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Abstract

Efficient and robust cell detection serves as a critical prerequisite for many subsequent biomedical 

image analysis methods and computer-aided diagnosis (CAD). It remains a challenging task due to 

touching cells, inhomogeneous background noise, and large variations in cell sizes and shapes. In 

addition, the ever-increasing amount of available datasets and the high resolution of whole-slice 

scanned images pose a further demand for efficient processing algorithms. In this paper, we 

present a novel structured regression model based on a proposed fully residual convolutional 

neural network for efficient cell detection. For each testing image, our model learns to produce a 

dense proximity map that exhibits higher responses at locations near cell centers. Our method only 

requires a few training images with weak annotations (just one dot indicating the cell centroids). 

We have extensively evaluated our method using four different datasets, covering different 

microscopy staining methods (e.g., H & E or Ki-67 staining) or image acquisition techniques (e.g., 

bright-filed image or phase contrast). Experimental results demonstrate the superiority of our 

method over existing state of the art methods in terms of both detection accuracy and running 

time.
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1. Introduction

Manual analysis of microscopy images is not only laborious and expensive but is also 

inclined to suffer from inter-observer variabilities. Recent progress Gurcan et al. (2009) 

shows that digitized specimen analysis can significantly improve the objectivity and 

reproducibility of computer-aided diagnosis (CAD). In the context of microscopy image 

analysis-based CAD, automatic and robust cell detection are highly desirable and serve as an 

essential prerequisite for a wide variety of subsequent tasks, such as cell segmentation, 

tracking and morphological measurements Veta et al. (2014). In addition, the combination of 

cell detection and a successive stage of cell classification can provide clinically useful 

information about objects of interest, such as the presence (or quantity) of cancer cells in a 

microscopy image.

Many research efforts have been devoted to cell detection during the past decades Gurcan et 

al. (2009); Xing and Yang (2016). Unfortunately, the success of cell detection is hindered by 

the complex characteristics of microscopic images such as touching cells, background 

clutters, large variations in the shape and size of cells, poor contrast, and differences 

between image acquisition techniques (see Figure 1). In addition, microscopy images often 

have very high resolution, which further pose a challenge on the computational resources.

A general approach towards object detection or localization can be reduced to finding local 

maxima on a response (e.g. probability) map. The essential assumption here is that the 

object centers should have larger responses than their surrounding pixels. A typical way to 

obtain the probability map is sliding window based classification. In this paper, instead of 

working on the hard class labels with classification, we take a further step to directly regress 

the proximity value for each pixel, whose definition is based on the Euclidean distance 

between each pixel and the closest nucleus. This approach has been shown to be more robust 

and accurate than hard label classification in (Xie et al., 2015c; Kainz et al., 2015). In 

addition, training with structured output is more effective than using a single value for each 

training image (Xie et al., 2015c). One of the reasons is that training with structured labels 
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makes use of the structured information exhibited in the labels, thereby the supervision 

information is much richer than a single value.

In this paper, we propose a novel structured regression model based on a newly introduced 

neural network architecture for cell detection in microscopy images with both accuracy and 

efficiency in mind. Instead of providing a single class label like many traditional methods, 

our algorithm generates structured predictions (referred to as proximity map), which exhibit 

higher values for pixels near cell centers. The final cell centroids are then localized by 

identifying all the local maximum positions.

We conduct experiments using four datasets (Ki-67 stained Neuroendocrine Tumor (NET) 

microscopy images, phase contrast HeLa cervical cancer microscopy images, and H&E 

stained Breast cancer and Bone marrow microscopy images, for detailed description of the 

datasets, please refer to Section 3.) The experimental results demonstrate that the proposed 

method can achieve very promising detection performance despite the background noise, 

dense cell overlapping and large variations of cell morphology.

This work is an extended version of our recent conference paper (Xie et al., 2015c). To the 

best of our knowledge, this paper as well as our previous work (Xie et al., 2015c) is the first 

study to report the application of structured regression using deep architectures for efficient 

cell detection. In comparison to the conference version, this work has the following 

extensions:

1. We discuss the original convolutional neural network based structured regression 

framework used in the conference paper (Xie et al., 2015c), and provide further 

insight into why it is hard to train the model when the output proximity patch is 

very large. Inspired by the fully convolutional neural network Long et al. (2015); 

Ronneberger et al. (2015), and deep residual learning, we introduce a novel fully 

convolutional residual network which directly outputs a dense proximity 

prediction that has the same size as the input image. We demonstrate that our 

method is robust and general on various microscopy image datasets.

