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ABSTRACT

Chronic neuroinflammation is a hallmark of the onset and progression of brain proteinopathies such as Alzheimer disease (AD) and it is suspected to participate in the
neurodegenerative process. Transcription factor NRF2, a master regulator of redox homeostasis, controls acute inflammation but its relevance in low-grade chronic
inflammation of AD is inconclusive due to lack of good mouse models. We have addressed this question in a transgenic mouse that combines amyloidopathy and
tauopathy with either wild type (AT-NRF2-WT) or NRF2-deficiency (AT-NRF2-KO). AT-NRF2-WT mice died prematurely, at around 14 months of age, due to motor
deficits and a terminal spinal deformity but AT-NRF2-KO mice died roughly 2 months earlier. NRF2-deficiency correlated with exacerbated astrogliosis and mi-
crogliosis, as determined by an increase in GFAP, IBA1 and CD11b levels. The immunomodulatory molecule dimethyl fumarate (DMF), a drug already used for the
treatment of multiple sclerosis whose main target is accepted to be NRF2, was tested in this preclinical model. Daily oral gavage of DMF during six weeks reduced
glial and inflammatory markers and improved cognition and motor complications in the AT-NRF2-WT mice compared with the vehicle-treated animals. This study
demonstrates the relevance of the inflammatory response in experimental AD, tightly regulated by NRF2 activity, and provides a new strategy to fight AD.

1. Introduction

Low-grade chronic neuroinflammation is present at the onset and
progression of all neurodegenerative diseases involving cognitive defi-
cits, motor disturbance or both. The progressive deterioration of the
brain parenchyma due to the loss of homeostatic capacity, either during
ageing, trauma, or accumulation of toxic proteins or metabolites, leads
to the release of damage-associated molecular patterns that elicit an
inflammatory response. Far from solving the problem, this low-level but
persistent activation of the immune system also participates in brain
damage. Therefore, a new approach towards a brain protective therapy
must consider the restoration of homeostatic functions including con-
trol of undesirable inflammation. Although numerous studies have
addressed the use of anti-inflammatory therapy to alleviate neurode-
generation [1,2], the fact is that standard non-steroidal anti-in-
flammatory drugs, generally designed to stop acute inflammation, have
yielded mixed or inconclusive results [3-8].

In recent years, transcription factor NRF2 (Nuclear factor-erythroid
2-related factor 2) has been identified as a regulator of the extent and

duration of inflammatory responses [9-11]. While it is widely reported
that NRF2 regulates oxidant metabolism and several cytoprotective
responses, it is now being recognized that it also exerts immune reg-
ulatory functions by inducing the expression of anti-inflammatory
genes such as CD36, MARCO or IL17D [12-14] and repressing the ex-
pression of the pro-inflammatory genes IL6 and IL1f [15]. Additional
mechanisms involve the control of reactive oxygen species (ROS) levels,
which regulate the NF-xB response [16-18], or inhibition of the in-
filtration of immune cells through the control of VCAM and MMP9
expression [19-21].

The transcriptional activity of NRF2 declines with aging [22,23], in
parallel to the dysregulation of the immune response and progression of
neuropathological hallmarks [24,25]. In fact, a direct link between
NRF2 and neurodegeneration is now being recognized by the ob-
servation that functional haplotypes of the NRF2-coding gene
(NFE2L2), that result in higher NRF2 levels are associated with pro-
tection against PD [26] while other haplotypes that result in a slight
reduction in basal NRF2 protein levels are associated with increased
risk of suffering AD, ALS or PD [26-29]. Thus, in the case of AD, one
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haplotype allele of NFE2L2 was associated with 2 years earlier onset of
the disease [27]. The relevance of NRF2 in neuroprotection has been
analyzed mainly in transgenic mice developing amyloid beta plaques
[30,31] or tauopathy [10,32] but not both, which is actually the case of
the human pathology. These studies have only analyzed the cognitive
effects and not the motor deficits, which are a general hallmark of
tauopathies such as AD, Pick disease, progressive supranuclear palsy,
corticobasal degeneration, frontotemporal dementia, parkinsonism
linked to chromosome 17, etc.

