic in 

equation (3.14) under the null hypothesis.

Corollary 3.9: Let S̄
n be as in equation (3.14), with Θvv

∗  replaced with an estimator Θṽv. 

Then under the conditions of Theorem 3.8 and H0: βv
∗ = βv

H, provided |Θ̃
vv − Θvv| = oℙ(1) 

under the scaling k = o ((s ∨ s1) log d)−1 n , we have

lim
n ∞ sup

t ∈ ℝ
∣ ℙ(Sn ≤ t) − Φ(t) ∣ = 0.

Remark 3.10: Although Theorem 3.8 and Corollary 3.9 are stated only for the GLM, their 

proofs are in fact an application of two more general results. Further details are available in 

Lemmas E.7 and E.8 in the Supplementary Material.

We return to the issue of estimating Θvv
∗  in Section 4, where we introduce a consistent 

estimator of Θvv
∗  that preserves the scaling of Theorem 3.8 and Corollary 3.9.

3.2. Divide and Conquer Score Test

In this section, we use ∇vf(β) and ∇−vf(β) to denote, respectively, the partial derivative of f 
with respect to βv and the partial derivative vector of f with respect to β−v. 

∇vv
2 f (β), ∇v, − v

2 f (β), ∇−v, v
2 f (β) and ∇−v, − v

2 f (β) are analogously defined.

In the low dimensional setting (where d is fixed), Rao’s score test of H0: βv
∗ = βv

H against 

H1: βv
∗ ≠ βv

H is based on ∇vℓn(βv
H, β

∼
−v) , where β̃−v is a constrained maximum likelihood 

estimator of β−v
∗ , constructed as β

∼
−v = argminβ−v

ℓn(βv
H, β−v) = argmaxβ−v

{ − ℓn(βv
H, β−v)}. If 

H0 is false, imposing the constraint postulated by H0 significantly violates the first order 

conditions from M-estimation with high probability; this is the principle underpinning the 

classical score test. Under regularity conditions, it can be shown (e.g. Cox and Hinkley, 

1974) that

n(∇vℓn(βv
H, β

∼
−v))Jv ∣ − v

∗ − 1/2 N(0, 1),

where Jv ∣ − v
∗  is given by Jv ∣ − v

∗ = Jv, v
∗ − Jv, − v

∗ J−v, − v
∗ − 1 J−v, v

∗ , with Jv, v
∗ , Jv, − v

∗ , J−v, − v
∗  and 

J−v, v
∗  the partitions of the information matrix J* = J(β*),
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J(β) =
Jv, v Jv, − v

J−v, v J−v, − v
=

𝔼∇v, v
2 ℓn(β) 𝔼∇v, − v

2 ℓn(β)

𝔼∇−v, v
2 ℓn(β) 𝔼∇−v, − v

2 ℓn(β)
. (3.16)

The problems associated with the use of the classical score statistic in the presence of a high 

dimensional nuisance parameter are brought to light by Ning and Liu (2014), who propose a 

remedy via the decorrelated score. The problem stems from the inversion of the matrix 

J−v, − v
∗  in high dimensions. The decorrelated score is defined as

S(βv
∗, β−v

∗ ) = ∇vℓn(βv
∗, β−v

∗ ) − w ∗ T ∇−vℓn(βv
∗, β−v

∗ ), (3.17)

where w ∗ T = Jv, − v
∗ J−v, − v

∗ − 1 . For a regularized estimator ŵ of w*, to be defined below, we 

consider the score estimator

S(βv
∗, β−v

λ ) = ∇vℓn(βv
∗, β−v

λ ) − wT ∇−vℓn(βv
∗, β−v

λ ) . (3.18)

Hence, provided w* is sufficiently sparse to avoid excessive noise accumulation, we are able 

to achieve consistency of ŵ under the high dimensional setting, ultimately giving rise to a 

tractable limit distribution of a suitable rescaling of S(βv
∗, β−v

λ ). Since βv
∗ is restricted under 

the null hypothesis, H0: βv
∗ = βv

H, the statistic in (3.18) is accessible once H0 is imposed. As 

Ning and Liu (2014) point out, w* is the solution to

w∗ = argmin
w

𝔼[∇vℓn(βv
H, β−v

∗ ) − wT ∇−vℓn(βv
H, β−v

∗ )]2

under H0: βv
∗ = βv

H.

Our divide and conquer score statistic under H0: βv
∗ = βv

H is

S(βv
H) = 1

k ∑
j = 1

k
S ( j) βv

H, β−v
λ (𝒟 j) , where (3.19)

S( j) βv, β−v
λ (𝒟 j) = ∇vℓnk

( j) βv, β−v
λ (𝒟 j) − w(𝒟 j)

T ∇−vℓnk
( j) βv, β−v

λ (𝒟 j)  and we estimate w* 

using the Dantzig selector of Candes and Tao (2007)
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w(𝒟 j) = argmin
w

‖w‖1,

s.t. ∇−v, v
2 ℓnk

( j) βv
λ(𝒟 j), β−v

λ (𝒟 j) − wT ∇−v, − v
2 ℓnk

( j) βv
λ(𝒟 j), β−v

λ (𝒟 j) ∞
≤ μ .

Theorem 3.11: Let Ĵv|−v be a consistent estimator of Jv ∣ − v
∗  and

S( j)(βv
H, β−v

∗ ) = ∇vℓnk
( j)(βv

H, β−v
∗ ) − w ∗ T ∇−vℓnk

( j)(βv
H, β−v

∗ ) .

Suppose ||w*||1 ≲ s1 and Conditions 2.1 and 3.6 are fulfilled. Then under H0: βv
∗ = βv

H with 

λ ≍ μ ≍ k log d /n,

n S(βv
H) = n1

k ∑
j = 1

k
S( j)(βv

H, β−v
∗ ) + oℙ(1)

and lim
n ∞ sup

t ∈ ℝ
ℙ n · S(βv

H)J v ∣ − v
−1/2 ≤ t − Φ(t) = 0,

for any k ≪ d satisfying k = o ((s ∨ s1) log d)−1 n , where S(βv
H) is defined in equation (3.19).

Remark 3.12: By the definition of w* and the block matrix inversion formula for Θ* = (J*)
−1, sparsity of w* is implied by sparsity of Θ* as assumed in van de Geer et al. (2014) and 

Condition 3.7 of Section 3.1.2. In turn, ||w*||0 ≲ s1 implies ||w*||1 ≲ s1 provided that the 

elements of w* are bounded.