2. We provide a generalized version of the original weighted square error loss 

function. This new loss function allows the model to adjust weights of the loss 

coming from different areas of the output based on the actual distribution of each 

training batch, rather than a predefined fixed value (more details are presented in 

Section 4).

3. Inspired by the work of (Kainz et al., 2015; Sironi et al., 2014), we adopt a more 

sophisticated proximity definition that leads to better distinctive peaks at cell 

centroids.

The rest of the paper is organized as follows. In Section 2, we present a literature review on 

the related works with emphasis on cell detection in microscopic images. We briefly 

introduce the datasets used in this study in Section 3. We present the fully residual 

convolutional neural network and our general structured regression model in Section 4, and 

describe the detailed experimental settings, results and the experiment analysis in Section 5. 

Finally, we conclude the paper and discuss the potential future work in Section 6.
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2. Related works

Numerous works can be found in the literature for cell detection in microscopy images. 

Laplacian-of-Gaussian filter based on Euclidean distance map (Al-Kofahi et al., 2010) has 

been applied to automatic nuclei localization, and graph partition methods are reported in 

(Bernardis and Yu, 2010; Zhang et al., 2014) to detect cells automatically. Several other cell 

localization and segmentation methods using concave point based touching cell splitting are 

reported in (Yang et al., 2008; Kong et al., 2011), where the performances heavily rely on 

concave point detection. Assuming that cells are approximately circular or elliptical, Parvin 

et al. (2007) introduce a kernel based radial voting method to iteratively localize cells, which 

is relatively insensitive to image noise. Several other radial voting-based methods are 

presented in (Qi et al., 2012; Xing et al., 2013) for automatic cell detection on pathology 

images. Cosatto et al. (2008) employ difference of Gaussian (DoG) together with Hough 

transformation to detect radially symmetric nuclei. However, many of the aforementioned 

unsupervised methods are based on heuristics, and can not generalize well to different 

microscopy image modalities. In addition, the inhomogeneous background, irregular cell 

morphology and touching cell further challenge those unsupervised methods. To address 

those problems, supervised learning based methods have also attracted considerable 

attentions due to their promising performance.

Ali and Madabhushi (2012) apply an active contour-based shape model to detect and split 

overlapping cells in histological images and obtain encouraging results on their datasets. 

Arteta et al. (2012) propose a method based on maximally stable extremal region (MSER) 

selection, where each MSER is scored by a structured SVM (Bertelli et al., 2011), and the 

final detection results are obtained by finding the optimal configuration of the selected 

regions using dynamic programming to explore the tree structure of MSER. However, for 

images with strong inhomogeneous background or/and low intensity contrast, the MSER 

detector can not generate feasible region candidates and thus its usage is limited. Recently, 

Vink JP (2012) apply two Adaboost classifiers with Haar-like features and pixel-based 

features to nucleus detection in histological images, and the outputs of two detectors are 

merged using an active contour algorithm to obtain the final results. Irshad (2013) propose a 

framework that employs the morphological and statistics features in selected image channels 

to detect mitosis in histopathology for breast cancer grading. Kainz et al. (2015) use random 

forests to regress the proximity value for each pixel with a bag of pre-defined features to 

detect cell, and a similar architecture is presented in (Sironi et al., 2014) to extract linear 

structures (e.g. neurons) in medical images.

Despite their success of the methods above, the performance of aforementioned works 

heavily relies on various hand-crafted features such as shapes, gradients, colors, etc.

Recent literature has demonstrated that deep learning based methods have a remarkable 

ability to learn task specific feature representations, which are generally superior (Cruz-Roa 

et al., 2013) to hand-crafted feature. These learned features have been adopted to achieve 

state-of-the-art performance on many biomedical image analysis tasks (Cruz-Roa et al., 

2013; Liao et al., 2013; Li et al., 2014; Xing et al., 2015). Xu et al. (2015) explore a stacked 

sparse auto-encoder to learn high-level features of sliding window patches, which are fed 
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into a softmax classifier to categorize as nuclear or non-nuclear samples, and obtain 

promising nuclei detection results on breast cancer histopathology images. Another stacked 

auto-encoder based method is reported in (Su et al., 2015) for cell detection and 

segmentation in microscopy images. Ciresan et al. (2013) employ a convolutional neural 

network (CNN) (LeCun et al., 1998) as a sliding window classifier to detect mitosis in breast 

cancer histological images. A similar architecture has also been utilized to segment 

membrane neuronal (Ciresan et al., 2012) in electron microscopy images. Recent work (Xie 

et al., 2015b) also shows that CNN is capable of learning the geometric information 

exhibited in the training images.