The success of NRF2-targeted immune therapy has been demon-
strated in multiple sclerosis (MS). The fumaric acid ester dimethyl fu-
marate (DMF) exhibits anti-inflammatory and cytoprotective actions in
astrocytes by activating the NRF2-dependent production of glutathione
and activation of heme oxygenase-1 [33,34]. Although DMF has other
targets besides NRF2 [35], at least part of its beneficial effects are
channeled through activation of this transcription factor [36,37].

In this study we assessed the relevance of NRF2 in the inflammatory
response of a combined mouse model of amyloidopathy and tauopathy
that recapitulates cognitive and motor deficits similar to those found in
several neurodegenerative diseases including AD. We also used chronic
administration of DMF as a potential anti-inflammatory drug. Our re-
sults indicate that loss of NRF2 activity critically worsens the in-
flammatory response to proteinopathy by anticipating onset and wor-
sening progression of neuropathological cues.

2. Material and methods
2.1. Transgenic mice

Colonies of NRF2-KO mice and NRF2-WT littermates were estab-
lished from founders kindly provided by Dr. Masayuki Yamamoto
(Tohoku University Graduate School of Medicine, Sendai, Japan) [38].
APPY7'"! mice (FVB/N), expressing in heterozygosis hAPPgos isoform
with the V7171 mutation under the control of the Thyl promoter, were
crossed with C57/BL6j-NRF2-WT (APP-NRF2-WT) or C57/BL6j-NRF2-
KO (APP-NRF2-KO). Similarly, TAU?*°'" mice (FVB/N), expressing in
homozygosis the longest isoform of protein TAU with the P301L mu-
tation (TAU 4R/2N P301L) under control of the mouse Thyl gene
promoter, were crossed with C57/BL6j-NRF2-WT (TAU-NRF2-WT) or
C57/BL6j-NRF2-KO (TAU-NRF2-KO). APP/TAU-NRF2-WT (AT-NRF2-
WT) and APP/TAU-NRF2-KO (AT-NRF2-KO) in C57/BL6j background
were obtained by crossing the proper mice during more than eight
generations. Genotypic characterization of the APPY”'”! and TAUP3'*
transgenic mice was described previously [39,40]. Animals were
housed at room temperature under a 12h light-dark cycle. Food and
water was provided ad libitum. Animals were cared for according to a
protocol approved by the Ethical Committee for Research of the Au-
tonomous University of Madrid following institutional, Spanish and
European guidelines (Boletin Oficial del Estado (BOE) of 18 March
1988; and 86/609/EEC, 2003/65/EC European Council Directives).
Once the experimental schedule was completed, animals were an-
esthetized with 8 mg/kg ketamine and 1.2 mg/kg xylazine and perfused
with PBS. The brains were divided sagittally and the right hemispheres
were post-fixed in 4% paraformaldehyde for 16 h and cryoprotected by
soaking in 30% sucrose solution in phosphate buffer until they sank.
The left hemispheres were rapidly dissected and frozen for biochemical
analysis. Spinal cord samples for immunohistochemistry were obtained
from perfused animals with PBS followed by 4% paraformaldehyde.

