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Objective/Study Question. To estimate and compare sample average treatment
effects (SATE) and population average treatment effects (PATE) of a resident duty hour
policy change on patient and resident outcomes using data from the Flexibility in Duty
Hour Requirements for Surgical Trainees Trial (“FIRST Trial”).
Data Sources/Study Setting. Secondary data from the National Surgical Quality
Improvement Program and the FIRST Trial (2014–2015).
Study Design. The FIRST Trial was a cluster-randomized pragmatic noninferiority
trial designed to evaluate the effects of a resident work hour policy change to permit
greater flexibility in scheduling on patient and resident outcomes. We estimated hierar-
chical logistic regression models to estimate the SATE of a policy change on outcomes
within an intent-to-treat framework. Propensity score-based poststratification was used
to estimate PATE.
Data Collection/Extraction Methods. This study was a secondary analysis of pre-
viously collected data.
Principal Findings. Although SATE estimates suggested noninferiority of outcomes
under flexible duty hour policy versus standard policy, the noninferiority of a policy
change was inconclusively noninferior based on PATE estimates due to imprecision.
Conclusions. Propensity score-based poststratification can be valuable tools to
address trial generalizability but may yield imprecise estimates of PATE when sparse
strata exist.
Key Words. Resident duty hours, surgical outcomes, medical education,
propensity score methods, generalizability

Randomized controlled trials (RCT) are generally considered the “gold stan-
dard” in evidence-based medicine (Sackett 1989; Guyatt et al. 2000; Wright,
Swiontkowski, and Heckman 2003; Tricoci et al. 2009), despite broad
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recognition that RCT samples may be unrepresentative of inference popula-
tions—that is, “real-world” populations of policy/decision-making interest.
This incongruity arises because homogeneous samples are often selected for
purposes of improving statistical efficiency and constant treatment effects. Eth-
ical conduct of trials requires informed consent, which can impart an element
of self-selection that also reduces generalizability (Hennekens and Buring
1998; Storms 2003). Unequal access to information about trials due to socioe-
conomic disparities and cultural differences can further exacerbate nonrepre-
sentativeness (Gross et al. 2005). Finally, ex-post discovery of “off-label” uses
for treatment may lead to later discovery of new populations of interest
beyond the original study population.

The nonrepresentativeness of samples from major trials is well docu-
mented (Murthy, Krumholz, and Gross 2004; Stewart et al. 2007; Hum-
phreys et al. 2013; Kennedy-Martin et al. 2015). Several studies have found
systematic differences between trial participants and nonparticipants with
respect to characteristics such as disease severity, race/ethnicity, gender,
socioeconomic status, and age (Magee et al. 2001; Rovers et al. 2001; Gross
et al. 2005; Zimmerman, Chelminski, and Posternak 2005; Elting et al.
2006). Additional studies applying inclusion criteria to inference popula-
tions have found disproportionately low rates of study eligibility among
patients in real-world populations (Gandhi et al. 2005; Blanco et al. 2008a,
b; Le Strat, Rehm, and Le Foll 2011; Hoertel et al. 2012, 2013; Wissing
et al. 2014; Lamont et al. 2015). This literature provides valuable descrip-
tions of the nature and extent of nonrepresentativeness in major RCT sam-
ples, but it leaves an important question unanswered: What might the
expected effect of treatment be in the inference population or in a subpopu-
lation of the inference population that may not have been represented in
the trial sample?

We demonstrate how this question can be addressed using a propensity
score-based poststratification approach developed by O’Muircheartaigh and
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Hedges (2014) to estimate population average treatment effects from studies
involving nonrepresentative samples. We apply this method to data from the
Flexibility in Duty Hour Requirements for Surgical Trainees Trial (“FIRST
Trial”) to estimate the average effect of a resident duty hour policy change in
the population of general surgery residency programs and affiliated hospitals
(of which the FIRST Trial sample was a subset) and the subset of the inference
population that did not participate in the FIRST Trial.

Background

Population Average Treatment Effect (PATE) Estimation. Causal attribution in
nonrandomized studies is challenging because receipt of intervention may be
correlated with observed and unobserved subject characteristics. One estab-
lished approach for dealing with this problem is propensity score-based post-
stratification (Rosenbaum and Rubin 1983, 1984; D’Agostino 1998).
Rosenbaum and Rubin (1983) showed that predicted probabilities from mod-
els predicting receipt of intervention—that is, “propensity scores,” can be used
to balance observables across subjects that received the intervention and those
that did not. Stratifying subjects based on propensity scores yields homoge-
neous subgroups of subjects. The sample average treatment effect (SATE) can
then be computed as the weighted average of treatment effects across sub-
groups using the proportion of subjects in each stratum as weights (Rosen-
baum and Rubin 1983, 1984; D’Agostino 1998).