Remark 3.13: Although Theorem 3.11 is stated in the penalized GLM setting, the result 

holds more generally; further details are available in Lemma E.13 in the Supplementary 

Material.

To maintain the same computational complexity, an estimator of the conditional information 

needs to be constructed using a DC procedure. For this, we propose to use

Jv ∣ − v = k−1 ∑
j = 1

k
∇v, v

2 ℓnk
( j)(βv

d, β−v) − wT ∇−v, v
2 ℓnk

( j)(βv
d, β−v) ,

where the divide and conquer estimator βv
d = k−1∑ j = 1

k βv
d(𝒟 j), β−v = k−1∑ j = 1

k β−v
λ (𝒟 j) and 

w = k−1∑ j = 1
k w(𝒟 j). Note that for certain v, the communication cost for calculating J̄v|−v is 

not high, since all the involved quantities {∇v, v
2 ℓnk

( j)(βv
d, β−v)}

j = 1

k , {∇−v, v
2 ℓnk

( j)(βv
d, β−v)}

j = 1

k
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and {w(𝒟 j)} j = 1
k  are scalars, d-dimensional vectors and d-dimensional vectors respectively. 

The communication cost is thus of order O(kd). We do not communicate the entire huge 

hessian matrix here.

Lemma 3.14: Suppose ||w*||1 = O(s1) and Conditions 2.1 and 3.6 are fulfilled. Then for any 

k ≪ d satisfying k = o ((s ∨ s1) log d)−1 n , ∣ Jv ∣ − v − Jv ∣ − v
∗ ∣ = oℙ(1).

By Lemma 3.14, we show that J̄v|−v is consistent and can be applied to Theorem 3.11.

4. Accuracy of Distributed Estimation

This section focuses on high-dimensional (d ≫ n) divide-and-conquer estimators for linear 

and generalized linear models. As explained below Theorem 3.8 in Section 3, the efficiency 

loss from the divide-and-conquer process is asymptotically zero. This motivates us to 

consider ||β̄d − β̂d||, the loss incurred by the divide and conquer strategy in comparison with 

the practically unavailable full sample debiased estimator β̂d, where ||·|| is certain norm. 

Indeed, it turns out that, for k not too large, β̄d − β̂d appears only as a higher order term in 

the decomposition of β̄d − β* and thus ||β̄d − β̂d|| is negligible compared to the statistical 

error, ||β̂d − β*||. In other words, the divide-and-conquer errors are statistically negligible.

Compared with calculating the full sample debiased Lasso estimator, our proposed DC 

strategy enjoys computational advantages since it is highly parallel and each subsample 

problem has a much smaller scale than the full sample problem given a suitably large k. 

However, relative to just the full sample penalized M-estimator (e.g., Lasso), distributed 

point estimation does not entail a computational gain like distributed testing, since our 

distributed algorithm requires debiasing each component of the Lasso estimator and hence 

brings high expense of computation. The bottleneck of computation of our DC procedure 

comes from the d extra debiasing steps. To mitigate this problem, we can actually debias 

each component of β̂ in a parallel fashion. According to the optimization procedures (3.4) 

and (3.11), debiasing one component of the Lasso estimator is entirely independent of the 

debiasing of another component. Therefore, as long as each branch computer in the cluster 

shares the sub-dataset j and the Lasso estimator β̂(j), they can work in parallel and 

collectively return to a central server all the components of the debiased Lasso estimator. 

This parallelization reduces the time complexity significantly.

When the minimum signal strength is sufficiently strong, thresholding β̄d achieves exact 

support recovery, motivating a refitting procedure based on the low dimensional selected 

variables. As a means to understanding the theoretical properties of this refitting procedure, 

as well as for independent interest, we develop new theories and methodologies for the low 

dimensional (d < n) linear and generalized linear models in Appendixes A and B in the 

Supplementary Material respectively. We show that simple averaging of low dimensional 

OLS or GLM estimators (denoted uniformly as β̂(j), without superscript d as debiasing is not 

necessary) suffices to preserve the statistical error, i.e., achieving the same statistical 

accuracy as the estimator based on the full sample. This is because, in contrast to the high 

dimensional setting, parameters are not penalized in the low dimensional case. With β̄ the 
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average of β(̂j) over the k machines and β̂ the full sample counterpart (k = 1), we derive the 

rate of convergence of ||β̄ − β̂||2. Refitted estimation using only the selected covariates allows 

us to eliminate the log d term in the statistical rate of convergence of the estimator under 

high-dimensional settings. We present theoretical results on the refitting estimation as 

corollaries to the low-dimensional regression results in Appendixes A and B in the 

Supplementary Material.

4.1. The High-Dimensional Linear Model

Recall that the high dimensional DC estimator is βd = k−1∑ j = 1
k βd(𝒟 j), where β̂d( j) for 1 

≤ j ≤ k is the debiased estimator defined in (3.3). We also denote the debiased Lasso 

estimator using the entire dataset as βd = βd( ∪ j = 1
k 𝒟 j). The following lemma shows that not 

only is β̄d asymptotically normal, it approximates the full sample estimator β̂d so well that it 

has the same statistical error as β̂d provided the number of subsamples k is not too large.

Lemma 4.1: Consider the linear model (3.2). Under the Conditions 3.1 and 3.2, if λ, ϑ1 and 

ϑ2 are chosen as λ ≍ k log d /n, ϑ1 ≍ k log d /n and ϑ2n−1/2 = o(1), we have with probability 

1 − c/d,

‖βd − βd‖∞ ≤ C sk log d
n and ‖βd − β∗‖∞ ≤ C log d

n + sk log d
n . (4.1)

Remark 4.2: The term log d /n in (4.1) is the estimation error of ||β̂d − β*||∞, while the term 

(sk log d)/n is the rate of the distance between the divide and conquer estimator and the full 

sample estimator. Lemma 4.1 does not rely on any specific choice of k. However, in order 

for the aggregated estimator βd̄ to attain the same ||·||∞ norm estimation error as the full 

sample Lasso estimator, β̂Lasso, the required scaling is k = O( n/(s2 log d)). This is a weaker 

scaling requirement than that of Theorem 3.3 because the latter entails a guarantee of 

asymptotic normality, which is a stronger result. It is for the same reason that our estimation 

results only require O(·) scaling whilst those for testing require o(·) scaling.