2.2. Evaluation of motor alterations

A protocol for measurement of motor alterations was used to eval-
uate hind limb clasping, ledge, gait and kyphosis [41]. Each measure
was recorded on a scale of 0-3, with a combined total of 0-12 for all
four measures. This test was performed as double-blind.
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2.3. Novel object recognition test (NOR)

During the exploration phase, animals were placed into an empty
cage during 10 min. Following 24 h the animals were allowed to ex-
plore two identical objects during 8 min. During the test phase, 24 h
later, one of the objects was exchanged by a new object (different shape
and color) and memory was assessed for 6 min by comparing the time
spent exploring the novel object as compared with the time spent ex-
ploring the familiar object. The objects were cleaned thoroughly with
40% ethanol followed by distilled water between trials to remove ol-
factory cues. Active exploration was defined as direct sniffing or
whisking towards the objects or direct nose contact. Climbing over the
objects was not counted as exploration. The relative exploration was
quantified by normalizing the difference between the exploration time
of the novel (Tn) and familiar object (Tf) by the total time of explora-
tion (Ttot) to calculate the NOR discrimination index: NOR index
= (Tn-Tf)/Ttot.

2.4. Analysis of mRNA levels

Total RNA extraction, reverse transcription and quantitative PCR
were done as detailed elsewhere [9]. Primer sequences are shown in
Suppl. Table S1. To ensure that equal amounts of cDNA were added to
the PCR, the housekeeping genes ActB, Gapdh and Tbp were amplified.
Data analysis was based on the AACT method with normalization of the
average data of housekeeping genes. All PCRs were performed in tri-
plicate.

2.5. Immunoblotting

Immunoblots were performed as described in [42]. Primary anti-
bodies are reported in Suppl. Table S2. Membranes were analyzed using
the appropriate peroxidase-conjugated secondary antibodies. Proteins
were detected by enhanced chemiluminescence (GE Healthcare, Buck-
inghamshire, United Kingdom).

2.6. Immunohistochemistry and immunofluorescence

30 um-thick sections from fixed brains were immunostained as in-
dicated in [43]. For spinal cord immunohistochemistry, frozen 5 um-
thick spinal cord sections were stained with the adequate primary an-
tibodies. For immunohistochemistry, the sections were subsequently
incubated in 0.05% 30-30 diaminobenzidine tetrahydrochloride
(Sigma-Aldrich) in Tris-HCI buffer, pH 8.0 for 25 min, and then devel-
oped in the same buffer containing 0.003% hydrogen peroxide (Sigma-
Aldrich). The sections were mounted on gelatin-coated slides, air-dried,
and finally dehydrated in graded alcohols, cleared in xylene and cov-
erslipped. For immunofluorescence, the sections were incubated with
secondary antibodies Alexa-Fluor°*® or Alexa-Fluor*®®, Fluorescence
images were captured using appropriate filters in a Leica DMIRE2TCS
SP2 confocal microscope (Nussloch, Germany). The lasers used were Ar
488 nm for green fluorescence and Ar/HeNe 543 nm for red fluores-
cence.

2.7. Silver staining procedure

Sagittal series of 30-um-thick sections were stained with FD
Neurosilver TM kit II (FD Neurotecnologies, MD, USA) following
manufacturer's instructions. The sections were dehydrated in ethanol
and mounted in DePex (Thermo Fisher Scientific, MA, USA).

2.8. Image analysis and statistics
Calculation of p-values from ANOVA one-way followed by Newman-

Keuls post-hoc test, ANOVA two-way followed by Bonferroni post-hoc
test and Student's t-test was done with GraphPad Prism 5 software. A p
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value of < 0.05 was considered significant. Unless otherwise indicated,
all experiments were performed at least three times with similar results.
Values presented in the graphs are means of at least three samples.
Results are expressed as mean + SEM.

3. Results

3.1. NRF2-deficiency accelerates mouse death induced by the expression of
TAU P39IL gqnd APPY717!

The transgenic mice with neuronal expression of human hAPPY7*”!
and hTAU"*%'" proteins (for simplicity from now on denoted as AT)
were generated in C57/bl6 mice of wild type (AT-NRF2-WT) and Nrf2-
knockout (AT-NRF2-KO) backgrounds. Memory performance was ex-
amined according to a double-blind novel object recognition test (NOR)
in 6-months old animals. We observed an accelerated rate of cognitive
decline in AT-NRF2-KO mice compared to AT-NRF2-WT animals (Fig.
S1A). Moreover, AT-NRF2-KO mice exhibited a significant reduction in
Ngol, Osginl, Gstm1, Aox1 and Sqstml compared to age-matched AT-
NRF2-WT mice (Fig. S1B).