Recently, (Sirinukunwattana et al., 2016) propose a novel spatially constrained convolutional 

neural network and achieve promising performance for cell detection in routine colon cancer 

histology images. Another similar architecture that deploys the idea of spatial constrained 

CNN is reported in (Sirinukunwattana et al., 2015).

However, almost all of the aforementioned methods involve expensive sliding window 

classification or regression, which is not efficient enough to be applicable to large 

microscopy whole-slices. Xie et al. (2015c) propose a CNN based structured regression 

method, which, for every testing image patch, produces a proximity patch encoding every 

pixel’s proximity to it’s closest nucleus. This allows the use of a stride strategy which skips 

a large portion of the testing pixels. Meanwhile, a large proximity patch is preferred, since it 

allows us to use a large testing stride which can greatly improve the efficiency. However, the 

sub-sampling (e.g, max-pooling) operations used in Xie et al. (2015c) results in significant 

information loss, which makes it challenging to train the structured regression model with a 

large-size proximity patch as the model’s output.

Recently, residual learning He et al. (2015) has been a revolutionizing technique in 

designing deep convolutional neural networks. It has allowed effective training of very deep 

networks and achieved the 1st place in the ILSVRC 2015 classification task. The following-

up work in He et al. (2016) gives a complete theoretical and experimental analysis of the 

importance of identity mapping used in deep residual learning.

Fully convolutonal neural networks (FCNs) Long et al. (2015) are an end-to-end trainable 

architecture which is greatly efficient and can scale well to large image size. In addition, 

since it does not contain fully connected layers which require fixed input image size, the 

learned model can be applied to arbitrary images of various sizes. However, the conventional 

FCN Long et al. (2015) usually fails to produce highly accurate pixel level prediction. The 

works presented in Noh et al. (2015); Yang et al. (2016); Xie et al. (2015a); Laina et al. 

(2016) utilize an up-pooling to help the subsequent convolutional layers to generate results 

with higher localization accuracy. Most of the FCN and it’s variations Xie and Tu (2015); 

Chen et al. (2016); Zheng et al. (2015) are initialized with weights transfered from 

pretrained models like VGG Simonyan and Zisserman (2014), Inception Szegedy et al. 

(2016), etc.

FCN and it’s variants have a large number of successful applications in semantic image 

labeling Chen et al. (2016); Zheng et al. (2015); Long et al. (2015), edge detection Xie and 
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Tu (2015), depth estimation Laina et al. (2016), etc. In the area of biomedical image 

analysis, Xie et al. (2015a) applies a variant of FCN to compute the cell density distribution 

for cell counting. U-Net Ronneberger et al. (2015), which extends the FCN by providing 

expanding layers with information from corresponding contracting layers, is capable of 

producing precise segmentation results on various biomedical images. Fakhry et al. (2016) 

propose a residual deconvolutional network for brain electron microscopy image 

segmentation. Some other works that utilize FCN are reported in Wang et al. (2016); Christ 

et al. (2016).

3. Datasets

In this section, we introduce four microscopy image datasets used in this paper, each dataset 

represents one distinct stain preparation, modality, or image acquisition technique. One 

sample image for each dataset is shown in Fig 1.

3.1. Neuroendocrine tumor (Fig. 1a)

Neuroendocrine Tumor (NET) is considered as one of the most common leading cause of 

cancer deaths worldwide. Early diagnosis and treatment are crucial for the survival of NET 

patients. Ki-67 proliferation index, defined as the ratio of the count of immunopositive 

tumor cells to all the tumor cells, is an important prognostic and grading cue for NET (Dhall 

et al., 2012). Accurate detection of all cells in the entire image can serve as the starting point 

for the subsequent cell classification and counting, which can support the assessment of 

Ki-67 proliferation index.

This dataset contains 59 cropped Ki-67 stained bright-field NET images patches, the size is 

rough 400 × 400 × 3 and all the images have human annotations as ground truth. All the 

images are obtained at 20× magnification. This dataset is randomly divided into two halves 

for training and testing. The cell detection on this dataset is challenging due to touching 

cells, blurred (or weak) cell boundaries and inhomogeneous background noise.