Rosenblatt and Nadler (2016) show that in the high-dimensional regime where d/nk → κ ∈ 
(0, 1), the divide and conquer procedure suffers from first-order accuracy loss. This seems a 

contradiction to our result, since our dimension is even higher than their context, but we 

have no first-order accuracy loss while averaging debiased estimators based on subsamples, 

as long as we have an appropriate number of data splits. In fact, in the highdimensional 

sparse linear regression, the intrinsic dimension is the sparsity s rather than d, which is 

regarded instead as the ambient dimension. The sparsity assumption changes the original 

high-dimensional problem to be an intrinsically low-dimensional one and thus allows us to 

escape from any first-order accuracy loss of the divide and conquer procedure. Given s = 

o(nk), we can treat high-dimensional sparse linear regression approximately as the classical 

linear regression setting where d = o(nk). Hence we expect no first-order accuracy loss from 

the divide and conquer procedure here.
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Although βd̄ achieves the same rate as the Lasso estimator under the infinity norm, it cannot 

achieve the minimax rate in ℓ2 norm since it is not a sparse estimator. To obtain an estimator 

with the ℓ2 minimax rate, we sparsify β̄d by hard thresholding. For any β ∈ ℝd, define the 

hard thresholding operator ν such that the jth entry of ν(β) is

[𝒯ν(β)]
j

= β j 𝟙 { ∣ β j ∣ ≥ ν}, for 1 ≤ j ≤ d . (4.2)

According to (4.1), if β j
∗ = 0, we have ∣ β j

d ∣ ≤ C( log d /n + sk log d /n) with high 

probability. The following theorem characterizes the estimation error, || ν(β̄d) − β*||2, and 

divide and conquer error, || ν(β̄d) − ν(β̂d)||2, of the thresholded estimator ν(β̄d).

Theorem 4.3: Under the linear model (3.2), suppose Conditions 3.1 and 3.2 are fulfilled and 

choose λ ≍ k log d /n, ϑ1 ≍ k log d /n and ϑ2n−1/2 = o(1). Take the parameter of the hard 

threshold operator in (4.2) as ν = C0 log d /n for some sufficiently large constant C0. If the 

number of subsamples satisfies k = O( n/(s2 log d)), for large enough d and n, we have with 

probability 1 − c/d,

𝒯ν(βd) − 𝒯ν(βd) 2 ≤ C s3/2k log d
n , 𝒯ν(βd) − β∗

∞ ≤ C log d
n

and 𝒯ν(βd) − β∗
2 ≤ C s log d

n .

Remark 4.4: In fact, in the proof of Theorem 4.3, we show that if the thresholding 

parameter ν satisfies ν ≥ ||β̄d − β*||∞, we have ‖𝒯ν(βd) − β∗‖2 ≤ 2 2s · ν; it is for this reason 

that we choose ν ≍ log d /n. Unfortunately, the constant is difficult to choose in practice. In 

the following paragraphs we propose a practical method to select the tuning parameter ν.

Let (M(j)X(j)T)ℓ denote the transposed ℓth row of M(j)X(j)T. Inspection of the proof of 

Theorem 3.3 reveals that the leading term of n‖βd − β∗‖∞ satisfies

T0 = max
1 ≤ ℓ ≤ d

1
k ∑

j = 1

k 1
nk

(M( j)X( j)T)ℓ
T

ε( j) .

Chernozhukov et al. (2013) propose the Gaussian multiplier bootstrap to estimate the 

quantile of T0. Let {ξi}i = 1
n  be i.i.d. standard normal random variable independent of 

{(Y i, Xi)}i = 1
n . Consider the statistic
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W0 = max
1 ≤ ℓ ≤ d

1
k ∑

j = 1

k 1
nk

(M( j)X( j)T)ℓ
T(ε( j) ∘ ξ( j)),

where ε̂(j) ∈ ℝnk is an estimator of ε(j) such that for any i ∈ ℐj, ε i
( j) = Y i

( j) − Xi
( j)β(𝒟 j), and 

ξ(j) is a subvector of {ξi}i = 1
n  with indices in ℐj. Recall that “∘” denotes the Hadamard 

product. The α-quantile of W0 conditioning on {Y i, Xi}i = 1
n  is defined as cW0(α) = inf{t | 

ℙ(W0 ≤ t | Y, X) ≥ α}. We estimate cW0(α) by Monte-Carlo and thus choose ν0 = cW0
(α)/ n. 

This choice ensures

𝒯ν0
(βd) − β∗

2
= Oℙ( s log d /n),

which coincides with the ℓ2 convergence rate of the Lasso.

Remark 4.5: Lemma 4.1 and Theorem 4.3 show that if the number of subsamples satisfies 

k = o( n/(s2 log d)), ‖βd − βd‖∞ = oℙ log d /n  and ‖𝒯ν(βd) − 𝒯ν(βd)‖2 = oℙ( s log d /n), and 

thus the error incurred by the divide and conquer procedure is negligible compared to the 

statistical minimax rate. The reason for this contraction phenomenon is that β̄d and βd̂ share 

the same leading term in their Taylor expansions around β*. The difference between them is 

only the difference of two remainder terms which has a smaller order than the leading term. 

We uncover a similar phenomenon in the low dimensional case covered in Appendix A in 

the Supplementary Material. However, in the low dimensional case ℓ2 norm consistency is 

automatic while the high dimensional case requires an additional thresholding step to 

guarantee sparsity and, consequently, ℓ2 norm consistency.

4.2. The High-Dimensional Generalized Linear Model

We generalize the DC estimation of the linear model to GLM. Recall that β̂d( j) is the de-

biased estimator defined in (3.10) and the aggregated estimator is βd = k−1∑ j = 1
k βd(𝒟 j). We 

still denote βd = βd( ∪ j = 1
k 𝒟 j). The next lemma bounds the error incurred by splitting the 

sample and the statistical rate of convergence of β̄d in terms of the infinity norm.

Lemma 4.6: Consider the generalized linear model (2.7) with canonical link. Under 

Conditions 2.1, 3.6 and 3.7, for β̂λ with λ ≍ k log d /n, we have with probability 1 − c/d, 

there exists a constant C > 0, such that

‖βd − βd‖∞ ≤ C
(s ∨ s1)k log d

n , ‖βd − β∗‖∞ ≤ C log d
n +

(s ∨ s1)k log d

n .
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Remark 4.7: The term log d /n in above is the estimation error of ||β̂d − β*||∞, while the 

error term (s ∨ s1)k log d/n is attributable to the distance between β̄d and β̂d.