The tissue distribution of total hAPPY”*”! and hTAU"*°'" proteins
(Suppl. Figs. S2B and S3B) was similar in both genetic backgrounds and
affected neurons of the forebrain, including the isocortex (infragranular
layers V/VI of the entorhinal cortex, M1 and M2 motor cortex) and the
hippocampal formation (CAl, CA2, subiculum and hilum). In the
brainstem, hAPPY7'”! and hTAU?3°'" were localized in thalamus and
the vast majority of positive neurons and fibers were found in the re-
ticular formation of the bulb and pons, including the pyramid of the
pontine nuclei and spinal trigeminal nuclei. There were positive neu-
rons and fibers in cerebellum (deep cerebellum nuclei and granular
layer). The spinal cord showed positive neurons for hAPPY”*”! and
hTAUPOIL expression in the anterior horns. Despite the similar dis-
tribution of hAPPY7'”" and hTAU"**'" in both genotypes (Suppl. Fig.
S2C and S3C), we have previously reported that the AT-NRF2-KO mice
exhibit increased levels of toxic AB*56 and insoluble phospho-TAU
[43,44].

Kaplan-Meier survival curves indicated that the mean survival time
of AT-NRF2-WT mice was 14 months with some mice reaching 20
months. By contrast, 50% of AT-NRF2-KO mice died before the age of
12 months with hardly any survival at 14 months (Fig. 1A). These
differences were similar for males and females (Suppl. Fig. S4). This
premature death was associated with a rapid motor deterioration that
in a time-lapse of 4 weeks presented with progressive alterations in
ledge, clasping, gait and terminal kyphosis. Both mouse genotypes also
displayed abnormal clasping, with an abnormal simultaneous retraction
of both fore- and hind limbs (Fig. 1D). By the time that mice developed
kyphosis, a significant weight loss was observed and death came in less
than one week. Fig. 1B shows representative animals with spinal cord
deformity and rigid thoracolumbar kyphosis that led to imminent
death. X-ray analysis did not reveal any evidence of vertebral or limbs
deformity that could be attributed to bone degeneration (Fig. 1C). To
quantify the motor behavior of AT-NRF2-WT vs. AT-NRF2-KO mice, we
used a standard double blind sensory-motor test [41]. This test mea-
sured the severity of ledge, clasping, gait and kyphosis on a scale of 0-3
for each parameter, where 0 value reflected non-affection and 3 value
reflected high-affection. As shown in Fig. 1E, AT-NRF2-WT mice ex-
hibited a progressive worsening of the motor disturbance at 11, 12 and
13 months while AT-NRF2-KO mice already had maximal plateau va-
lues from 11 months until spontaneous death or euthanized for ethical
reasons. Therefore, while both genotypes revealed extensive parallelism
in the expression pattern of hAPPV7'”! and hTAUP*°!L, AT-NRF2-KO
mice presented accelerated appearance of the terminal motor pheno-
type.

At the cerebellum, Purkinje and GABAergic neurons as well as as-
troglia and microglia were not affected by the transgenes expression
(Suppl. Fig. S5). However, at the pontine reticular formation, FD
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Fig. 1. Death of the AT-mice occurs faster in the absence of NRF2. A, Kaplan-
Meier curves of AT-NRF2-WT (n = 269) and AT-NRF2-KO (n = 209) over 3
years of observation. Statistical analysis was performed and a value of
***p < 0.001 was obtained comparing AT-NRF2-WT and AT-NRF2-KO curves.
B, pictures from the indicated genotypes illustrating terminal postures. C, X-ray
images of mice from the indicated genotypes showing the spinal deformity
termed kyphosis. D, representative images of the clasping behavior of wild type
and AT-mice when hanging from the tail. E, average score of the motor test
performed in which we analyzed ledge, clasping, gait and kyphosis. We tested
AT-NRF2-WT and AT-NRF2-KO animals at the indicated ages. Statistical ana-
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Ny