3.2. HeLa cervical cancer (Fig. 1b)

This dataset contains 22 phase contrast microscopy images of HeLa cervical cancer cells. It 

is collected to monitor the detailed colony growth in radiation experiments (Arteta et al., 

2012). Half of the images are chosen for training and the other half for testing. This image 

dataset exhibits background similarity and large variations in the cell shape and size.

3.3. Breast cancer (Fig. 1c)

The H&E stained bright-field breast cancer dataset is obtained from The Cancer Genome 

Atlas (TCGA) (National Cancer Institute, 2013). In total 70 image patches are randomly 

cropped and manually annotated, the size of each roughly ranges from 300 × 300 × 3 to 500 

× 500 × 3. We use half of this dataset for training and the other half for testing. As is shown 

in Fig. 1c, this dataset contains a large portion of highly inhomogeneous background noise, 

and a significant variation in cell size and shape.
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3.4. Bone marrow (Fig. 1d)

This dataset is first introduced in (Kainz et al., 2015) and contains 11 1200 × 1200 pixel 

H&E stained bright-field microscopy images of human bone marrow tissue from eight 

different patients. The dataset is split into two sets: 8 for training and 3 for testing. Each 

image is cropped from whole-slice scanned images at 40× magnification. Similar to the 

breast cancer image data, this dataset exhibits inhomogeneous background noise and large 

variations of cell sizes.

4. Methodology

Since microscopy images usually contain a large portion of cell clusters, it is critical to 

accumulate large context information for separating between cell clusters from background 

noise. Meanwhile, it is also important to capture fine, local information for accurately 

splitting touched cells. In the previous conference paper (Xie et al., 2015c), we use the 

convolutional neural network to conduct structured regression. However, we observed that it 

is difficult to train an ideal model that is capable of producing a large-size target proximity 

mask (e.g. the same size as the input image patch). Although it is reasonable to apply max-

pooling operations to reduce the feature dimension and increase the receptive filed for image 

classification and recognition tasks, this operation actually results in massive loss of high 

resolution information contained in the input image, which is crucial for dense prediction 

problem.

In this paper, we present a fully residual convolutional neural network that is capable of 

achieving both of those two objectives (large receptive filed and high resolution 

information). Instead of doing patch-wise classification, our method produces dense 

proximity mask that is of the same size to the input image. Our model encodes the 

topological structured information exhibited in the training data and explicitly forces the 

pixels near cell centers to get higher values than their neighbor pixels.

4.0.1. Fully residual convolutional neural network

The detailed network architecture is illustrated in Fig. 2. It consists of one contracting path 

(upper side) which encodes the input to high-level features and one expanding path (lower 

side) that decodes those features to the output mask. The contracting path consists of a 

repeated stack of 3×3 convolution followed by a residual block (Fig. 3) and a 2×2 down-

sampling layer. Before we down-sample the feature maps, we double the feature map 

channels using 1×1 convolution until it reaches 256. All the down-sampling operations used 

in our method are mean-pooling. The biggest difference between the expanding and 

contracting paths is that the down-sampling in the contracting path is replaced with up-

sampling. In this paper, we use bilinear interpolation to up-sample the feature maps. To 

compensate the massive loss of high-resolution information during down-sampling layers 

and improve the localization accuracy, we concatenate the higher resolution feature maps 

from the contracting path to the corresponding up-sampled feature maps in the expanding 

path.

Residual connection—An identity mapping in residual blocks can be expressed as:
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xl + 1 = xl + ℱ(xl, 𝒲l) (1)

where, ℱ denotes the residual function, l the parameters of the l–th residual block. This 

type of residual identity mapping has a nice back-propagation property that the gradient does 

not vanish even when the weights are arbitrarily small.

In He et al. (2015), the ℱ that achieves highest classification accuracy consists of a 

sequence of layers: BN-ReLu-Conv-BN-ReLu-Conv, where BN, ReLu, Conv stands for 

Batch Normalization, rectified linear activation, and convolution respectively. During the 

model training, we find that adding batch normalization in the residual blocks makes the 

training slower and does not have positive effects on the performance, especially on breast 

cancer dataset. One of the possible reasons is that we already use extensively dropout in the 

model. However, as is observed in Shah et al. (2016), without batch normalization, the 

gradient tends to explode for large network. To stabilize the training Szegedy et al. (2016), 

we scale down the activation of the last convolution layer in ℱ before adding them to the 

input, we pick 0.3 as the scaling factor in all of our experiments. All the convolution kernels 

are 3×3. To prevent overfiting, we add dropout between two convolutional layers. We also 

replace the ReLu activation function with the more recent ELU Clevert et al. (2015), and 

thus the resulting residual function can be summarized as: ELU-Conv-Dropout-ELU-
Conv-Scaling. This type of residual block is illustrated in Fig 3b. The residual connection 

require that the input should have the identical dimension to the output. In this paper, we use 

1×1 convolution to map the feature channels to the desired output’s dimension when the 

dimensions of input and the output mismatch with each other.