O’Muircheartaigh and Hedges (2014) adapted this method of propensity
score-based poststratification to obtain estimates of the population average
treatment effect (PATE) in studies with nonrepresentative samples. A com-
plete motivation and exposition of their approach have been published else-
where (Tipton 2013a; O’Muircheartaigh and Hedges 2014). Briefly
summarized, their procedure involves first estimating a propensity score
model to predict study inclusion (Rosenbaum and Rubin 1983, 1984; Broo-
khart et al. 2006). Second, predicted probabilities of study participation (i.e.,
propensity scores) are obtained from the propensity model. Third, observa-
tions are stratified by propensity scores into k strata (k = 5 has been shown to
reduce bias due to confounding on observables by 90 percent; Rosenbaum
and Rubin 1984). Fourth, stratum-specific treatment effects are estimated
using data from the study sample. Fifth, an estimate of the PATE is computed
as the weighted average of stratum-specific treatment effects using the propor-
tion of the inference population in each stratum as weights.
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METHODS

Application—The Flexibility in Duty Hour Requirements for Surgical Trainees Trial
(“FIRST Trial”)

Resident work hours in the United States are regulated by the Accreditation
Council for GraduateMedical Education (ACGME) with the intent of protect-
ing patients and residents by preventing fatigue-related errors. However, there
is concern that excessive restrictions on work hours may compromise training
and education goals. Described extensively elsewhere (Bilimoria et al. 2016a,
b), the Flexibility in Duty Hour Requirements for Surgical Trainees Trial
(“FIRST Trial”) was a two-arm, cluster-randomized pragmatic noninferiority
trial of general surgery residency programs in the United States and their hos-
pital affiliates to evaluate the effect of a duty hour policy change on patient and
resident outcomes. Programs randomized to “flexible duty hour policy” (inter-
vention) were permitted to waive three ACGME standards: (1) the require-
ment that interns work no more than 16 hours per shift and residents no more
than 28 hours (24 hours plus 4 transitional hours); (2) the requirement that
residents have at least 8 (preferably 10) hours between shifts; and (3) the
requirement that residents have at least 14 hours off after 24-hour call duty.
Programs randomized to usual care were to adhere to usual ACGME stan-
dards. All programs, regardless of study arm assignment, were subject to
ACGME’s 80 work hours/week cap (averaged over 4 weeks) and require-
ments to have at least 1 in every 7 days off, and 24-hour call no more than
once every third night.

The FIRST Trial study population comprised all 252 ACGME-accre-
dited general surgery residency programs and their hospitals as enumerated
in 2013–2014. Programs in New York were excluded because of state-man-
dated duty hours (27 programs). Programs with unresolved ACGME accredi-
tation issues were also excluded (12 programs). Because the FIRST Trial
relied on patient data collection through the American College of Surgeons
(ACS) National Surgical Quality Improvement Program (NSQIP), programs
that were not affiliated with one or more ACS NSQIP hospitals were ineligi-
ble to participate (77 programs). Of the remaining 136 general surgery resi-
dents in the population, 12 could not be reached for recruitment and six
declined enrollment. A total of 118 programs and 154 hospitals were enrolled
and randomized at the beginning of the FIRST Trial. One program and three
hospitals withdrew from the study prior to conclusion of the study. Although
86 percent of eligible programs enrolled in the FIRST Trial, the study sample
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does not encompass the entire policy-relevant inference population (all
ACGME-accredited general surgery residency programs). Thus, it is an
empirical question whether SATEs reported in the FIRST Trial are generaliz-
able to the programs and hospitals that did not participate in the FIRST Trial
(nonparticipants) and/or the population of policy interest as a whole (both
FIRST Trial participating programs and hospitals and nonparticipants).

Unit of Analysis

Although some hospitals sponsor general surgery residency programs, it is
often the case that residency programs are sponsored by an institution that is
organizationally distinct from the clinical facility in which residents work. Res-
idency programs enrolled in the FIRST Trial with one or more affiliated hos-
pitals. Programs could not enroll in the FIRST Trial without a hospital
affiliate; similarly, a hospital could not enroll in the FIRST Trial without an
affiliated residency program. Thus, in our propensity model predicting partici-
pation in the FIRST Trial, the unit of analysis was the “program-hospital pair.”
Using the roster of program-hospital pairs in the FIRST Trial, we identified all
program-hospital pairs in the inference population as either trial participants
or nonparticipants.