—

o

Average motor score

0

1 12 >13
Time (months)

Neurosilver staining evidenced the presence of degenerating fibers
(Fig. 2A) in both AT-NRF2-WT and AT-NRF2-KO mice but the number
of neurons with arginophilic inclusions was higher in the AT-NRF2-KO
mice (Fig. 2B). Taken together, these results suggest that the brainstem
neuronal circuits that control motor activity are the most vulnerable to
APP/TAU overexpression and that this toxic effect is exacerbated in the
absence of NRF2.

3.2. NRF2 modulates brain glial and inflammatory responses

Based on the Kaplan-Meier survival curves and the motor alterations
described above, we took the age of 11 months as the most dis-
criminating time window to compare pathophenotypes of AT-NRF2-WT
and AT-NRF2-KO mice. We examined astrogliosis in hippocampi with
antibodies  against glial fibrillar acidic protein = (GFAP).
Immunofluorescence staining of CAl layer and subiculum demon-
strated activated astrocytes in both genotypes, as determined by mor-
phology of thick cell bodies and small cytoplasmic branches.
Abolishment of NRF2 expression did not change the levels of GFAP
immunostaining or mRNA in hippocampus (Fig. 3A and C). These re-
sults are in accordance with no significant loss of neurons at this region
in either AT-NRF2-KO or AT-NRF2-WT mice. Next, we analyzed mi-
croglial activation in hippocampi of these mice with antibodies against
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Fig. 2. Neurodegeneration in the brainstem was exacerbated in the absence of
NRF2. A and B, silver staining of sagittal brain sections from 11-months old
mice of the indicated genotypes. Pictures show dystrophic neurites (A) and
neurons with arginophilic inclusions (B) in the pontine reticular formation. C,
quantification of the number of positive neurons with arginophilic inclusions
from B. Data are mean = SEM (n = 3). Statistical analysis was performed with
Student's t-test. *p < 0.05, comparing AT-NRF2-KO vs. AT-NRF2-WT groups.

CD11b. We found a mild increase in the number of CD11b positive
microglial cells in AT-NRF2-KO compared with AT-NRF2-WT mice
(Fig. 3B and D). This change was quantified by qRT-PCR evidencing a
modest but significant increase in CD11b mRNA levels (Fig. 3B). We
also found higher mRNA levels of the pro-inflammatory markers, IL6
and NOS2 in AT-NRF2-KO vs. age-matched AT-NRF2-WT mice
(Fig. 3E).

Glial activation was also evaluated in the brainstem (Fig. 4) with
anti-GFAP or anti-IBA1 antibodies. GFAP and IBA1 staining was in-
creased in the AT-NRF2-KO mice in both locations (Fig. 4A). These
results were further confirmed in immunoblots from AT-NRF2-WT and
AT-NRF2-KO brainstem lysates (Fig. 4B). GFAP and IBA1 levels were
about two-fold higher in the AT-NRF2-KO mice compared with age-
matched AT-NRF2-WT mice in brainstem samples (Fig. 4C). Similar
experiments were conducted to analyze astroglial and microglial acti-
vation in spinal cord (Fig. 5). In accordance with the results showed in
Fig. 1, macroscopic analysis of the spinal cord dissected from AT-NRF2-
KO mice evidenced higher torsion angle compared with AT-NRF2-WT.
In line with the results obtained in brainstem, NRF2-deficiency led to
increased staining of GFAP and IBA1 in white and grey matter of the
spinal cord (Fig. 5A). Then, we confirmed these observations in im-
munoblots from AT-NRF2-WT and AT-NRF2-KO spinal cords samples.
The protein levels of GFAP and IBA1 were slightly increased in the AT-
NRF2-KO compared with AT-NRF2-WT mice (Fig. 5B and C). These
results suggest that NRF2-deficiency exacerbates glial activation in
these locations.
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3.3. DMF reduces motor alteration and improves memory