Feature map concatenation—During the expanding path, up-sampling layer is used to 

expand the feature map size, however, the up-sampling layer and down-sampling layer are 

not exactly ’symmetric’. For instance, the size of 25×25 feature maps after down-sampling 

operation becomes 12×12. However, when we up-sample 12×12 feature maps back, we can 

only get 24×24 feature maps. In order to preserve the size during this process, we pad the 

up-sampled feature maps to make match the size of the corresponding feature maps in the 

contracting path. Those two set of feature maps are then concatenated and passed to the 

following convolutional layers to inference the output. This process is illustrated using 

brown arrows in Fig 2.

4.1. Structured regression for cell detection

4.1.1. Data preprocessing—Denote x ∈ Rd×d×c as one local image patch extracted from 

image I at location (u, v), in which d and c represent the patch size and image channel, 

respectively. For simplicity, we only use square local image patches, and x can be identified 

by one quintuple {u, v, d, c, I}. Please note that image patches have the same image channel 

with the original image For each image I with human annotations, we compute the 

corresponding proximity map M using the following function:
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ℳ(u, v) =
e

α(1 − D(u, v)
d )

− 1
eα − 1

if D(u, v) ≤ d,

0 otherwise,

(2)

in which D(u, v) is the Euclidean distance from pixel (u, v) to the closest human annotation. 

d is a distance threshold and α is the decay ration, and both of them are used to control the 

shape of this exponential function. This function is a normalized version of the one used in 

(Kainz et al., 2015; Sironi et al., 2014), in practice, we can choose a scaling factor to scale 

up this proximity value.

After obtaining the proximity map M for image I, we can define the proximity patch s ∈ 
Rd×d for x. s can be viewed as the structured label of x, and can be identified as a quintuple 

{u, v, d, ℳ}. This data generation process is illustrated in Fig. 3a.

4.1.2. Inference in structured regression—We define { f l}l = 1
L  as the transformation 

of each of the L layers parameterized by {θl}l = 1
L , respectively. Our goal is to learn a 

mapping function ψ = fL ◦ fL−1 ◦ ⋯ f1, which maps the input local image patch to a 

proximity patch. Please note that, fi is a general notation for the transformation of i-th layer, 

the corresponding θi has distinct forms for different types of fi. For example, θi is given as 

[Wi, bi] if fi denotes a conventional fully connected layer. Given one input xi, the network 

computes the output oi as ψ (xi; θ1, …, θL).

In order to evaluate the model’s parameters, we formulate the structured regression as the 

following optimization problem:

arg min
θ1, …, θL

1
𝒩 ∑

i = 1

𝒩
ℒ(ψ(xi; θ1, …, θL), yi), (3)

in which ℒ is the loss function. A widely adopted loss function is mean square error, but in 

our case, a dominant portion of the value in the proximity patch is zeros and only a small 

portion of pixels has positive response. This might bias our model to produce trivial outputs 

containing all zeros. To solve this problem, we adopt a weighting strategy to allow the model 

to assign different weights to the loss coming from different regions of the proximity 

patches. More specifically, it is defined as:

ℒ(ψ(xi; θ1, …, θL), yi) = 1
2 ∑

j = 1

p
(βyi

j + λyi)(yi
j − oi

j)
2, (4)

in which oi
j denotes the j-th element of oi, ȳi represents the mean value of yi, β, b and λ are 

predefined constants and used to tune the weights of the losses coming from different parts 
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of the model’s output. This loss function does not use a fixed weight for every training 

sample; instead, it allows the model to determine based on the mean value of the training 

proximity patch.

Denote ai as the inputs to the last layer for training sample xi. We can obtain ai = ψ(xi; θ1, 

…, θL−1). We denote the j-th element of yi, and ai as yi
j and ai

j, respectively.