Inference Population and Subpopulation Defined

We define the total inference population (POP) to include both program-hos-
pital pairs that participated in the FIRST Trial as well as nonparticipating pairs
(N = 1,048 program-hospital pairs). We define the inference subpopulation of
nonparticipants (SubPOP) to refer to the subset of the total inference popula-
tion that did not participate in the FIRST Trial (n = 896 program-hospital
pairs). We define the FIRST Sample (SAMP) to refer to the subset of the total
inference population that participated in the FIRST Trial (n = 152 program-
hospital pairs). In this study, we examine the generalizability of the FIRST
Trial with respect to (1) the inference subpopulation of nonparticipants (Sub-
POP) and (2) the inference population as a whole (POP).

Data

Data for this study came from numerous sources, including the ACGME, the
American Board of Surgery (ABS), the AmericanMedical Association (AMA)
FREIDATM database of residency programs, and the American Hospital
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Association (AHA) Annual Survey (Fiscal Year 2013). Patient-level data and
resident-level data came from the FIRST Trial and have previously been
described in detail (Bilimoria et al. 2016a; Bilimoria et al. 2016b).

Measures

General Surgery Residency Program Characteristics. From the ABS, AMA, and
ACGME, we obtained data on the following general surgery residency pro-
gram characteristics: program type (academic, community-based, military);
number of approved residency slots; number of postgraduate year (PGY) 5
residents; history of ACGME accreditation issues; mean ABS In-Training
Examination (ABSITE) scores; and geographic location. To characterize pro-
gram-level research engagement, we used institutional listings from the
National Institute of General Medical Sciences (NIGMS) Medical Scientist
Training Program (MSTP) and the Association for Academic Surgery (AAS)
to identify program-hospital pairs that had a MSTP and/or that had represen-
tatives serving in the AAS.

Hospital Characteristics. Hospital characteristics obtained from the AHA
included bed size; annual admission volume; total annual surgical volume;
type of control (not-for-profit, for-profit, other); membership in the Coun-
cil of Teaching Hospitals (COTH); percent Medicaid discharges; full-time
registered nurses (RN) per bed; level 1 trauma center designation; hospital
engagement in health-related research; and provision of any transplant ser-
vices (bone marrow, heart, kidney, liver, lung, tissue, and/or other trans-
plant).

Outcomes. The FIRST Trial evaluated the effect of assignment to flexible
duty hours on both patient outcomes as well as resident outcomes. We
assessed the generalizability of the FIRST Trial in both the subset of the
inference population that did not participate in the trial as well as the total
inference population with respect to both patient and resident outcomes.
However, for parsimony, we present and discuss only those analyses per-
taining to patient outcomes and have reserved our analyses of resident
outcomes for the Appendices SA2–SA9 that accompany this article. The
FIRST Trial 30-day postoperative patient outcomes were as follows: death
or serious morbidity (DSM, primary patient outcome); death; serious
morbidity; any morbidity; failure-to-rescue; pneumonia; renal failure;
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unplanned reoperation; sepsis; surgical site infection (SSI); and urinary
tract infection (UTI) (Bilimoria et al. 2016a,b).

Propensity Score Model

Program-hospital propensity to participate in the FIRST Trial was modeled
using hierarchical logistic regression with program-level random intercepts to
account for the clustering of program-hospital pairs within residency pro-
grams (some programs participated in the FIRST Trial with more than one
hospital affiliate) (Li, Zaslavsky, and Landrum 2013). Covariates included in
the propensity model were chosen on the basis of two considerations. First,
covariates should predict participation in the FIRST Trial as well as patient
outcomes or more specifically, differences in outcomes (i.e., treatment effects).
Second, we sought covariates with the most complete data to minimize miss-
ing data. Regressors in our final model included program type; number of
PGY5 residents; a dichotomous variable indicating any history of ACGME
accreditation issues between 2012 and 2015; a dichotomous variable indicat-
ing engagement in health-related research, MSTP institution, and/or presence
of AAS representative; annual hospital admission volume; type of hospital
control; COTH membership; percent Medicaid discharges; RN-to-bed ratio;
a dichotomous indicator variable for any transplant services; level 1 trauma
designation; and census division. Details of our propensity model are pro-
vided in Appendix SA2. Predicted probabilities (including both fixed and ran-
dom components) obtained from this model constituted the propensity scores
in analyses that followed. Program-hospitals pairs were stratified by quintile of
propensity scores.

