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Abstract

Molecular cues from environmental bacteria influence important developmental decisions in 

diverse marine eukaryotes. Yet, relatively little is understood about the mechanisms underlying 

these interactions, in part because marine ecosystems are dynamic and complex. With the help of 

simple model systems, including the choanoflagellate Salpingoeca rosetta, we have begun to 

uncover the bacterial cues that shape eukaryotic development in the ocean. Here, we review how 

diverse bacterial cues — from lipids to macromolecules — regulate development in marine 

eukaryotes. It is becoming clear that there are networks of chemical information circulating in the 

ocean, with both eukaryotes and bacteria acting as nodes; one eukaryote can precisely respond to 

cues from several diverse environmental bacteria, and a single environmental bacterium can 

regulate the development of different eukaryotes.

Introduction

Eukaryotes evolved over two billion years ago in a world dominated by prokaryotes and 

have lived in close association with bacteria ever since. It has become increasingly clear that 

bacteria not only act as competitors and pathogens, but also promote proper health and 

development in eukaryotes [1,2]. Growing attention has focused on how the microbiome 

shapes many aspects of eukaryotic development, from root nodule development in legumes 

[3], to light organ morphogenesis in the Hawaiian bobtail squid [4], and even immune 

system development in vertebrates [5]. Yet, bacteria in the microbiome are not the only 

bacteria influencing eukaryotic development. Although often overlooked, free-living 

environmental bacteria also provide cues that regulate essential developmental processes in 

diverse eukaryotes.

Many examples of interactions between environmental bacteria and eukaryotes stem from 

marine ecosystems, where bacterial cues elicit developmental transitions in organisms as 

diverse as algae and animals. One of the best explored examples concerns the mutualistic 

interaction between the Hawaiian bobtail squid (Euprymna scolopes) and the bacterium 

Vibrio fischeri, in which colonization of the squid by environmental V. fischeri is required to 

induce the morphogenesis of the host’s light-organ (Table 1) [4]. The squid-Vibrio 
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association is unusually amenable to laboratory manipulation, and as such, many of the 

relevant bacterial cues have been identified and their consequences for squid development 

explored in detail [6–9]. In contrast, few other marine bacterial-eukaryotic interactions are 

understood in molecular detail, in part because marine environments are host to dynamic and 

diverse bacterial communities. While it is challenging to decipher specific interactions in 

such complex ecosystems, the lessons learned by exploring diverse marine host-microbe 

interactions are likely to extend to interactions between eukaryotes and other bacterial 

communities, such as those in the gut and soil.

Simple model systems are beginning to reveal how environmental bacteria shape eukaryotic 

development in the ocean. Important features of these models that facilitate the identification 

of molecules underlying bacterial-eukaryotic interactions include: (1) the ability to grow and 

manipulate both the bacteria and the eukaryote in the lab, and (2) a clear and quantifiable 

response of the eukaryote to a single bacterium. Here we review mechanisms by which 

environmental bacteria regulate the development of choanoflagellates and other marine 

eukaryotes to illustrate how, and explore why, important eukaryotic developmental decisions 

rely on cues from specific environmental bacteria.

A choanoflagellate model for bacterial-eukaryotic interactions

One of the closest living relatives of animals, the choano-flagellate Salpingoeca rosetta, has 

emerged as an attractive model for investigating how environmental bacteria shape 

eukaryotic cell biology and life history. Choano-flagellates are unicellular and colony-

forming microeukaryotes that live in diverse aquatic environments [10]. Every 

choanoflagellate cell bears an apical ‘collar complex’ — a single flagellum surrounded by a 

feeding collarcomposed of actin-filled microvilli — that it uses to capture and phagocytose 

bacterial prey. Importantly, the collar complex and its role in mediating interactions with 

bacteria are conserved among choanoflagellates and animals [10–12]. However, 

choanoflagellates do not just eat bacteria, but they also undergo key life history transitions in 

response to molecular cues secreted by environmental bacteria.

A network of bacterial lipids flips a developmental switch in S. rosetta

In many choanoflagellates, including the emerging model choanoflagellate S. rosetta, a 

solitary cell can develop into a multicellular ‘rosette’ colony through serial rounds of 

oriented cell division, with the sister cells remaining stably adherent [13,14] (Figure 1a). 

Although S. rosetta was isolated from the ocean as a rosette, early laboratory cultures 

proliferated primarily in the unicellular form, producing rosettes infrequently and 

unpredictably. A set of unexpected observations revealed that Algoriphagus 
machipongonensis, an environmental bacterium that had been co-isolated with the 

choanoflagellate and persisted in laboratory cultures at very low densities, could induce 

consistent and uniform rosette development in S. rosetta when grown at higher densities 

[15].