In order to back propagate the gradients from the last layer (structured regression layer) to 

the lower layers, we need to calculate the partial derivative of (4) with respect to the input to 

the last layer. More specifically, if the activation function is chosen to be sigmoid in the last 

layer, it can be given by

∂ℒ(oi, yi)
∂ai

j
= ∂ℒ(oi, yi)

∂oi
j

∂oi
j

∂ai
j

= (βyi
j + λyi)(oi

j − yi
j)a

i
j(1 − ai

j) . (5)

After computing the value of (5), we can calculate the gradients of (3) with respect to 

{θl}l = 1
L  recursively using the chain-rule based back-propagation algorithm.

Our algorithm uses a more complicated output layer since the regression is performed on 

proximity patches yi ∈  that encode topological information. The output of the proposed 

model is explicitly computed as quantitative predictions related to the locations of cell 

centers and thus produce much more precise and robust local maxima for locating cell 

centers than conventional sliding-window based classification methods. After obtaining the 

proximity prediction map (denoted as ), a small threshold ξ ∈ [0, 1] is applied to remove 

the values smaller than ξ · max( ). The final procedure for nucleus localization is to find all 

the local maximum locations in .

5. Experiment

5.1. Evaluation metrics

Before we describe the metrics used to evaluate the performance of different methods and 

their variations in this paper, we first define the ground-truth regions as circular regions with 

radius r centered at all the human annotations. In our experiment, r is roughly chosen to be 

half of the average radius of all nucleus for each data set. For each testing image, we match 

all the detected cell centroids with the corresponding human annotations using Hungarian 

algorithm. The matching is performed with the constraint that any matched detection results 

must lie within the ground-truth region. All the matched detected cell centroids are 

considered as true positive (TP). False positive (FP) refers to detected cell centroids that are 

not matched with any human annotations. The ground-truth human annotations that are not 

matched with any detected cell centroids are considered to be false negative (FN).

Based on the above definitions, we define the following evaluation metrics: (1) The mean 

(μc) and standard deviation (σc) of the counting error. Specifically, given N testing images, 

we can have μc = 1
N ∑i = 1

N c i, and σc = 1
N ∑i = 1

N (c i − μc)2, where ĉi represents the absolute 
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difference between the total number of detected cells and the ground-truth annotations for 

the i-th image. (2) The mean (μd) and standard deviation (σd) of the detection distance error. 

For N testing images, we can have μd = 1
N ∑i = 1

N d i, and σd = 1
N ∑i = 1

N (d i − μd)2, where d̂i 

refers to the average Euclidean distance between human-annotated dots and the 

corresponding matched true positive detections for the i-th image. This metric is used to 

measure the localization accuracy. (3) The precision (P), recall (R), and F1 score, which can 

be calculated as R = TP
TP+FN , P = TP

TP+FP  and F1 = 2 × P × R
P + R , respectively. We also report the 

average running time (T) over all testing images in each dataset.

5.2. Implementation details

We implement our model in python using Theano Bergstra et al. (2010); Bastien et al. 

(2012) and Keras Chollet (2015). We train and evaluate our method on a machine with an 

Intel Xeon E5-1650 CPU, and an NVIDIA Quadro K4000 GPU. Our model is trained with 

adadelta Zeiler (2012), and the learning rate is set as 0.0001. The hyper-parameters are set as 

d = 15, α = 3 in Equation. 2, we scale the proximity value by 3. We set β = 0.2, λ = 1 in 

Equation. 4. The hyper parameters are chosen based on heuristic and trade-off between 

model complexity and running time. All the images are processed to have 3 RGB channels. 

The ground truth is given as a set of coordinates of dot annotations (one dot near cell 

centroid). We random cropped 135 × 135 × 3 image patches as the training data. Data 

augmentation (random rotation, shifting and mirroring) are used to prevent over-fitting.

Please note that, for all the four different datasets, we use exactly the same network 

architecture. We compare with the cell detection results of Non-overlapping Extremal 

Regions Selection (NERS) Arteta et al. (2012), and our original conference work, 

convolutional neural network (CNN) based structured regression model Xie et al. (2015c), 

represented as (CNN-SR). Pixel-wise classification based methods are shown to be inferior 

to structured regression based methods Xie et al. (2015c), so we exclude them from the 

comparison. We also compare the our method with two FCN based cell counting 

architectures proposed in Xie et al. (2015a), denoted as (FCRN-A) and (FCRN-B), 

respectively. Meanwhile, we also include the following unsupervised methods: Iterative 

Radial Voting (IRV) Parvin et al. (2007), Image-based Tool for Counting Nuclei (ITCN) 

Byun et al. (2006), and Laplacian-of-Gaussian filtering (LoG) Al-Kofahi et al. (2010).