We constructed a histogram of propensity scores to assess whether the
assumption of common support was violated.

It is necessary to demonstrate that the propensity score-based poststrati-
fication (sub)population-weighted sample is similar to the underlying infer-
ence (sub)populations. To this end, for each covariate in the propensity model,
we computed absolute standardized mean differences (|SMD|s) between infer-
ence (sub)populations, FIRST Sample, and (sub)population-weighted samples
(details in Appendices SA2–SA9).

As benchmarks for judging the size of |SMD|s, we adopted and imple-
mented three criteria proposed by Rubin (2001). First, |SMD|s should be no
greater than 0.50. Second, the ratio of propensity score variances in the infer-
ence (sub)population and (sub)population-weighted sample should be within
the 0.50–2.00 range, ideally close to 1.00. Third, the ratio of variances in the
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inference (sub)population and (sub)population-weighted sample of residuals
obtained by regressing each covariate on the propensity score should also be
within the 0.50–2.00 range and close to 1.00. Rubin’s criteria help characterize
how well the propensity score reweighted samples approximate underlying
inference (sub)populations of interest and help ensure that estimates of aver-
age treatment effects (ATEs) obtained by poststratification methods are not
mere extrapolations (King and Zeng 2006).

We also implemented Tipton’s (2014) Generalizability Index (b), which
uses Bhattacharyya’s coefficient to compare the distribution of propensity
scores in the inference (sub)population to that in the sample (Tipton 2014;
Brown 2015). Bhattacharyya’s coefficient is an index that summarizes the simi-
larity of two histograms and ranges from 0 to 1, with the following interpreta-
tion suggested by Tipton when applying the coefficient to propensity score
distributions: b < 0.50 “low” generalizability of sample; 0.50 ≤ b < 0.80 “med-
ium” generalizability of sample; 0.80 ≤ b < 0.90 “high” generalizability of sam-
ple; 0.90 ≤ b “very high” generalizability of sample. Conceptually, Tipton’s b
describes how close a sample is to approximating a random, probability sample
from the underlying population of interest (Tipton 2014; Tipton et al. 2016).

Estimation of Sample Average Treatment Effects

Sample average treatment effects (SATEs) were estimated using the FIRST
Trial sample patient-level NSQIP data, previously described in detail else-
where (Bilimoria et al. 2016a,b). The basic intent-to-treat model in the FIRST
Trial regressed patient outcomes on study arm assignment (intervention [“flex-
ible” duty hours] vs. usual care [“standard” ACGME duty hours]) with con-
trols for randomization stratum and random intercepts (program and hospital
level). Because study arm assignment was random in the FIRST Trial, the
coefficient on study arm assignment identified the intent-to-treat estimate of
the effect of assignment to flexible duty hour policies on patient outcomes.
Each outcome was modeled separately.

Estimation of Stratum-Specific Treatment Effects

To obtain stratum-specific estimates in this study, patient outcomes were
regressed on study arm assignment, propensity score stratum, and the interac-
tion between study arm assignment and propensity score stratum using hierar-
chical logistic regression models that included program-level random
intercepts. Each outcome was modeled separately, and all models controlled
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for randomization stratum. Additional detail on estimating stratum-specific
treatment effects is provided in Appendices SA2–SA9.

Computation of Average Treatment Effects

Weighted averages across stratum-specific treatment effects and standard
errors were computed using methods described in Appendices SA2-SA9 to
obtain estimates of the average “treatment” effect of assignment to flexible
duty-hour policies among the subpopulation of nonparticipants (“SubPATE”)
and estimates of the average treatment effect within the total inference popula-
tion (“PATE”).

RESULTS

At the time of recruitment, the FIRST Trial enumerated 252 ACGME-accre-
dited general surgery programs in the United States that were affiliated with
771 distinct clinical sites. Due to multiple affiliations, 1,048 unique program-
hospital pairs were enumerated in the total inference population after exclud-
ing ineligible programs and clinical sites other than general hospitals. Of the
1,048 program-hospital pairs in the inference population, 152 (14.50 percent)
participated in the FIRST Trial while 896 (85.50 percent) did not participate.
Complete data for the propensity score model were available for 951 of the
1,048 (91 percent) program-hospital pairs, of which 803 were nonparticipants
and 148 were participants in the FIRST Trial.