Applying a similar thresholding step as in the linear model, we quantify the ℓ2-norm 

estimation error, || ν(β̄d) − β*||2 and the distance between the divide and conquer estimator 

and full sample estimator || ν(β̄d) − ν(β̂d)||2.

Theorem 4.8: For the GLM (2.7), under Conditions 2.1 – 3.7, choose λ ≍ k log d /n and 

λv ≍ k log d /n. Take the parameter of the hard threshold operator in (4.2) as ν = C0 log d /n

for some sufficiently large constant C0. If the number of subsamples satisfies 

k = O( n/((s ∨ s1)2 log d)), for large enough d and n, we have with probability 1 − c/d,

‖𝒯ν(βd) − 𝒯ν(βd)‖2 ≤ C
(s ∨ s1)s1/2k log d

n , ‖𝒯ν(βd) − β∗‖∞ ≤ C log d
n

and ‖𝒯ν(βd) − β∗‖2 ≤ C s log d /n .

(4.3)

Remark 4.9: As in the case of the linear model, Theorem 4.8 reveals that the loss incurred 

by the divide and conquer procedure is negligible compared to the statistical minimax 

estimation error provided k = o n/(s1 ∨ s)2s log d .

A similar proof strategy to that of Theorem 4.8 allows us to construct an estimator of Θvv
∗

that achieves the required consistency with the scaling of Corollary 3.9. Our estimator is 

Θ̃
vv: = [ ζ(Θ̄)]vv, where Θ = k−1∑ j = 1

k Θ( j) and ζ(·) is the thresholding operator defined 

in equation (4.2) with ζ = C1 log d /n for some sufficiently large constant C1.

Corollary 4.10: Under the conditions and scaling of Theorem 3.8, Θ∼vv − Θvv
∗ = oℙ(1).

Substituting this estimator in Corollary 3.9 delivers a practically implementable test statistic 

based on k = o ((s ∨ s1) log d)−1 n  subsamples.

Remark 4.11: Notice that point estimation requires less stringent scaling of k than 

hypothesis testing in both the linear and generalized linear models. This is because the 

testing and estimation require different rates for the higher order term Δ in the 

decomposition

n(βd − β∗) = Z + Δ,

where Z is the leading term contributing to the asymptotic normality of n(βd − β∗). For 

hypothesis testing, we need ‖Δ/ n‖∞ = oP(1/ n) to guarantee the asymptotic normality. For 
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estimation, we need ‖Δ n‖∞ = oP( log d /n) to match the minimax rate of ||β̄d − β*||∞. 

Therefore, the number of splits k for testing is more stringent by a factor of 1/ log d than in 

estimation.

5. Simulations

In this section, we illustrate and validate our theoretical findings through simulations. For 

hypothesis testing, we use QQ plots to compare the distribution of p-values for divide and 

conquer test statistics to their theoretical uniform distribution. We also investigate the 

estimated type I error and power of the divide and conquer tests. For estimation, we validate 

our claim in the beginning of Section 4 that the loss incurred by the divide and conquer 

strategy is negligible compared with the statistical error of the corresponding full sample 

estimator in the high dimensional case. Specifically, we compare the performance of the 

divide and conquer thresholding estimator of Section 4.1 with the full sample Lasso and the 

average Lasso over subsamples. An analogous empirical verification of the theory is 

performed for the low dimensional case as well; we put it in Appendixes C and D of the 

Supplementary Material.

5.1. Results on Hypothesis Testing

We explore the probability of rejection of a null hypothesis of the form H0: β1
∗ = 0 when data 

(Y i, Xi)i = 1
n  are generated according to the linear model,

Yi = Xi
T β∗ + εi, εi N 0, σε

2 ,

where σε
2 = 1 and

β∗ = (β1
∗, 0, ⋯, 0

d − s − 1
, 1, ⋯, 1

s
)T ,

where d = 5000 and s = 3. In each Monte Carlo replication, we split the initial sample of size 

n into k subsamples of size n/k. In particular we choose n = 5000 and k ∈ {1, 2, 5, 10, 20, 

25, 40, 50, 100, 200, 500}. The number of Monte Carlo replications is 500. Using βL̂asso as a 

preliminary estimator of β*, we construct Wald and Rao’s score test statistics as described in 

Sections 3.1.2 and 3.2 respectively.

Panels (A) and (B) of Figure 1 are QQ plots of the p-values of the divide and conquer Wald 

and score test statistics under the null hypothesis against the theoretical quantiles of of the 

uniform [0,1] distribution for eight different values of k. For both test constructions, the 

distributions of the p-values are close to uniform and remain so as we split the data set. 

When k ≥ 100, the distribution of the corresponding p-values deviates from the uniform 

distribution visibly, as expected from the theory developed in Sections 3.1.2 and 3.2. Panel 
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(A) of Figure 2 shows that, for both test constructions, when the number of splits k ≤ 50, the 

empirical level of the test is close to both the nominal α = 0.05 level and the level of the full 

sample oracle OLS estimator which knows the true support of β*. On the other hand, the 

type I error increases dramatically when k is larger than 50. This is consistent with 

asymptotic normality of the test statistics we established when k is controlled appropriately. 

Panel (B) of Figure 2 displays the power of the test for two different signal strengths, 

β1
∗ = 0.05 and 0.06. We see that the power for the Score and Wald tests improves when the 

signal strength goes from 0.05 to 0.06. In addition, we find that the power is high regardless 

of how large k is. However, Figure 2(A) shows that the Type I error is large when k is large, 

which makes the tests invalid. Therefore, these results illustrate that the Type I and II errors 

are controllable when the number of splits k is relatively small. We also record the wall time 

for computation for these k’s in Table 1. The wall time is computed by taking the maximal 

time taken for each split and averaged over replications.

5.2. Results on Estimation

In this section, we turn our attention to experimental validation of our divide and conquer 

estimation theory, focusing first on the low dimensional case and then on the high 

dimensional case.

5.2.1. The High Dimensional Linear Model—We now consider the same setting of 

Section 5.1 with n = 5000, d = 5000 and β j
∗ = 10 for all j in the support of β*. In this context, 

we analyze the performance of the thresholded averaged debiased estimator of Section 4.1. 

