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Abstract

Phages infect marine bacteria impacting their dynamics, diversity and physiology, but little is known about specific
phage-host interactions in situ. We analyzed the joint dynamics in the abundance of phage-related transcripts, as an indicator
of viral lytic activity, and their potential hosts using a metatranscriptomic dataset obtained over 2 years in coastal temperate
waters of the NE Atlantic. Substantial temporal variability was identified in the expression levels of different phages, likely
in response to host availability. Indeed, a significant positive relationship between the abundance of transcripts from some of
the most abundant phage types (infecting SAR11, SAR116 and cyanobacteria) and their putative hosts was found. Yet, the
ratio of increase in phage transcripts per host cell was significantly lower for pelagiphages than for the HMO-2011 phage,
which infects SAR116. Despite the high abundance of pelagiphages in the ocean, they may be less active than other phage

types in coastal waters.

The study of phage—host microbial interactions in the ocean
has been challenging due to the difficulty of isolating
environmentally important microbes and their phages, as
well as of assessing the true diversity of viral infections in
nature. New approaches such as metagenomics [1, 2] and
single-cell and single-virus genomics [3, 4] have recently
targeted the genomic repertoire of viruses thriving as free
particles or replicating in uncultivated microbes. Yet, key
questions remain unanswered, such as which bacterial
phylotypes are most susceptible to viral predation, and how
phage—host interactions change across environmental
gradients.

To determine how active viral infection impacts seasonal
bacterial dynamics, we identified transcripts of phage origin
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in eight metatranscriptomes collected over 2 years from a
coastal station in the S Bay of Biscay (E2 Gijén/Xix6n) and
compared the data to the abundance of putative bacterial
hosts. From 4.2 million mRNA transcripts, 7616 phage-
origin hits were identified by a combined BLASTx and
BLASTn query to the NCBI Refseq database (see Supple-
mentary Information). Additionally, more than 2600 sig-
nificant hits to phage genomes recently sequenced by
cultivation-independent methods were identified based on
nucleotide homology (Supplementary Table S1). Some of
the most abundant marine phage types discovered to date
abounded in our dataset, including phages infecting cya-
nobacteria (cyanophages), SAR11 (pelagiphages) and the
SARI116 clade (HMO-2011 phage, [5], Fig. 1). The tran-
script abundance of these three phage types was sub-
stantially higher when identified by protein similarity
(BLASTx search) compared to nucleotide similarity
(BLASTn search), even when the Refseq nucleotide data-
base was augmented with recently sequenced phages
(Supplementary Figure S1). Our results thus indicate a
substantial variation at the nucleotide level within these
phage types, in line with recent results of widespread
marine phages by single-virus genomics [3]. The phage
vSAG-37-F6, discovered in the latter study, recruited the
highest number of hits by nucleotide similarity (Supple-
mentary Figure S2). Thus, we provide evidence of high
in situ activity of what is likely one of the most abundant
marine virus species [3]. In general, substantial temporal
variability was identified in the expression levels of
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Fig. 1 Temporal dynamics in the abundance of transcripts of phages
targeting different bacterial clades. Phage transcripts have been iden-
tified based on protein similarity (BLASTx search) against the Refseq
database and normalized by the size of phage genomes and meta-
transcriptomic libraries (see Supplementary Text). Only those phage
types contributing >2% of total phage transcripts are shown
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Fig. 2 Relationship between the natural log-transformed abundance of
phage transcripts in the metatranscriptomes and the abundance of their
respective host cells for the HMO-2011 phage (targeting SAR116, in
green), cyanophages (in blue) and pelagiphages (in red). Phage tran-
scripts were identified based on protein similarity (BLASTx search)
against the Refseq database and their abundance was normalized by
the size of phage genomes and metatranscriptomic libraries. The
coefficients of determination (R%) and slopes of the regression lines are
shown

different phages across the seasonal gradient (Fig. 1), pre-
sumably in response to host availability.