Evaluation of Propensity Score Model and Generalizability of FIRST Trial

Complete estimates from our propensity score model predicting participation
of program-hospital pairs are provided in Appendices SA2–SA9.

Table 1 reports the means and standard deviations (SD) for each
variable in the inference population, the inference subpopulation of nonpar-
ticipants, the FIRST Sample, the population-weighted sample, and subpopu-
lation-weighted sample.

Inference Population versus FIRST Sample. Table 2 shows |SMD|s between the
inference population and FIRST Sample for each covariate in the propensity
model. None of the |SMD|s between the population and sample were >0.5
(Rubin Criteria 1) for any of the covariates in the propensity model. Most of
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Table 2: Inference Population (POP), FIRST Sample (SAMP), and Popula-
tion-Weighted Sample (PWS) Comparisons

Variable

POP vs. SAMP POP vs. PWS

|SMD|

Rubin Criterion
3 r2POPRESID/r

2

SAMPRESID* |SMD|

Rubin Criterion
3 r2POPRESID/r

2

PWSRESID*

Propensity score (logit scale) 0.96† — 0.08 —
Program type
Academic 0.31 1.03 0.16 1.17
Community-based 0.24 1.02 0.10 0.91
Military 0.16 5.09* 0.13 1.56

Number of PGY5 slots 0.35 0.83 0.21 1.34
Any ACGME
accreditation issue

0.17 0.83 0.08 0.91

Research-oriented 0.26 1.35 0.08 0.85
2013mean ABSITE scores 0.17 1.26 0.09 1.05
Annual hospital
admissions (1000s)

0.39 1.50 0.04 2.14*

Type of control
Not-for-profit 0.17 1.03 0.10 1.01
For-profit 0.12 1.34 0.10 1.21
Other 0.12 1.02 0.05 1.04

COTHmembership 0.43 1.04 0.02 0.96
PercentMedicaid
discharges

0.11 2.21* 0.12 1.51

Full-time RN/bed 0.02 1.28 0.00 1.12
Any transplant services 0.43 1.14 0.10 1.06
Level 1 trauma
designation

0.38 1.17 0.10 1.29

Census division
1—New England 0.29 0.85 0.08 0.51
2—Mid-Atlantic 0.24 1.09 0.03 0.90
3—East North Central 0.03 0.94 0.08 0.79
4—West North Central 0.12 1.11 0.07 2.04*
5—South Atlantic 0.02 0.99 0.11 0.97
6—East South Central 0.08 1.08 0.01 1.26
7—West South Central 0.04 1.07 0.07 1.25
8—Mountain 0.07 1.17 0.07 1.29
9—Pacific 0.01 1.03 0.07 1.18

Notes. Additional tests: Rubin (2001) Criterion 2: ratio of variance of propensity score between
groups should be within (0.5, 2) range. This ratio was 1.21 between POP and SAMP and 16.02
between the POP and PWS. Tipton’s Generalizability Index (b) was 0.87 (POP vs. SAMP).
According to Tipton (2014): b < 0.50 “low”; 0.50 ≤ b < 0.80 “medium”; 0.80 ≤ b < 0.90 “high”;
0.90 ≤ b “very high” generalizability of sample.
*Rubin (2001) Criterion 2: ratio of variance of residuals should be within (0.5, 2) range.
†Rubin (2001) Criterion 1: |SMD|s > 0.5 SDs may indicate distributional dissimilarity between
groups.
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the variance ratios of residuals between the inference and sample were close
to one, with only two lying outside the prescribed 0.50–2.00 range: proportion
program-hospital pairs that were military based, and percent of Medicaid dis-
charges.

The propensity score model was reasonably successful in balancing
covariates between the inference population and sample. |SMD|s between the
inference population and population-weighted sample were generally smaller
than between the inference population and sample. As before, none of the |
SMD|s were greater than 0.50. Variance ratios of residuals between the infer-
ence population and population-weighted sample barely exceeded 2.00 for
two covariates: annual hospital admission volume and proportion program-
hospital pairs in theWest North Central census division.

Rubin advises that the variance ratio of propensity scores in two groups
should be within the 0.50–2.00 range; however, we computed this ratio to be
1.21 between the inference population and the sample and 16.02 between the
population and the population-weighted sample.