Because S. rosetta and Algoriphagus could be cultured independently or together, and 

because rosette development was quantifiable (i.e. % of cells in rosettes), a straightforward 

rosette development bioassay could be used to investigate the molecular basis of 
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Algoriphagus rosette-inducing activity. Activity-guided fractionation led to the isolation of 

RIF-1 (Rosette-Inducing Factor-1), a novel sulfonolipid signaling molecule that induced 

rosette development in S. rosetta [15]. However, only a small fraction of S. rosetta cells 

formed rosettes in response to RIF-1, far fewer than that induced by live Algoriphagus, 

leading to the hypothesis that additional Algoriphagus molecules influence S. rosetta rosette 

development [16••].

Further work revealed that Algoriphagus produces additional lipid activators, synergistic 

enhancers, and inhibitors that regulate rosette development [16••,17] (Figure 1a). While the 

RIFs (RIF-1 and a second sulfo-nolipid, RIF-2) were sufficient to induce low levels of 

rosette development, an additional class of lipid synergists, the 

lysophosphatidylethanolamines (LPEs), were required for robust rosette induction. Together, 

the RIFs and LPEs recapitulated the full rosette inducing activity of live Algoriphagus.

The importance of the LPEs had initially been obscured by the fact that they did not exhibit 

any bioactivity on their own; only by testing bacterial lipid fractions in combination with the 

RIFs did it become clear that these synergistic lipids helped to fully potentiate the induction 

of rosette development. Testing bacterial fractions in combination also revealed that 

Algoriphagus produces a molecule that competes with and inhibits RIF-induced rosette 

development. The molecule, a capnine called IOR-1 (Inhibitor of Rosettes-1), antagonizes 

the RIFs, but its inhibitory activity can be bypassed in the presence of LPEs, providing a 

possible explanation for why IOR-1 does not normally prevent Algoriphagus rosette 

induction.

It is interesting to contemplate what evolutionary processes might have led S. rosetta to rely 

upon a network of bacterial cues before committing to rosette development. We hypothesize 

that certain bacteria serve as proxies for environmental conditions; over time, the stochastic 

process of natural selection may have favored individuals that required multiple bacterial 

cues before initiating rosette development, thus avoiding making the switch to rosette 

development under unfavorable environmental conditions. This integrated response may be 

especially important in aquatic environments, where bacterial composition and nutrient 

availability are constantly changing.

A bacterial chondroitinase triggers mating in S. rosetta

In addition to rosette development, S. rosetta can transition from asexual proliferation to 

sexual reproduction, wherein solitary haploid cells fuse to produce a diploid cell that will 

then undergo meiosis [18]. Despite harboring a complete meiotic genetic toolkit [19,20], the 

S. rosetta sexual cycle was rarely observed in laboratory cultures. Only under starvation 

conditions would a small fraction of the S. rosetta population mate [21]. A serendipitous 

observation revealed that specific environmental bacteria, missing from most laboratory 

cultures, were capable of triggering a population-wide switch to sexual reproduction [22••].

This discovery stemmed from the observation that Vibrio fischeri, an abundant marine 

bacterium, induced the formation of large motile aggregates or ‘swarms’ composed of many 

solitary S. rosetta cells. Swarming had not been previously described in S. rosetta, and 

further examination revealed that during swarming, haploid S. rosetta cells frequently paired 
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off and underwent cell and nuclear fusion. Genetic experiments confirmed that the diploid 

products of cell and nuclear fusion later generated meiotic progeny, demonstrating that V. 
fischeri bacteria induce the full sexual cycle in S. rosetta (Figure 1b). We subsequently found 

that Vibrio orientalis and Vibrio tubiashii elicit swarming and mating in S. rosetta, while 

other species tested did not, suggesting that S. rosetta mating in nature might be regulated by 

some, but not all species of Vibrio bacteria [22••].

Because swarming was always observed prior to mating, S. rosetta swarming provided a 

robust bioassay for identifying the molecular basis of the V. fischeri ‘aphrodisiac’ activity. 