Our next goal was to evaluate whether NRF2 activation with di-
methyl fumarate (DMF) could modulate the pathological outcomes
triggered by APP and TAU expression. In a previous study we already
established the conditions of DMF administration by oral gavage and
demonstrated that it reaches the brain and activates the NRF2 tran-
scriptional signature in this organ [45]. As shown in Suppl. Fig. S6A, 9
months-old AT-NRF2-WT mice were treated by oral gavage with vehicle
or DMF (100 mg/kg) once every two days for six weeks. This age was
chosen because motor alterations and cognitive deficits were still ab-
sent. During the whole time of treatment, we did not detect changes in
weight that would be attributed to feeding problems after oral gavage
(Suppl. Fig. S6B). Five days after the first administration, animals were
weighted and submitted to double-blind motor and novel object re-
cognition (NOR) tests to obtain baseline values of memory. This pro-
tocol was repeated once every two weeks. As shown in Fig. 6A, mRNA
levels of NRF2-target genes were analyzed by qRT-PCR. We found a
statistically significant increase in the expression of Nrf2, Nqo1, Osginl,
and Gstm1 in the brain, in agreement with NRF2-activation by DMF.
Next, we evaluated astrocytosis and microgliosis employing GFAP and
IBA1 antibodies, respectively. As shown in Fig. 6B, DMF ameliorated
the levels of GFAP positive cells in hippocampus and in brainstem in-
dicating preservation of the neural tissue. Similarly, microgliosis was
also reduced in both regions of the DMF-treated mice (Fig. 6C). More-
over, in response to DMF we found a downward trend in the protein
levels of the pro-inflammatory mediators COX2 and NOS2, as well as
the gliosis markers GFAP, IBA1 and MHCII (Fig. 6D and E). The average
motor score slightly increased over the duration of the experiment in
the vehicle treated mice but remained unchanged in the DMF-treated
group, suggesting that NRF2 activation attenuates the progression of
the motor alterations (Fig. 6F). In parallel, we analyzed the mice ability
to discriminate a novel object in the environment. The discrimination
index of the DMF-treated group raised 2.5-3-fold compared with the
value of the vehicle-treated group, indicating a tendency to better
memory function in parallel to NRF2 activation (Fig. 6G). Although, the
differences achieved in both tests were modest, the tendency was sta-
tistically significant at 2-weeks. Taken together, these results indicate
that NRF2 activation by DMF alleviates brain inflammation as well as
motor and cognitive disability triggered by hAPPY”*”" and hTAUP*°'"
expression.

4. Discussion

In the present study, we used a new mouse model of combined
amyloidopathy and tauopathy to analyze the effect of NRF2 on neu-
roinflammation, which is a crucial pathological hallmark of neurode-
generative diseases such as AD. In a previous study, we employed these
mice to characterize the effect of NRF2-deficiency in autophagy and
several pathophenotypes associated with AD [43,44]. Here we describe
the effect of NRF2-deficiency on motor and cognitive deficits, as well as
gliosis and neuroinflammation.