Figure 3(A) depicts the average over 100 Monte Carlo replications of ||b − β*||2 for three 

different estimators: debiased divide-and-conquer b = ν(β̄d), the Lasso estimator based on 

the whole sample b = β̂Lasso and the estimator obtained by naïvely averaging the Lasso 

estimators from the k subsamples b = β̄Lasso. The parameter ν is taken as ν = log d /n in the 

specification of ν(β̄d). As expected, the performance of β̄Lasso deteriorates sharply as k 
increases. ν(β̄d) outperforms β̂Lasso as long as k is not too large. This is expected because, 

for sufficiently large signal strength, both β̂Lasso and ν(β̄d) recover the correct support, 

however ν(β̄d) is unbiased for those β j
∗ in the support of β*, whilst β̂Lasso is biased. Figure 

3(B) shows the error incurred by the divide and conquer procedure || ν(β̄d) − ν(β̂d)||2 

relative to the statistical error of the full sample estimator, || ν(β̄d) − β*||2, for four different 

scalings of k. We observe that, with k ≍ O( n/s2 log d), the relative error incurred by the 

divide and conquer procedure can hardly converge. This is consistent with Theorem 4.3. 

Given the lower bound of statistical error of the full sample Lasso estimator β̂, From 

Theorem 4.3 we derive that

E‖𝒯ν(βd) − 𝒯ν(βd)‖2
2

E‖𝒯ν(βd) − β∗‖2
2 ≤ s2k2 log d

n .
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When k ≍ O( n/s2 log d), the righthand side is an O(1) term. Therefore the line with inverted 

triangles in Figure 3(B) implies that the statistical error rate we developed in Theorem 4.3 is 

tight. We also record the wall time for estimation computation for these k’s in Table 1. The 

wall time is computed by taking the maximal time taken for each splits and averaged over 

replications. We notice that the computation time decreases with k at first due to the parallel 

algorithm. However, for the score test and split Lasso, the time becomes increasing when k 
is large, this is because the computation time to aggregate results from different splits is no 

longer negligible for very large k’s.

6. Discussion

With the advent of the data revolution comes the need to modernize the classical statistical 

tool kit. For very large scale datasets, distribution of data across multiple machines is the 

only practical way to overcome storage and computational limitations. It is thus essential to 

build aggregation procedures for conducting inference based on the combined output of 

multiple machines. We successfully achieve this objective, deriving divide and conquer 

analogues of the Wald and score statistics and providing statistical guarantees on their 

performance as the number of sample splits grows to infinity with the full sample size. 

Tractable limit distributions of each DC test statistic are derived. These distributions are 

valid as long as the number of subsamples, k, does not grow too quickly. In particular, 

k = o ((s ∨ s1) log d)−1 n  is required in a general likelihood based framework. If k grows 

faster than ((s ∨ s1) log d)−1 n, remainder terms become nonnegligible and contaminate the 

tractable limit distribution of the leading term. When attention is restricted to the linear 

model, a faster growth rate of k = o (s log d)−1 n  is allowed.

The divide and conquer strategy is also successfully applied to estimation of regression 

parameters. We obtain the rate of the loss incurred by the divide and conquer strategy. Based 

on this result, we derive an upper bound on the number of subsamples for preserving the 

statistical error. For low-dimensional models, simple averaging is shown to be effective in 

preserving the statistical error, so long as k = O(n/d) for the linear model and k = O( n/d) for 

the generalized linear model. For high-dimensional models, the debiased estimator used in 

the Wald construction is also successfully employed, achieving the same statistical error as 

the Lasso based on the full sample, so long as k = O( n/s2 log d).

Our contribution advances the understanding of distributed inference in the presence of large 

scale and distributed data, but there is still a great deal of work to be done in the area. We 

focus here on the fundamentals of hypothesis testing and estimation in the divide and 

conquer setting. Beyond this, there is a whole tool kit of statistical methodology designed 

for the single sample setting, whose split sample asymptotic properties are yet to be 

understood.
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7. Proofs

In this section, we present the proofs of the main theorems appearing in Sections 3 and 4. 

The statements and proofs of several auxiliary lemmas appear in the Supplementary 

Material. To simplify notation, we take βv
H = 0 without loss of generality.

7.1. Proofs for Section 3.1

The proof of Theorem 3.3, relies on the following lemma, which bounds the probability that 

optimization problems in (3.4) are feasible.

Lemma 7.1: Assume ∑ = 𝔼(XiXi
T) satisfies Cmin < λmin(Σ) ≤ λmax(Σ) ≤ Cmax as well as ||Σ

−1/2X1||ψ2 = κ, then we have

ℙ max
j = 1, …, k

‖M( j)∑( j) − I‖max ≤ a log d
n ≥ 1 − 2kd

−c2,

where c2 =
a2Cmin

24e2κ4Cmax
− 2.

Proof: The proof is an application of the union bound in Lemma 6.2 of Javanmard and 

Montanari (2014).

Proof of Theorem 3.3: For 1 ≤ j ≤ k, let nk(βd(𝒟 j) − β∗) = Z( j) + Δ( j), where 

Z( j) = 1
nk

M( j)X( j)Tε( j). From Theorem F.1, we know that as long as mv
( j)T∑( j)mv

( j) ≥ c > 0

holds uniformly for j = 1, …, d,

Δ: = n1
k ∑

j = 1

k Δv
( j)

Q( j) = oℙ(1) .

Then we define

Vn: = n1
k ∑

j = 1

k Zv
( j)

Q( j) = ∑
j = 1

k
∑

i ∈ ℐ j

ξiv
( j), where ξiv

( j): =
mv

( j)TXi
( j)εi

( j)

nmv
( j)T∑( j)mv

( j) 1/2 .

We now establish the asymptotic normality of V̄
n by verifying the requirements of the 

Lindeberg-Feller central limit theorem (e.g. Kallenberg, 1997, Theorem 4.12). By the fact 

that εi is independent of X for all i and [εi] = 0,
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𝔼(ξiv) = 𝔼(𝔼(ξiv
( j) ∣ X)) = 𝔼 𝔼 mv

( j)TXi
( j)εi

( j)/ nmv
( j)T∑( j)mv

( j) 1/2
∣ X

= 𝔼 nmv
( j)T∑( j)mv

( j) −1/2
mv

( j)TXi
( j)𝔼 εi

( j) = 0.

By independence of {εi}i = 1
n  and the definition of Σ̂(j), we also have

Var Vn ∣ X = ∑
j = 1

k
∑

i ∈ ℐ j

Var ξiv
( j) ∣ X

= 1
n ∑

j = 1

k
mv

( j)T∑( j)mv
( j) −1 ∑

i ∈ ℐ j

mv
( j)TXi

( j)Xi
( j)Tmv

( j)Var εi
( j) ∣ X = σ2 .