Activity-guided fractionation led to the isolation of a protein, named EroS (Extracellular 

Regulator of Sex) that fully recapitulated the activity of Vibrio bacteria. Biochemical assays 

revealed that EroS belongs to a class of bacterial polysaccharide-degrading enzymes called 

chondroitinases, and that the chondroitin-degrading activity of EroS is sufficient to induce 

mating in S. rosetta. Finally, the S. rosetta target of EroS was identified as the sulfated 

polysaccharide chondroitin sulfate, a component of the extracellular matrix previously 

thought to be restricted to the animal lineage. As the first example of an environmental 

bacterium regulating eukaryotic sexual reproduction, the interaction between V. fischeri and 

S. rosetta raises the possibility that mating in other aquatic eukaryotes may be influenced by 

environmental bacteria as well.

Bacteria as master regulators of S. rosetta life history in the marine environment

Bacteria are required for rosette development and mating under laboratory conditions — but 

can bacteria plausibly regulate S. rosetta development in nature? Despite their underlying 

molecular differences, the cues that induce rosette development and mating are bioactive at 

environmentally relevant concentrations. The purified Algoripha-gus RIFs and LPEs display 

activity at high nanomolar to low micromolar concentrations in the laboratory; yet, the 

hydrophobicity of these molecules makes it unlikely that S. rosetta encounters them as 

isolated lipids in the environment. As constituents of the Algoriphagus outer membrane, it is 

likely that RIFs and LPEs are packaged into outer membrane vesicles (OMVs), spherical 

packages of periplasmic content constitutively produced by Gram negative bacteria [23,24], 

and thereby released into the environment. Indeed, Algoriphagus OMVs elicit robust rosette 

development [16••], and retain their bioactivity under a wide range of conditions. Moreover, 

diverse bacteria belonging to several marine Bacteroidetes and Actinobacteria genera induce 

rosette development in S. rosetta ([15]; unpublished data]), raising the likelihood that S. 
rosetta might encounter rosette-inducing bacteria in multiple environments

In contrast with the lipid regulators of rosette development, the mating-inducing chondroitin 

lyase, EroS, is a soluble protein constitutively secreted by V. fischeri bacteria. Not only does 

EroS trigger mating at picomolar concentrations, but S. rosetta swarms in response to as few 

as 400 V. fischeri cells/mL — a density similar to that of V. fischeri in oligotrophic oceans 

[25]. In addition to V. fischeri, other species of Vibrio bacteria also induce mating in S. 
rosetta (including V. orientalis and V. tubiashii), as do commercial chondroitin lyases 

isolated from Flavobacterium heparinum and Proteus vulgaris [22••], suggesting that 

encounters between S. rosetta and molecules produced by mating-inducing bacteria might be 

common occurrences in the ocean.
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Thus, it is reasonable to infer that S. rosetta comes across both rosette development and 

mating inducing bacteria in nature. In addition, because S. rosetta can respond to cues from 

diverse bacteria, it seems plausible that other life history transitions in choanoflagellates, 

such as settlement (the attachment of a planktonic cell to a substrate; [10,14]), are regulated 

by environmental bacteria as well.

The widespread influences of environmental bacteria

Choanoflagellates are not the only eukaryotes taking life advice from environmental 

bacteria. Environmental bacteria also regulate developmental transitions in diverse marine 

algae and animals, and simple model systems are beginning to uncover the bacterial cues 

that influence eukaryotic morphogenesis (Figure 2).

Algal morphogenesis

It has long been known that microbial communities associated with the surfaces of marine 

macroalgae are essential for their growth and morphogenesis [26]. Yet, the bacterial species 

responsible for stimulating algal development remained elusive for many years, due to the 

complex and seasonally-shifting composition of algal-associated bacterial communities [27]. 

A key advance in studying bacterial-algal interactions was the development of axenic 

culturing techniques (including for the seaweed Monostroma oxyspermum), which provided 

a platform for testing individual bacterial species for morphogenesis-inducing activity [28]. 

Although diverse bacteria that influence algal growth and morphogenesis have now been 

identified (Table 1), only one morphogenetic factor, Thallusin, has been isolated by activity-

guided fractionation and characterized to date [29,30••,31]. Thallusin is an amino acid 

derivative produced by the Monostroma- associated bacterium, Zobellia uliginosa, that is 

sufficient to induce thallus development in M. oxyspermum and partially promote thallus 

development in Ulva species (Figure 2). With a clear bioassay available, why have not more 

algal morphogenetic factors been isolated? One hypothesis is that the bacterial cues 

regulating algal growth and morphogenesis are produced at very low levels. This was 

certainly true for Thallusin, although it was ultimately possible to isolate the molecule 

because of its potency and stability [30••]. Alternatively, induction may require multiple 

bacterial molecules. On their own, bacteria belonging to Cytophaga and Roseobacter genera 

induce incomplete Ulva mutabilis development, promoting either cell division or thallus 

differentiation, respectively [32•]. However, the combined activities of these bacteria fully 

restore normal morphogenesis, raising the possibility that the synergistic interactions 

observed at the organismal level are required at the molecular level as well.