Motor alterations were produced mainly in response to tauopathy,
since they were detected even in transgenic mice expressing only the
hTAUP2%!! protein (data not shown and [46,47]). Motor deficits are
common in human tauopathies such as AD, Pick disease, progressive
supranuclear palsy, corticobasal degeneration, frontotemporal de-
mentia and parkinsonism linked to chromosome 17, spinocerebellar
ataxia type 11, etc. Regarding amyloidopathy, an analysis of five Han
Chinese EOFAD families with the APPY7*”" mutation exhibited clinical
symptoms of cerebellar ataxia. Mutations in presenilin 1 have also been
associated with cerebellum alterations and movement disorders
[48,49]. However, although we detected a modest expression of APP
and TAU protein in cerebellar regions, we did not appreciate any al-
teration in Purkinje, GABAergic or glial cells that could explain motor
disturbance (Supl. Fig. S5). Most likely, motor alterations were related
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Fig. 3. Gliosis is exacerbated by NRF2 deficiency in hippo-
campi of AT-NRF2-KO mice. A and B, brain sections from 11-
months old AT-NRF2-WT and AT-NRF2-KO mice were stained
with GFAP or CD11b, respectively. Pictures show CAl and
subiculum regions of the hippocampus. C and E, mRNA levels
determined by qRT-PCR of the indicated genes normalized to
the expression of ActB. Data are mean = SEM (n = 4).
Statistical analysis was performed with Student's t-test.
*p < 0.05, comparing AT-NRF2-KO vs. AT-NRF2-WT mice.
D, number of CD11b-positive microglial cells in CA1l and
subiculum of the indicated genotypes. Data are mean + SEM
(n = 3) represented as % of the total number of cells.
Statistical analysis was performed with Student's t-test.
*p < 0.05, comparing AT-NRF2-KO vs. AT-NRF2-WT mice.
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described here [50-52]. However, our C57/Bl6 mice lived several
months longer than the Swiss/3T3 mice, thus suggesting strain specific
properties. Independent studies have correlated the motor deficits ob-
served in AT-mice with TAUP*'" overexpression [46,47] as well as
with redox imbalance [53]. Our observations extended the impact,
because we directly connected TAU pathology with redox, in-
flammatory and proteostasis stress through NRF2-deficiency.

Fig. 4. Increased glial activation in the brain-
stem of AT-NRF2-KO mice. A, immunostaining

pontine reticular
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with anti-GFAP and anti-IBA1 in sagittal sec-
tions of the pontine reticular formation of the
brainstem in the indicated genotypes. B, im-
munoblot analysis of GFAP and IBA1 levels in
brainstem and spinal cord homogenates from
11-month old AT-NRF2-WT and AT-NRF2-KO
mice. Protein levels of GAPDH were analyzed
to ensure similar load per lane. C, densito-
metric quantification of representative blots

AT-NRF2-WT from B. Data are mean = SEM (n = 3).
AT-NRF2-KO Statistical analysis was performed with
* Student's t-test. *p < 0.05, comparing AT-

NRF2-KO vs. AT-NRF2-WT mice.
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Fig. 5. Glial activation in the spinal cord of AT-NRF2-WT and
AT-NRF2-KO mice. A, immunostaining with anti-GFAP or
anti-IBA1 in sagittal sections of the spinal cord in the indicated
genotypes. Pictures show white (a) and grey (b) matter of the
anterior horn. Spinal cord sections were counterstained with
hematoxylin. B, immunoblot analysis of GFAP and IBA1 levels
in spinal cord homogenates from 11-month old AT-NRF2-WT
and AT-NRF2-KO mice. Protein levels of GAPDH were ana-
lyzed to ensure similar load per lane. C, densitometric quan-
tification of representative blots from B. Data are
mean + SEM (n = 3). Statistical analysis was performed with
t-Student test.
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The anatomopathological and clinical phenotype of terminal AT-
NRF2-KO mice could not be distinguished from terminal AT-NRF2-WT
mice. However, the pathology spread over a narrower age-window
when NRF2 was absent: 12 months in AT-NRF2-KO mice as opposed to
14 months in AT-NRF2-WT mice. The AT-NRF2-KO mice recapitulate
the main AD hallmarks including loss of redoxtasis and proteostasis
[31,32,43,44] and, as described here, the presence of neuroinflamma-
tion. Our previous results strongly support that NRF2-deficiency mimics
transcriptomic features found in AD brains [44]. It is therefore rea-
sonable to speculate that neurons should be more susceptible to APP
and TAU toxicity in the NRF2-deficient than in the wild type back-
ground. Indeed, AT-NRF2-KO mice exhibited more damaged neurons in
brainstem, exacerbated cognitive [44] and motor impairments, and
premature death.