5.3. Neuroendocrine tumor

With significant challenges including cell overlapping, background noise, blurred cell 

boundaries and weak staining, it is not surprised that supervised methods win over 

unsupervised methods in this dataset. To eliminate the effects of incomplete cells, we 

exclude detection results lie on the image border. The detailed model configuration for 

CNN-SR used in this dataset is: Input(39 × 39 × 3) − C(34 × 34 × 32) − M(17 × 17 × 32) − 

C(14 × 14 × 32) − M(7 × 7 × 32)−Dense(1024) − Dense(1024) −Dense(289), in which C, M 

and Dense respectively represents the convolutional layer, max pooling layer, and fully 

connected layer. The sizes of C and M layers are represented as width × height × depth, 

where width × height defines the size of each feature map and depth represents the number 

of feature maps. The max pooling layer uses a window of size 2 × 2 with a stride of 2.
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The detailed comparison results are shown in Table 1. It can be seen that Ours produces the 

highest detection precision and F1 score, and exhibits strong robustness with the lowest 

mean and standard deviation of the counting error. Two example images marked with 

detection results of Ours are shown in Fig. 5.

It’s worth noting that our conference work CNN-SR achieves the comparable recall and 

same overall performance in terms of F1 score. It also obtains promising detection accuracy 

evidenced by the lowest mean and standard deviation of the detection distance error. On the 

other hand, the dense cell overlapping and low intensity contrast hinder the non-overlapping 

extremal regions detection algorithm used in NERS Bertelli et al. (2011) from producing 

high-quality region candidates pool, thereby leading to a relatively low recall value and a 

large mean μc and deviation σc of the counting error. FCRN-A also achieves very 

competitive results on this dataset.

Since cells in this data set mostly exhibit round or elliptical shapes, Iterative Radial Voting 

(IRV) Parvin et al. (2007) and Laplacian-of-Gaussian blob detector based methods (LoG Al-

Kofahi et al. (2010) and ITCN Byun et al. (2006)) are also capable of achieving reasonable 

results.

5.4. HeLa cervical cancer

Since phase contrast microscopy images exhibit very low intensity contrast and contain a 

large number of cells with irregular shapes, supervised methods outperform the 

unsupervised methods by a large margin.

Following the similar paradigm of the one used in Section 5.3. The detailed model 

configuration for CNN-SR used in this dataset can be represented as: Input(35 × 35 × 3) − 

C(30 × 30 × 32) − M(15 × 15 × 32) − C(12 × 12 × 32) − M(6 × 6 × 32)−Dense(1024) − 

Dense(1024) −Dense(289). The ground truth region’s radius r is set as 8, and the detailed 

quantitative comparison results are presented in Table 2. It can be seen that Ours achieves 

the best overall performance with the lowest counting error and the highest precision and F1 

score. It also demonstrates promising detection accuracy with a low mean μd and standard 

deviation σd of the detection distance error. Our conference work CNN-SR, which utilizes a 

dense sliding window based structured regression, also achieves similar performance in this 

dataset. NERS can also achieve promising results. This is because there are few overlapping 

cells, and the cell boundaries, although weak, are mostly well defined such that it can lead to 

a high quality extremal region candidate pool.

Two example images marked with detection results of Ours are shown in Fig. 5.

5.5. Breast Cancer

The H&E stained breast cancer microscopy images usually exhibit a large portion of 

inhomogeneous background noise and the cell morphology including size and shape, also 

vary to a large degree. Since the highly complex nature of the H&E breast cancer images 

significantly challenges the unsupervised methods, which are unable to produce comparable 

results, we exclude them in this experiment. Meanwhile, we also find it difficult to make 

NERS work on this dataset, so it is excluded from the comparison as well.
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Similar to the one used in Section 5.3. The detailed model configuration for CNN-SR is 

summarized as: Input(55 × 55 × 3) − C(50 × 50 × 32) − M(25 × 25 × 32) − C(22 × 22 × 32) 

− M(11 × 11 × 32)−Dense(1024) − Dense(1024) −Dense(289).

All the annotations that lie within 7 pixels of the image borders are removed from evaluation 

to eliminate the effects of incomplete cells, and the radius r of the ground truth circle is set 

as 15. The detailed comparison results are presented in Table 3. Overall, the comparison 

results are in favor of Ours in terms of precision, recall, and F1 score. Ours also 

demonstrates strong robustness evidenced by the lowest counting error. CNN-SR obtains a 

slightly smaller detection distance error and a comparable recall. FCRN-B from Xie et al. 