Larval settlement

Many benthic marine invertebrates have complex life histories that include stages of larval 

settlement and metamorphosis, key developmental steps that are crucial for adult success. 

Bacterial biofilms provide cues that trigger larval settlement and metamorphosis in diverse 

marine invertebrates, including sponges, cnidarians, molluscs, annelids, echinoderms, and 

urochordates (Table 1). While the majority of these interactions remain poorly understood, 

the increased tractability of invertebrate systems (e.g. the tubeworm Hydroides elegans [33] 

and the coral Acropora millepora [34••]) has facilitated identification of the bacterial cues 
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that regulate larval settlement and metamorphosis. Biofilm-forming bacteria from the genus 

Pseudoalteromonas influence development in several animals, including corals and 

tubeworms. Interestingly, the cues produced by environmental Pseudoalteromonas that 

trigger metamorphosis in A. millepora and H. elegans are distinct; while A. millepora 
metamorphosis is induced by the small molecule tetrabromopyrrole [34••], H. elegans 
metamorphosis is regulated by arrays of contractile phage-tail like structures called MACs 

(Metamorphosis Associated Contractile Structures) [35••] (Figure 2). Although the structures 

of tetrabromopyrrole and MACs suggest that the mechanisms by which these molecules 

trigger metamorphosis are likely very different, both of these bacterial molecules may 

provide chemical evidence of a suitable surface for colonization. Because surfaces in the 

ocean are often limiting, cues from bacteria might indicate to animals that they have found 

an appropriate environment for settling down.

Bacterial cues are proxies for environmental conditions

As more bacterial cues are isolated, it is becoming clear that interactions between eukaryotes 

and their environmental bacteria exhibit remarkable molecular specificity. Even slight 

modifications to the structures of bacterial cues can completely eliminate inducing activity, 

as is the case with the choanoflagellate rosette-inducing molecules and the algal 

morphogenetic factor Thallusin [17,31,36]. Nonetheless, multiple environmental bacteria 

can elicit the same eukaryotic developmental responses, and in each case the molecular cues 

seem to be distinct (this has been demonstrated for S. rosetta rosette development, 

Monostroma morphogenesis, and H. elegans larval settlement; Table 1). Because marine 

microbial communities are highly dynamic, it may be beneficial for eukaryotes to interpret 

developmental cues from diverse bacteria. The molecular stringency we observe likely 

allows eukaryotes to be responsive to many different environmental bacteria, whilst 

maintaining tight regulation over important developmental decisions.

Interestingly, we find that certain bacterial genera (including Flavobacteriia, 

Pseudoalteromonas, and Vibrio) have a high level of influence on the development of diverse 

marine eukaryotes. It is possible that many eukaryotes may rely on cues from Bacteroidetes 

and Gamma-proteobacteria because these bacteria flourish in nutrient and carbon rich 

environments, and can thus serve as proxies for favorable environmental conditions. Indeed, 

many of the bacteria that regulate eukaryotic development are well equipped for rapidly 

responding to increasing nutrient availability, boasting an assortment of extracellular 

enzymes that break down polysaccharides, lipids, and proteins [37]. For example, the 

polysaccharide degrading abilities of Bacteroidetes and Gammaproteo-bacteria allow these 

bacteria to utilize algal-derived polysaccharides and promptly proliferate when 

phytoplankton bloom (often as a result of increased inorganic nutrient levels) [38]. Even 

more impressive is the ability of some inducing-bacteria (notably Vibrio spp.) to pursue 

nutrient dense microenvironments through chemotaxis [39]. Thus, diverse eukaryotes may 

have converged on certain bacteria as indicators of nutrient-rich environments.

Finally, it is enticing to consider how environmental bacteria might benefit from these 

interactions. Many of the bacteria that induce eukaryotic developmental transitions also 

frequently associate with eukaryotes, for example by accumulating on surfaces of 
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macroalgae and invertebrates. Because these bacteria produce exoenzymes that help them 

utilize plant and animal-derived molecules for nutrition [37], it is possible that inducing 

eukaryotic development allows specific bacteria to rapidly colonize valuable ‘real estate.’