Tipton’s b comparing the similarity of propensity score distributions in
the inference population to that in the sample was 0.87 or “very highly”
generalizable. Together, these assessments generally suggest that the popula-
tion-weighted sample obtained by propensity score-based poststratification is
adequately similar to the inference population and that ATEs obtained from
subclassification procedures may produce valid estimates of PATEs. However,
the lone violation of Rubin’s second criterion suggests caution.

Inference Subpopulation (Nonparticipants) versus FIRST Sample. Table 3 com-
pares the inference subpopulation of nonparticipants, the FIRST Sample, and
the subpopulation-weighted sample. |SMD|s between nonparticipants and the
FIRST Sample exceeded 0.50 SDs (subpopulation) for one covariate: propor-
tion program-pairs providing transplant services. Variance ratios of residuals
exceeded 2.00 for two covariates: proportion military-based program-pairs
and percent Medicaid discharges.

Propensity score reweighting generally appears to have improved covari-
ate balance in the subpopulation-weighted sample (SubPWS). After reweight-
ing, |SMD|s were generally smaller, and none were >0.50 SD (subpopulation).
Variance ratios of residuals fell slightly outside the 0.50–2.00 range for three
covariates: annual hospital admission volume, proportion program-pairs in
New England, and proportion program-pairs in West North Central.

However, Rubin’s second criterion was violated once again. The vari-
ance ratio of propensity scores in the inference subpopulation and sample was

Estimating PATEs in the FIRST Trial 2579



Table 3: Inference Subpopulation (SubPOP), FIRST Sample (SAMP), and
Subpopulation-Weighted Sample (SubPWS) Comparisons

Variable

SubPOP vs. SAMP SubPOP vs. SubPWS

|SMD|

Rubin Criterion 3
r2SUBPOPPRESID/
r2SAMPRESID* |SMD|

Rubin Criterion 3
r2SUBPOPRESID/
r2SUBPWSRESID*

Propensity
score (logit scale)

2.30† — 0.11 —

Program type
Academic 0.35 1.03 0.17 1.21
Community-based 0.28 1.02 0.09 0.90
Military 0.16 5.83* 0.17 1.57

Number of PGY5 slots 0.42 0.80 0.23 1.44
Any ACGME
accreditation issue

0.22 0.80 0.16 0.90

Research-oriented 0.37 1.41 0.00 0.84
2013mean ABSITE scores 0.20 1.30 0.11 1.05
Annual hospital admissions (1000s) 0.45 1.59 0.05 2.48*
Type of control
Not-for-profit 0.21 1.04 0.12 1.02
For-profit 0.16 1.40 0.13 1.24
Other 0.13 1.03 0.06 1.05

COTHmembership 0.49 1.05 0.01 0.95
Percent
Medicaid discharges

0.13 2.43* 0.14 1.57

Full-time RN/bed 0.04 1.33 0.02 1.14
Any transplant services 0.55† 1.16 0.08 1.06
Level 1 trauma designation 0.49 1.20 0.06 1.35
Census division
1—New England 0.31 0.82 0.08 0.46*
2—Mid-Atlantic 0.27 1.11 0.02 0.89
3—East North Central 0.01 0.93 0.11 0.75
4—West North Central 0.16 1.13 0.10 2.47*
5—South Atlantic 0.01 0.99 0.11 0.95
6—East South Central 0.11 1.09 0.00 1.33
7—West South Central 0.09 1.09 0.11 1.31
8—Mountain 0.06 1.20 0.06 1.35
9—Pacific 0.04 1.04 0.07 1.22

Notes. Additional tests: Rubin (2001) Criterion 2: ratio of variance of propensity score between
groups should be within (0.5, 2) range. This ratio was 1.00 between SubPOP and SAMP and 17.23
between the SubPOP and SubPWS. Tipton’s Generalizability Index (b) was 0.80 (SubPOP vs.
SAMP). According to Tipton (2014): b < 0.50 “low”; 0.50 ≤ b < 0.80 “medium”;
0.80 ≤ b < 0.90 “high”; 0.90 ≤ b “very high” generalizability of sample.
*Rubin (2001) Criterion 2: ratio of variance of residuals should be within (0.5, 2) range.
†Rubin (2001) Criterion 1: |SMD|s > 0.5 SDs may indicate distributional dissimilarity between
groups.
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1.00, but it was 17.23 in the subpopulation and subpopulation-weighted sam-
ple.