Putative hosts have been identified for some of the phages
found in our dataset according to their isolation source or
genomic information (Supplementary Table S1). Based on
the similarity of metatranscriptomic reads to phages with
known hosts and assuming phage—host specificity, the rela-
tionships between the abundance of transcripts of pelagi-
phages, cyanophages and HMO-2011 and their respective
putative host cells were explored to test whether host density
promoted the viral lytic response [6]. Significant correlations
(Spearman test, P<0.05, n=8) were found for the three
groups (Fig. 2), indicating that phage-host relationships
could be detected by this approach in situ, even at a broad
phylogenetic level. These relationships were significant when

phage transcript abundance was estimated based on protein
similarity. However, they were not significant in the case of
pelagiphages and cyanophages when estimated based on
nucleotide similarity (Spearman test, P> 0.05, Supplemen-
tary Figure S1). This again suggests a substantial diversity
within these phages only detectable at the ‘catch all’ protein
level. Other abundant viruses were likely infecting members
of Flavobacteria, Verrucomicrobia, SAR86 and SAR92
clades (Supplementary Figure S2). Yet, for the latter groups,
only the abundance of transcripts of phage type AAA160-
D02 and their putative host, the SAR92 clade, were posi-
tively correlated (Spearman R =0.78, P = 0.02).

Interestingly, the slopes of the phage-host abundance
regressions were significantly different for HMO-2011 and
pelagiphages (ANCOVA test, P<0.01), and marginally
significant between HMO-2011 and cyanophages
(ANCOVA test, P=0.051), or cyanophages and pelagi-
phages (ANCOVA test, P = 0.058). Taking phage transcript
abundance as an indicator of viral lytic activity, likely related
with burst size and lysis rates, our results indicate a higher
activity of HMO-2011 as compared to pelagiphages in situ.
In support of our results, in the experiments performed in the
laboratory, the latent periods of HMO-2011 are substantially
shorter than pelagiphages (6h versus 16-22h) and burst
sizes are one order of magnitude higher (500 versus 9-49, [5,
71), which is consistent with faster infection cycles.

The lower ratio of pelagiphage transcripts per host cell
(ca. one order of magnitude lower compared with cyano-
phages or HMO-2011) could be explained by the presence
of a lower number of infected cells, possibly related to
phage protection mechanisms transmitted by homo-
immunity or recombination in SARI1 populations [7]. It
has also been suggested that viruses cannot invade high-
density host populations due to low rates of host growth and
viral lysis [8]. SAR11 comprises some of the most abundant
bacterial populations in the ocean [9]. While their in situ
metabolic activity shows great variability [10, 11], their
growth rates are typically low both in cultures [12] and in
natural samples [13, 14], including our study site [15].
Thus, the lower phage—host abundance regression slope
found for pelagiphages could be related to a slower growth
of SARI1 cells, which also show weak transcriptional
responses [16]. Yet, an occasional increase in the growth
rate of SAR11 (above 1day™"), concomitant with a repla-
cement of the dominant SAR11 taxon in situ took place at
our study site in May 2012 [15]. The composition of active
pelagiphages also showed marked changes in this sample,
with maximum abundance of HTVCO11P transcripts
(Fig. 1). These results would be consistent with the exis-
tence of several SARI11 strains characterized by different
life strategies and phage susceptibility [17].

In summary, our study highlights the importance of
studying the phage—host dynamics in situ, providing evidence
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of a seasonality in these interactions, and show different
activity of phages targeting environmentally relevant microbial
clades. The discovery of large numbers of pelagiphages in the
ocean has suggested that the importance of viral control upon
SAR11 populations could be higher than previously assumed
[7]. However, the relatively low abundance of pelagiphage
transcripts at high host densities found here may indeed sug-
gest that a pseudolysogenic or chronic infection state may be
more prevalent than the lytic cycle. The high activity of phages
targeting SAR116 and cyanobacteria would be consistent with
the large representation of the latter groups in transcriptionally
active communities [18, 19] despite their relatively lower
in situ abundance [20]. Further research combining measure-
ments of viral and host replication rates will be key to eluci-
date the degree of viral control upon major microbial players
of ocean biogeochemistry.
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