Therefore we have

Var(Vn) = 𝔼(Var(Vn ∣ X)) + Var(𝔼(Vn ∣ X)) = σ2 .

It only remains to verify the Lindeberg condition, i.e.,

lim
k ∞ lim

nk ∞
1
σ2 ∑

j = 1

k
∑

i ∈ ℐ j

𝔼 (ξiv
( j))2 𝟙 { ∣ ξiv

( j) ∣ > εσ} = 0, ∀ε > 0, (7.1)

whose verification is relegated to the Appendix E of the Supplementary Material. Finally we 

reach the conclusion by the Slutsky’s Theorem.

Proof of Corollary 3.5: Let ℱn: = {mv
( j)T∑( j)mv

( j) ≥ c > 0, j = 1, …, k}, where n is the total 

sample size. According to Theorem 3.3, when ℱn holds, we have

lim
n ∞ ℙ(Sn ≤ t ∣ X) − Φ(t) = 0.

From the proof of Lemma 13 in Javanmard and Montanari (2014), limn→∞ ℙ(ℱn) = 1. For 

any t ∈ ℝ and δ > 0, by applying dominating convergence Theorem to 𝟙{|ℙ(S̄
n ≤ t | X) − 

Φ(t)| > δ and ℱn holds}, we have

lim
n ∞ ℙ( ∣ ℙ(Sn ≤ t ∣ X) − Φ(t) ∣ > δ) = 0.

According to the dominate convergence theorem, since ℙ(S̄
n ≤ t | X) ∈ [0, 1], we have
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lim
n ∞ ℙ(Sn ≤ t) = lim

n ∞ 𝔼[ℙ(Sn ≤ t ∣ X)] = 𝔼[ lim
n ∞ ℙ(Sn ≤ t ∣ X)] = Φ(t) .

Therefore, we complete the proof of the corollary.

The proofs of Theorem 3.8 and Corollary 3.9 are stated as an application of Lemmas E.7 and 

E.8 in the Supplementary Material, which apply under a more general set of requirements. 

We present the proof of Theorem 3.8 below and defer Corollary 3.9 to Appendix E in the 

Supplementary Materials.

Proof of Theorem 3.8: We verify (A1)–(A4) of Lemma E.7. For (A1), decompose the object 

of interest as

1
nk

‖X( j)Θ( j)‖max = 1
nk

‖X( j) Θ( j) − Θ∗ ‖max + 1
nk

‖X( j)Θ∗‖max = Δ1 + Δ2,

where Δ1 can be further decomposed and bounded by

1
nk

‖X( j) Θ( j) − Θ∗ ‖max = 1
nk

max
1 ≤ i ≤ n

max
1 ≤ v ≤ d

∣ Xi
( j)T Θv

( j) − Θv
∗ ∣

≤ 1
nk

max
1 ≤ i ≤ n

‖Xi‖∞ max
1 ≤ v ≤ d

‖Θv
( j) − Θv

∗‖1 .

We have

ℙ(Δ1 > q/2) ≤ ℙ max
1 ≤ v ≤ d

‖Θv
( j) − Θv

∗‖1 > n
kM

q
2 < ψ

and by Condition 3.7, ψ = o(d−1) = o(k−1) for any q ≥ 2CMs1(k /n)3/2 · log d, a fortiori for q 

a constant. Since Xi is sub-Gaussian, a matching probability bound can easily be obtained 

for Δ2, thus we obtain

ℙ(nk
−1‖X( j)Θ( j)‖max) ≤ 2ψ

for ψ = o(k−1). (A2) and (A3) of Lemma E.7 are applications of Lemmas E.3 and E.4 

respectively. To establish (A4), observe that

Θv
( j)T ∇2ℓnk

( j) βλ(𝒟 j) − ev = Δ1 + Δ2 + Δ3,
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where Δ1 = Θv
( j) − Θv

∗ T
∇2ℓnk

( j) βλ(𝒟 j) , Δ2 = Θv
∗ T ∇2ℓnk

( j)(βλ(𝒟 j)) − ∇2ℓnk
( j)(β∗)  and 

Δ3 = Θv
∗ T ∇2ℓnk

( j)(β∗) − ev. We thus consider |Δℓ(β̂λ( j) − β*)| for ℓ = 1, 2, 3.

∣ Δ2(βλ(𝒟 j) − β∗) ∣ = 1
nk

∑
i ∈ ℐ j

Θv
∗ TXiXi

T(βλ(𝒟 j) − β∗) [b″(Xi
T βλ(𝒟 j)) − b″(Xi

T β∗)]

≤ U3 max
1 ≤ i ≤ n

∣ Θv
∗ TXi ∣ 1

nk
‖X(βλ(𝒟 j) − β∗)‖2

2
.

ℙ ‖X βλ(𝒟 j) − β∗ ‖
2
2

≿ n−1sk log (d /δ) < δ by Lemma E.4, thus ℙ(|Δ2 · (β̂λ( j) − β*)| > t) < δ 

for t ≍ MU3n−1sk log(d/δ). Invoking Hölder’s inequality, Hoeffding’s inequality and 

Condition 2.1, we also obtain, for t ≍ n−1sk log(d/δ),

ℙ ∣ Δ3(βλ(𝒟 j) − β∗) ∣ > t

≤ ℙ Θv
∗ T 1

nk
∑

i ∈ ℐ j

b″(Xi
T β∗)XiXi

T − ev
max

‖βλ(𝒟 j) − β∗‖1 > t .

Therefore ℙ(|Δ2(β̂λ( j) − β*)| > t) < 2δ. Finally, with t  n−1(s ∨ s1)k log(d/δ),

ℙ ∣ Δ1(βλ(𝒟 j) − β∗) ∣ > t ≤ ℙ 1
nk

∑
i ∈ ℐ j

Xi
T Θv − Θv b″(Xi

T βλ(𝒟 j))

2

X( j)T βλ(𝒟 j) − β∗
2 > t ,

hence ℙ(|Δ1(β̂λ( j) − β*)| > t) < 2δ. This follows because by Lemma E.4,

ℙ( 1
nk

X( j)(βλ(𝒟 j) − β∗)
2

≿ n−1/2 sk log (d /δ) < δ

and by Lemma C.4 of Ning and Liu (2014),

ℙ 1
nk

∑
i ∈ ℐ j

Xi
T Θv − Θv b″(Xi

T βλ(𝒟 j))

2

≿ n−1/2 s1k log (d /δ) < δ .
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7.2. Proofs for Theorems in Section 3.2

The proof of Theorem 3.11 relies on several preliminary lemmas, collected in Appendix E in 

the Supplementary Material. Without loss of generality we set H0: βv
∗ = 0 to ease notation.