Tipton’s b was 0.80, indicating “high” generalizability of the sample.
Despite violation of Rubin’s second criterion, we cautiously conclude that
Rubin’s 1st and 3rd criteria and Tipton’s Index suggest that average treatment
effects estimated from the SubPWS may provide estimates of the subpopula-
tion average treatment effect (SubPATE).

Population Average Treatment Effect of Flexible Duty Hour Policies on Patient
Outcomes

Figure 1 shows the estimated average effect of assignment to flexible duty-
hour policies on patient outcomes in the FIRST Sample (SATE), inference
population (PATE), and inference subpopulation of nonparticipants in the
trial (SubPATE). Effects are expressed as odds ratios (OR) contrasting assign-
ment to flexible duty hour policies against standard ACGME duty hour poli-
cies. Blue-shaded regions depict areas within the margin of noninferiority
predetermined by FIRST Trial investigators (Bilimoria et al. 2016a,b). Flexi-
ble duty hour policies were deemed superior to standard ACGME policies if
both the point estimate and upper bound of the 92 percent confidence interval
(92 percent UB) were below 1.00. Noninferiority was conclusively established
if both the point estimate and the 92 percent UBwere below the noninferiority
margin. Noninferiority was inconclusive if the point estimate was below the
noninferiority margin, but the 92 percent UB confidence interval extended
beyond it. Inferiority was inconclusive if the point estimate extended outside
the noninferiority margin, but the lower bound of the 92 percent confidence
interval (92 percent LB) was contained within the lower bound. Flexible duty-
hour policies were deemed conclusively inferior to ACGME policies if both
the point estimate and the 92 percent LB were to the right of the inferiority
margin.

As previously reported and as shown in Figure 1, SATE estimates were
either conclusively noninferior (DSM, serious morbidity, morbidity, pneumo-
nia, unplanned reoperation, sepsis, SSI, UTI) or inconclusively noninferior to
standard duty hour policy (death, failure-to-rescue, renal failure) (Bilimoria
et al. 2016a). However, only two PATE estimates were conclusively noninfe-
rior (SSI, UTI). For seven outcomes, PATE estimates were inconclusively
noninferior (DSM, serious morbidity, morbidity, failure-to-rescue, pneumo-
nia, unplanned reoperation, and sepsis). For two outcomes, PATE estimates
were inconclusively inferior (death and renal failure). SubPATE estimates
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were very similar to PATE estimates and were conclusively noninferior for
SSI and UTI and inconclusively inferior to standard duty hour policy for
death and renal failure. Confidence intervals around PATE and SubPATE esti-
mates were considerably wider than those around SATE.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

30-Day Postop. Pneumonia

30-Day Postop. Failure-to-Rescue

30-Day Postop. Morbidity 

30-Day Postop. Serious Morbidity 

30-Day Postop. Death

30-Day Postop. Death or Serious Morbidity

SATE PATE SubPATE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

30-Day Postop. Urinary Tract Infec�on

30-Day Postop. Surgical Site Infec�on

30-Day Postop. Sepsis

30-Day Postop. Unplanned Reopera�on

30-Day Postop. Renal Failure

SATE PATE SubPATE

Figure 1: Estimated Sample Average Treatment Effects and Population
Average Treatment Effects of Flexible Duty Hour Policies on Patient
Outcomes [Color figure can be viewed at wileyonlinelibrary.com]
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DISCUSSION

Summary

We demonstrated how propensity score-based poststratification can be used
to estimate the PATE in the FIRST Trial, a cluster-randomized trial com-
paring the effect of flexible resident duty hour policies versus standard
ACGME duty hour policies on patient outcomes and resident outcomes
(Appendices SA2–SA9). Previous work showed that large, academic medi-
cal centers and research-oriented programs were overrepresented in the
FIRST Trial due to the eligibility requirement that hospitals participate in
ACS NSQIP. Given the nonrepresentativeness of the FIRST Trial sample,
it is of policy relevance to assess how generalizable the FIRST Trial results
are vis-�a-vis nonparticipating programs, as well as the inference population
taken as a whole.

Confidence intervals around (Sub)PATE estimates were substantially
wider than those around SATE estimates. Consequently, while the FIRST
Trial found that 30-day DSMwas conclusively noninferior under flexible duty
hour policies based on the SATE, our (Sub)PATE estimates suggest that flexi-
ble policy was inconclusively noninferior to standard ACGME policies for
this outcome.