(2015a) are not be able to achieve competitive results on this challenging dataset, partially 

because of the massive information loss during the pooling operations make it difficult for 

the network to handle complex background noise and large shape variation. On the other 

hand, our method utilizes the high resolution image features in the expanding path and 

achieve much better results. Two example images and the detection results of Ours are 

shown in Fig. 6.

5.6. Bone marrow microscopy

Cell detection and localization in bone marrow microscopy images is also challenging given 

the fact that images in this dataset contain exhibit significant variations in their sizes and 

intensities. In this experiment, we include the result reported in Kainz et al. (2015), 

representing as Regr. Forest. Unsupervised methods (IRV Parvin et al. (2007), LoG Al-

Kofahi et al. (2010) and ITCN Byun et al. (2006)) are excluded from comparison due to 

incomparable performance.

The detailed model configuration for CNN-SR can be summarized as: Input(41 × 41 × 3) − 

C(36 × 36 × 32) − M(18 × 18 × 32) − C(14 × 14 × 32) − M(7 × 7 × 32)−Dense(1024) − 

Dense(512) −Dense(100).

The ground truth region radius r is set as 16, and the comparative cell localization results are 

detailed in Table 4. As is shown in the table, our method obtain the best overall performance 

and the lowest running time. FCRN-A Xie et al. (2015a), Regr. Forest and CNN-SR achieve 

similar performance in terms of F1 score. Both of CNN-SR and Ours show strong 

localization accuracy with low mean (μd) and standard deviation (σd) of the detection 

distance error. Nevertheless, CNN-SR produces a larger portion of false positive compared 

to Ours evidenced by the relatively smaller precision and higher counting error. The 

detection results of Ours on three sample images are shown in Fig. 7.

6. Conclusion

In this paper, we present a structured regression model using our proposed fully residual 

convolutional neural network for robust and efficient cell detection in microscopy images. 

Our method is particularly suitable to process large-size images containing dense cell 

clusters, large variations of cell morphology and inhomogeneous background noise. We 

conduct extensive experiments using four datasets representing different image modalities 

and image acquisition techniques, and the experiments demonstrate the effectiveness, 
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efficiency and generality of our proposed method. For future work, we will exploit the 

potential of our method on other applications, such as detection of instances (other than 

cells) in crowded scenes and semantic image labeling; We will also consider extending our 

network to 3D models and apply it on volumetric medical datasets.
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Highllights

• A highly efficient and effective fully residual convolutional neural network is 

proposed for cell detection.

• We validate the superiority of structured regression over the conventional 

pixel wise classification method for cell detection.

• We prove the robustness and generalization capability of our model using four 

datasets, each corresponding to a distinct staining method or image modality.
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Fig 1. 
Sample images of the four datasets used in this paper.
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Fig 2. 
Fully residual convolutional neural network architecture (Please note that the input image 

size does not need to be fixed value). The blue or gray box denote the feature maps, the 

number of feature map channel is marked on top or bottom of each box. The feature maps 

size (along row and column dimension) is denoted on the right-hand side of each box. 

Different operations are denoted using arrows with different colors. For the details of each 

type of connection, please refer to Section 4
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Fig 3. 
(a): The training data generation process. Each original image has a corresponding proximity 

mask that has the same size and each cropped local image patch (illustrated as colorful 

rectangle) has a proximity patch serving as structured label. Please note that the human 

annotations only contain one dot near the cell centers. (b) The residual blocks used in our 

network, where conv and ELU denote convolution and exponential rectified units Clevert et 

al. (2015), respectively. The residual output is scaled down before being added to the input.
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Fig 4. 
Example cell detection results in neuroendocrine tumor microscopy dataset. Each row 

represents one testing image. The detected cells are marked by yellow dots, while the ground 

truth are represented as green circles for better visualization.
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Fig 5. 
Example HeLa cervical cancer cells detection results in phase contrast microscopy images. 

Each row represents one testing image. The detected cells are marked by yellow dots, while 

the ground truth are represented as green circles for better visualization.
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Fig 6. 
Example breast cancer cell detection results in H&E stained microscopy images. Each row 

represents one testing image. The detected cells are marked by yellow dots, while the ground 

truth are represented as green circles for better visualization.
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Fig 7. 
Example cell detection results in one patch of the bone marrow microscopy images. Each 

row represents one testing image. The detected cells are marked by yellow dots, while the 

ground truth are represented as green circles for better visualization.
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