Proof of Theorem 3.11: Since S(0) = k−1∑ j = 1
k S( j)(0, β−v

λ (𝒟 j)), and (B1)–(B4) of Condition 

E.9 in the Supplementary Material are fulfilled under Conditions 3.6 and 2.1 by Lemma E.

10 (see Appendix E in the Supplementary Material). The proof is now simply an application 

of Lemma E.13 in the Supplementary Material with βv
∗ = 0 under the restriction of the null 

hypothesis.

Proof of Lemma 3.14: The proof is an application of Lemma E.16 in the Supplementary 

Material, noting that (B1)–(B5) of Condition E.9 in the Supplementary Material are fulfilled 

under Conditions 3.6 and 2.1 by Lemmas E.10 and E.11 in the Supplementary Material.

7.3. Proofs for Theorems in Section 4

Recall from Section 2 that for an arbitrary matrix M, Mℓ denotes the transposed ℓth row of M 
and [M]ℓ denotes the ℓth column of M.

Proof of Theorem 4.3: By Lemma 4.1 and k = O( n/(s2 log d)), there exists a sufficiently 

large C0 such that for the event ℰ: = {‖βd − β∗‖∞ ≤ C0 log d /n}, we have ℙ(ℰ) ≥ 1 − c/d. 

We choose ν = C0 log d /n, which implies that, under ℰ, we have ν ≥ ||β̄d − β*||∞.

Let  be the support of β*. The derivations in the remainder of the proof hold on the event 

ℰ. Observe 𝒯ν(β
𝒮c
d ) = 0 as ‖β

𝒮c
d ‖

∞
≤ ν. For j ∈ , if ∣ β j

∗ ∣ ≥ 2ν, we have 

∣ β j
d ∣ ≥ ∣ β j

∗ ∣ − ν ≥ ν and thus ∣ 𝒯ν(β j
d) − β j

∗ ∣ = ∣ β j
d − β j

∗ ∣ ≤ ν. While if 

∣ β j
∗ ∣ < 2ν, ∣ 𝒯ν(β j

d) − β j
∗ ∣ ≤ ∣ β j

∗ ∣ ∨ ∣ β j
d − β j

∗ ∣ ≤ 2ν. Therefore, on the event ℰ,

𝒯ν(βd) − β∗
2 = 𝒯ν(β𝒮

d ) − β𝒮
∗

2 ≤ 2 sν

and 𝒯ν(βd) − β∗
∞ = 𝒯ν(β𝒮

d ) − β𝒮
∗

∞ ≤ 2ν .

The statement of the theorem follows because ν = C0 log d /n and ℙ(ℰ) ≥ 1 − c/d. Following 

the same reasoning, on the event 

ℰ′: = ℰ ∪ {‖βd − β∗‖∞ ≤ C0 log d /n} ∪ {‖βd − βd‖∞ ≤ C0sklog d /n}, we have
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𝒯ν(βd) − 𝒯ν(βd) 2 = 𝒯ν(β𝒮
d ) − 𝒯ν(β𝒮

d ) 2
≤ β𝒮

d − β𝒮
d

2 ≤ s β𝒮
d − β𝒮

d
∞ ≤ Cs3/2k log d /n .

As Lemma 4.1 also gives ℙ(ℰ′) ≥ 1 − c/d, the proof is complete.

Proof of Corollary 4.10: By an analogous proof strategy to that of Theorem 4.8, 

[𝒯ζ(Θ)]
vv

− Θvv
∗ = Op n−1 log d = oℙ(1) under the conditions of the Corollary provided 

k = o ((s ∨ s1) log d)−1 n .
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Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
QQ plots of the p-values of the Wald (A) and score (B) divide and conquer test statistics 

against the theoretical quantiles of the uniform [0,1] distribution under the null hypothesis.
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Fig 2. 
(A) Estimated probabilities of type I error for the Wald and score tests as a function of k. (B) 

Estimated power with signal strength 0.05 and 0.06 for the Wald, and score tests as a 

function of k.
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Fig 3. 
(A): Statistical error of the DC estimator, split Lasso and the full sample Lasso for k ∈ {1, 2, 

5, 10, 20, 25, 40, 50, 100, 200} when n = 5000, d = 5000. (B): Euclidean norm difference 