Experimental and clinical evidence suggests that DMF plays a pro-
minent role in targeting brain inflammation mainly through NRF2 ac-
tivation [35,54-56]. Accordingly, we detected induction of NRF2, a
reduction of inflammatory markers and improvement of motor and
memory cues in the brain of 9-month old AT-NRF2-WT mice treated
with DMF. These results are in line with protective functions reported in
diverse models of neurodegenerative diseases and its effects in pre-
vention of spatial memory impairment and hippocampal neurodegen-
eration mediated by intracerebroventricular injection of streptozotocin
in rats [57]. From the immunomodulatory point of view, additional
mechanisms independent of NRF2 have been proposed to explain the
therapeutic value of DMF [35,58]. We did not test NRF2-independent

IBA1

effects of DMF in the AT-NRF2-KO mice since as indicated in Suppl. Fig.
S4 they exhibit high mortality during the time of experimentation.
However, the fact that the DMF targeted the NRF2 transcriptional sig-
nature in the brain together with the established evidence of the im-
munomodulatory signals, points towards NRF2-dependent beneficial
effects of DMF. Future clinical work will be needed to definitely de-
termine if pharmacological activation of NRF2 may be a valid strategy
to ameliorate neurodegeneration but surely DMF will be a suitable
candidate because it is the only FDA- and EAE-approved NRF2 acti-
vator.

5. Conclusion

We have developed a new mouse model that combines amyloido-
pathy and tauopathy with deficiency in the master regulator of
homeostatic responses, the transcription factor NRF2. The study de-
monstrates that low-grade chronic neuroinflammation is a driver of
neurodegeneration, and not just a consequence, since an antioxidant
modulator of inflammation, DMF, which targets NRF2, protected from
disease progression. The fact that DMF is already in clinical use for
multiple sclerosis provides a rationale for repurposing this drug in AD.
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Fig. 6. DMF improves memory and motor deficits in AT-NRF2-WT mice. 9-month old AT-NRF2-WT mice received intragastric doses of vehicle (n = 10) or DMF
(100 mg/kg, n = 10) once every two days during six weeks. A, QRT-PCR determination of brain mRNA levels of the NRF2-regulated genes Nrf2, Nqo1, Osginl, and
Gstm1 normalized by the average of Actb, Tbp and Gapdh. Data are mean = SEM (n = 4). Statistical analysis was performed with Student's t-test. **p < 0.01 and
*p < 0.05, comparing DMF vs. vehicle treated mice. B and C, immunostaining with anti-GFAP (B) and anti-IBA1 (C) in sagittal brain sections of the indicated groups.
Pictures show CA1 and subiculum of the hippocampus as well as the pontine reticular formation of the brainstem. D, immunoblot analysis of the indicated protein
levels in brain homogenates from vehicle- or DMF-treated mice. Protein levels of ACTB were analyzed to ensure similar load per lane. E, densitometric quantification
of representative blots from D. Data are mean + SEM (n = 3). Statistical analysis was performed with Student's t-test. ** < 0.01 and *p < 0.05, comparing DMF vs.
vehicle treated mice. F, average score of the motor test performed in which we analyzed ledge, clasping, gait and kyphosis at the indicated times. Statistical analysis
was performed with two-way ANOVA followed by Bonferroni post-hoc test. *p < 0.05, comparing DMF vs. vehicle treated mice. G, discrimination index obtained in
the novel object recognition task (total time spent with new object/total time of object exploration) by the two experimental groups. Statistical analysis was
performed with two-way ANOVA followed by Bonferroni post-hoc test. *p < 0.05, comparing DMF vs. vehicle treated mice.
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