Conclusion

Although the influences of environmental bacteria on the development of marine eukaryotes 

has been observed for decades, we are just beginning to gain a molecular understanding of 

these interactions. With the help of model systems and straightforward bioassays, it is 

becoming clear that environmental bacteria produce structurally diverse cues that govern 

eukaryotic development with a high degree of molecular specificity. Nonetheless, even 

seemingly simple bacterial-eukaryotic interactions can be challenging to characterize when 

we rely solely on activity-guided fractionation. Furthermore, we are finding that most 

interactions with bacteria are complex, and may rely upon multiple molecular cues produced 

by one or more bacterial species. To understand these intricate interactions, future studies 

should likely combine genetic and activity-guided approaches in the study of environmen-

tally-relevant pairs or communities of eukaryotes and bacteria.

Importantly, many of the environmental bacteria that regulate eukaryotic development in 

marine ecosystems interact with eukaryotes in other pathogenic and mutualistic contexts. 

For example, the bacterium Vibrio fischeri forms a symbiosis with and triggers 

morphogenesis in the Hawaiian bobtail squid (Euprymna scolopes), while other members of 

the Vibrionaceae are common animal enteric commensals, pathogens, and mutualists [40]. 

In addition, Bacteroidetes bacteria closely related to Algoriphagus are abundant mammalian 

gut commensal bacteria that are important for proper intestinal development and 

homeostasis [41]. Therefore, understanding how environmental bacteria shape the 

development of marine eukaryotes may also provide insight into broadly applicable 

mechanisms of bacterial-eukaryotic interactions.
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Figure 1. 
Bacteria regulate rosette development and sexual reproduction in the choanoflagellate, S. 
rosetta. (a) Algoriphagus machipongonensis bacteria regulate the development of S. rosetta 
from a solitary cell into a multicellular ‘rosette’ colony through serial rounds of cell 

division. Algoriphagus produces three classes of lipids — sulfonolipids (RIFs), 

lysophosphatidylethanolamines (LPEs), and a capnine (IOR-1) — that interact to alternately 

induce, enhance, or inhibit rosette development. While the sulfonolipid RIFs are sufficient to 

initiate rosette development in S. rosetta, they require the synergistic enhancing activity of 

the LPEs for robust rosette development. Algoriphagus also produces the inhibitory IOR-1 

that inhibits the RIFs, but cannot overcome the synergistic inducing activity of the RIFs + 

LPEs. Immunofluorescence images illustrate stages of S. rosetta rosette development; 
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tubulin staining (gray) highlights the cell body and apical flagellum. (b) Vibrio fischeri 
bacteria induce sexual reproduction in S. rosetta. EroS, a chondroitin lyase secreted by V. 
fischeri, triggers solitary S. rosetta cells (arrows) to form large swarms (brackets) through 

cell aggregation. During swarming, S. rosetta cells pair off and mate, a process that involves 

the cell and nuclear fusion of two haploid cells into one diploid cell, followed by meiosis to 

generate haploid progeny. Immunofluorescence images depict mating stages in S. rosetta; 
tubulin staining (gray) highlights the cell body and apical flagellum, and Hoechst staining 

(magenta) highlights the nucleus.
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Figure 2. 
Distinct molecular cues from environmental Bacteroidetes and Gammaproteobacteria 

regulate developmental transitions in diverse marine eukaryotes. The Bacteroidetes bacteria 

Algoriphagus and Zobellia uliginosa regulate morphogenesis in organisms as diverse as 

algae and choanoflagellates. (1) Uncharacterized factors produced by Algoriphagus induce 

morphogenesis in the macroalgae Ulva mutabilis. (2) Algoriphagus machipongonensis lipids 

[sulfonolipids, lysophosphatidylethanolamines, and a capnine] regulate rosette development 

in the choanoflagellate Salpingoeca rosetta. (3) Thallusin, an amino acid derivative produced 
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by Zobellia uliginosa, induces morphogenesis in the macroalgae Monostroma oxyspermum. 