between the DC thresholded debiased estimator and its full sample analogue.
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k| = nk = n/k, where it is implicitly assumed that n can be divided evenly. Let ℐj ⊂ {1, …, n} be the index set corresponding to the elements of 
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j. Then for an arbitrary n × d matrix A, A(j) = [Aiℓ]i∈ℐj,1≤ℓ≤d. For an arbitrary estimator τ̂, we write τ̂ (
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j) when the estimator is constructed based only on 
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j. Finally, we write  to denote the negative log-likelihood function based on 
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j.While the results of this paper hold in a general likelihood based framework, for simplicity we state conditions at the population level for the generalized linear model (GLM) with canonical link. A much more general set of statements appear in the auxiliary lemmas upon which our main results are based. Under GLM with the canonical link, the response follows the distribution,(2.7)where . The negative log-likelihood corresponding to (2.7) is given, up to an affine transformation, by(2.8) and the gradient and Hessian of ℓn(β) are respectively
 where μ(β) = (b′(η1), …, b′(ηn))T and D(β) = diag{b″(η1), …, b″(ηn)}. In this setting, 
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ν such that the jth entry of 
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ν(β) is(4.2)According to (4.1), if 
, we have 
 with high probability. The following theorem characterizes the estimation error, ||
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ν(β̄d).Theorem 4.3: Under the linear model (3.2), suppose Conditions 3.1 and 3.2 are fulfilled and choose 
 and ϑ2n−1/2 = o(1). Take the parameter of the hard threshold operator in (4.2) as 
 for some sufficiently large constant C0. If the number of subsamples satisfies 
, for large enough d and n, we have with probability 1 − c/d,Remark 4.4: In fact, in the proof of Theorem 4.3, we show that if the thresholding parameter ν satisfies ν ≥ ||β̄d − β*||∞, we have 
; it is for this reason that we choose 
. Unfortunately, the constant is difficult to choose in practice. In the following paragraphs we propose a practical method to select the tuning parameter ν.Let (M(j)X(j)T)ℓ denote the transposed ℓth row of M(j)X(j)T. Inspection of the proof of Theorem 3.3 reveals that the leading term of 
 satisfiesChernozhukov et al. (2013) propose the Gaussian multiplier bootstrap to estimate the quantile of T0. Let 
 be i.i.d. standard normal random variable independent of 
. Consider the statistic
 where ε̂(j) ∈ ℝnk is an estimator of ε(j) such that for any i ∈ ℐj, 
, and ξ(j) is a subvector of 
 with indices in ℐj. Recall that “∘” denotes the Hadamard product. The α-quantile of W0 conditioning on 
 is defined as cW0(α) = inf{t | ℙ(W0 ≤ t |
Y, X) ≥ α}. We estimate cW0(α) by Monte-Carlo and thus choose 
. This choice ensures
 which coincides with the ℓ2 convergence rate of the Lasso.Remark 4.5: Lemma 4.1 and Theorem 4.3 show that if the number of subsamples satisfies 
 and 
, and thus the error incurred by the divide and conquer procedure is negligible compared to the statistical minimax rate. The reason for this contraction phenomenon is that β̄d and β̂d share the same leading term in their Taylor expansions around β*. The difference between them is only the difference of two remainder terms which has a smaller order than the leading term. We uncover a similar phenomenon in the low dimensional case covered in Appendix A in the Supplementary Material. However, in the low dimensional case ℓ2 norm consistency is automatic while the high dimensional case requires an additional thresholding step to guarantee sparsity and, consequently, ℓ2 norm consistency.
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	4.2. The High-Dimensional Generalized Linear Model
	Lemma 4.6: Consider the generalized linear model (2.7) with canonical link. Under Conditions 2.1, 3.6 and 3.7, for β̂λ with , we have with probability 1 − c/d, there exists a constant C > 0, such thatRemark 4.7: The term  in above is the estimation error of ||β̂d − β*||∞, while the error term (s ∨ s1)k log d/n is attributable to the distance between β̄d and β̂d.Applying a similar thresholding step as in the linear model, we quantify the ℓ2-norm estimation error, ||
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ν(β̄d) − β*||2 and the distance between the divide and conquer estimator and full sample estimator ||
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ν(β̄d) − 
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ν(β̂d)||2.Theorem 4.8: For the GLM (2.7), under Conditions 2.1 – 3.7, choose  and . Take the parameter of the hard threshold operator in (4.2) as 
 for some sufficiently large constant C0. If the number of subsamples satisfies 
, for large enough d and n, we have with probability 1 − c/d,(4.3)Remark 4.9: As in the case of the linear model, Theorem 4.8 reveals that the loss incurred by the divide and conquer procedure is negligible compared to the statistical minimax estimation error provided 
.A similar proof strategy to that of Theorem 4.8 allows us to construct an estimator of 
 that achieves the required consistency with the scaling of Corollary 3.9. Our estimator is Θ̃vv: = [
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ζ(Θ̄)]vv, where 
 and 
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ζ(·) is the thresholding operator defined in equation (4.2) with 
 for some sufficiently large constant C1.Corollary 4.10: Under the conditions and scaling of Theorem 3.8, 
.Substituting this estimator in Corollary 3.9 delivers a practically implementable test statistic based on 
 subsamples.Remark 4.11: Notice that point estimation requires less stringent scaling of k than hypothesis testing in both the linear and generalized linear models. This is because the testing and estimation require different rates for the higher order term Δ in the decomposition
 where Z is the leading term contributing to the asymptotic normality of 
. For hypothesis testing, we need 
 to guarantee the asymptotic normality. For estimation, we need 
 to match the minimax rate of ||β̄d − β*||∞. Therefore, the number of splits k for testing is more stringent by a factor of 
 than in estimation.
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[εi] = 0,By independence of  and the definition of Σ̂(j), we also haveTherefore we haveIt only remains to verify the Lindeberg condition, i.e.,
(7.1) whose verification is relegated to the Appendix E of the Supplementary Material. Finally we reach the conclusion by the Slutsky’s Theorem.Proof of Corollary 3.5: Let 
, where n is the total sample size. According to Theorem 3.3, when ℱn holds, we haveFrom the proof of Lemma 13 in Javanmard and Montanari (2014), limn→∞ ℙ(ℱn) = 1. For any t ∈ ℝ and δ > 0, by applying dominating convergence Theorem to 𝟙{|ℙ(S̄n ≤ t | X) − Φ(t)| > δ and ℱn holds}, we haveAccording to the dominate convergence theorem, since ℙ(S̄n ≤ t | X) ∈ [0, 1], we haveTherefore, we complete the proof of the corollary.The proofs of Theorem 3.8 and Corollary 3.9 are stated as an application of Lemmas E.7 and E.8 in the Supplementary Material, which apply under a more general set of requirements. We present the proof of Theorem 3.8 below and defer Corollary 3.9 to Appendix E in the Supplementary Materials.Proof of Theorem 3.8: We verify (A1)–(A4) of Lemma E.7. For (A1), decompose the object of interest as
 where Δ1 can be further decomposed and bounded byWe have
 and by Condition 3.7, ψ = o(d−1) = o(k−1) for any 
, a fortiori for q a constant. Since Xi is sub-Gaussian, a matching probability bound can easily be obtained for Δ2, thus we obtain
 for ψ = o(k−1). (A2) and (A3) of Lemma E.7 are applications of Lemmas E.3 and E.4 respectively. To establish (A4), observe that
 where 
 and 
. We thus consider |Δℓ(β̂λ(
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j) − β*)| for ℓ = 1, 2, 3.
 by Lemma E.4, thus ℙ(|Δ2 · (β̂λ(
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j) − β*)| > t) < δ for t ≍ MU3n−1sk log(d/δ). Invoking Hölder’s inequality, Hoeffding’s inequality and Condition 2.1, we also obtain, for t ≍ n−1sk log(d/δ),Therefore ℙ(|Δ2(β̂λ(
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j) − β*)| > t) < 2δ. Finally, with t � n−1(s ∨ s1)k log(d/δ),
 hence ℙ(|Δ1(β̂λ(
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j) − β*)| > t) < 2δ. This follows because by Lemma E.4,
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