Limitations

Our study should be considered alongside its limitations. First, propensity
score methods only reduce bias due to selection on observables. A mis-spe-
cified propensity score model (such as one with omitted variables) can lead
to biased estimates of treatment effects (Drake 1993). Despite the balance in
observables achieved following poststratification (Tables 1 and 2), there
could have been unmeasured characteristics that determine trial participa-
tion and outcomes (or treatment effect) that we could not account for.
Because there were no theoretical reasons for including interactions among
covariates, we omitted them from the propensity model for parsimony. If
there were omitted variables and/or interactions that should have been
included in the model, then trial participation would not be strongly ignor-
able due to unobserved confounders, and (Sub)PATE estimates might be
biased ( Joffe and Rosenbaum 1999).

A limitation of the propensity score poststratification method is greater
imprecision in PATE estimates compared to SATE estimates. Wider

Estimating PATEs in the FIRST Trial 2583



confidence intervals around our (Sub)PATE estimates imply greater uncer-
tainty around the potential effects of flexible duty hour policies in the infer-
ence (sub)population. In the context of noninferiority or equivalence designs,
wider confidence intervals may change conclusions based on SATEs. In our
evaluation of the FIRST Trial, seven outcomes for which flexible duty hours
were conclusively noninferior based on SATE estimates were inconclusively
noninferior based on (Sub)PATE estimates.

Imprecision in our (Sub)PATE estimates may be due to uneven distribu-
tion of the FIRST Sample across propensity score strata despite full coverage.
Sparse strata may yield highly imprecise stratum-specific estimates of the
treatment effect. If the distribution of the sample across strata poorly matches
the distribution of the population across strata, then noisy stratum-specific esti-
mates will be weighted more heavily and will introduce greater uncertainty in
(Sub)PATE estimates. This underscores the importance of planning trial sam-
ples with generalization to an inference population in mind (Tipton 2013b;
O’Muircheartaigh and Hedges 2014; Tipton et al. 2014).

An alternative approach to estimating average treatment effects was
recently proposed by Rudolph et al. (2016), in which stratum weights are
defined as the inverse of the variance of the stratum-specific SATEs
divided by the sum across strata of the inverse variances of stratum-specific
treatment effects. Compared to weighting by the proportion of the infer-
ence population in each stratum as we did in this paper, Rudolph et al.’s
method was shown to yield more precise estimates of ATEs when treat-
ment effects are constant across strata (Rudolph et al. 2016). However,
ATEs estimated using Rudolph’s approach may not be interpretable as a
population average treatment effect because the weights do not correspond
to the relative distribution of stratum-specific units within the overall infer-
ence population.

CONCLUSION

Problems of generalizability in major trials have become increasingly salient,
focusing greater attention on the importance of external validity of RCTs in
evidence-based medicine and/or policy (Steckler andMcLeroy 2008).

Pragmatic trial designs, population-based probability sampling, and
effectiveness studies have all been advocated as strategies for addressing con-
cerns about external validity in studies (Gotay 2006). In the study design

2584 HSR: Health Services Research 53:4, Part I (August 2018)



phase, external validity can be addressed through informed sampling designs
(Tipton 2013b; Tipton et al. 2014).

After a study has concluded, generalizability can still be assessed
through the use of propensity score-based subclassification approaches such
as that developed by O’Muircheartaigh and Hedges (2014) and as we demon-
strated in this paper. An advantage of this approach is that it only requires data
sufficient to estimate a propensity model of study participation. Data on treat-
ment and outcomes among nonparticipants are not required. The use of
propensity score methods to estimate PATEs has been explored by others in
the context of propensity score weighting (Stuart et al. 2011; Stuart, Brad-
shaw, and Leaf 2015). Weighting approaches also begin with a propensity
score model to study inclusion, but rather than stratify observations by
propensity scores, observations in the study sample are weighted by the
inverse probability of study participation. A drawback of inverse probability
weighting is the possibility that extreme weights may allow rare observations
to distort results (Ellis and Brookhart 2013). In hierarchical data, it may also be
unclear at which level a weight should be applied.

We demonstrated the feasibility of using propensity score-based stratifi-
cation as a method for estimating population average treatment effects in stud-
ies with nonrepresentative samples, such as the FIRST Trial. As applied to the
FIRST Trial, we found that PATE estimates of the effects of assignment to flex-
ible duty hour policies (vs. standard ACGME duty hour policies) were consis-
tent with SATE estimates, but they were less efficient due to sparse strata.
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