(4) Uncharacterized molecules from Zobellia uliginosa induce rosette development in the 

choanoflagellate Salpinogeca rosetta. Gammaproteobacteria can likewise elicit 

developmental responses in diverse animals and choanoflagellates. (5) Tetrabromopyrrole 

produced by Pseudoalteromonas spp. induces larval metamorphosis in corals Acropora 
millepora and Acropora willisae, and larval settlement (attachment and metamorphosis) in 

the coral Porites astreoides. (6) Uncharacterized cues from Pseudoalteromonas bacteria 

induce larval settlement in the sea urchin Heliocidaris erythrogramma. (7) 

Pseudoalteromonas luteoviolacea produces arrays of contractile phage tail-like structures 

(MACs) that trigger metamorphosis of the tubeworm Hydroides elegans. (8) A 

chondroitinase (EroS) secreted by Vibrio fischeri induces mating in the choanoflagellate S. 
rosetta. (9) Unknown cues secreted by Vibrio alginolyticus induce larval metamorphosis in 

the jellyfish Cassiopea andromeda.
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Table 1

Environmental bacteria regulate development in marine eukaryotes

Eukaryote Bacteria (Phylum) Developmental outcome Molecular cue Reference

Chlorophyta (green algae)

    Ulva mutabilis Cytophaga (B) Thallus differentiation Unknown [32•]

Roseobacter (B) Cell division Unknown [32•]

Algoriphagus (B) Cell division and thallus 
differentiation

Unknown [42,43]

Polaribacter (B) Cell division and thallus 
differentiation

Unknown [42,43]

    Monostroma oxyspermum Zobellia uliginosa (B) Morphogenesis Thallusin [30••]

    Ulva pertussa Zobellia uliginosa (B) Morphogenesis Unknown [29]

    Ulva conglobata Zobellia uliginosa (B) Morphogenesis Unknown [29]

    Ulva fasciata Marinomonas (F) Morphogenesis/growth of zoospores Unknown [44]

Bacillus (F) Morphogenesis/growth of zoospores Unknown [44]

    Enteromorpha Vibrio anguillarum (G) Zoospore settlement AHLs [45]

Choanoflagellate

    Salpingoeca rosetta Algoriphagus machipongonensis (B) Rosette development Lipid cofactors 
(Sulfonolipids, LPEs, 
capnine)

[15,16••,17]

Zobellia uliginosa (B) Rosette development Uncharacterized lipids [15];
unpublished data

Demequina (A) Rosette development Uncharacterized lipids [15];
unpublished data

Vibrio fischeri (G) Sexual reproduction Chondroitin lyase [22••]

Vibrio orientalis (G) Sexual reproduction Unknown [22••]

Vibrio tubiashii (G) Sexual reproduction Unknown [22••]

Flavobacterium heparinum (B) Sexual reproduction Chondroitin lyase [22••]

Porifera (sponges)

    Rhopaloeides odorabile Bacterial biofilm Larval settlement Unknown [46]

Cnidaria

    Acropora millepora (coral) Pseudoalteromonas (G) Larval metamorphosis Tetrabromopyrrole [34••]

    Acropora willisae (coral) Pseudoalteromonas (G) Larval metamorphosis Tetrabromopyrrole [44]

    Porites astreoides (coral) Pseudoalteromonas (G) Larval metamorphosis Tetrrabromopyrrole [44]

    Cassiopea andromeda (jellyfish) Vibrio alginolyticus (G) Larval metamorphosis Unknown [47]

    Aurelia aurita (jellyfish) Micrococcacae (A) Larval settlement Glycolipids [48]

Mollusca

    Euprymna scolopes (Hawaiian 
bobtail squid)

Vibrio fischeri (G) Light organ morphogenesis Lipopolysaccharide 
(LPS); Peptidoglycan 
(PGN); Tracheal 
Cytotoxin (TCT)

[7–9,49]

    Crassostrea gigas (oyster) Altermonas colwelliana (G) Larval settlement/ metamorphosis Unknown [50]

Vibrio cholerae (G) Larval settlement/ metamorphosis Unknown [50]

Annelida

    Hydroides elegans (marine 
tubeworm)

Pseudoalteromonas luteoviolacea (G) Larval settlement Tailocin MACs [35••]
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Eukaryote Bacteria (Phylum) Developmental outcome Molecular cue Reference

Cellulophaga lytica (B) Larval settlement Unknown [51•]

Bacillus aquimaris (F) Larval settlement Unknown [51•]

Staphylococcus warneri (F) Larval settlement Unknown [51•]

Echinodermata

    Heliocidaris erythrogramma 
(sea urchin)

Pseudoalteromonas luteoviolacea (G) Larval settlement Unknown [52]

Vibrio (G) Larval settlement Unknown [52]

Shewanella (G) Larval settlement Unknown [52]

Chordata

    Ciona intestinalis (sea squirt) Pseudomonas (G) Larval attachment Exopolysaccharide [53]

Bacterial phylogeny key: (B) Bacteroidetes; (G) Gammaproteobacteria; (F) Firmicutes; (A) Actinobacteria.
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