
Short-Term Transcriptional Response of Microbial
Communities to Nitrogen Fertilization in a Pine Forest Soil

Michaeline B. N. Albright,a Renee Johansen,a Deanna Lopez,a La Verne Gallegos-Graves,a Blaire Steven,b Cheryl R. Kuske,a

John Dunbara

aBioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
bDepartment of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven,
Connecticut, USA

ABSTRACT Numerous studies have examined the long-term effect of experimen-
tal nitrogen (N) deposition in terrestrial ecosystems; however, N-specific mecha-
nistic markers are difficult to disentangle from responses to other environmental
changes. The strongest picture of N-responsive mechanistic markers is likely to
arise from measurements over a short (hours to days) time scale immediately af-
ter inorganic N deposition. Therefore, we assessed the short-term (3-day) tran-
scriptional response of microbial communities in two soil strata from a pine for-
est to a high dose of N fertilization (ca. 1 mg/g of soil material) in laboratory
microcosms. We hypothesized that N fertilization would repress the expression
of fungal and bacterial genes linked to N mining from plant litter. However, de-
spite N suppression of microbial respiration, the most pronounced differences in
functional gene expression were between strata rather than in response to the N
addition. Overall, �4% of metabolic genes changed in expression with N addi-
tion, while three times as many (�12%) were significantly different across the
different soil strata in the microcosms. In particular, we found little evidence of
N changing expression levels of metabolic genes associated with complex carbo-
hydrate degradation (CAZymes) or inorganic N utilization. This suggests that di-
rect N repression of microbial functional gene expression is not the principle
mechanism for reduced soil respiration immediately after N deposition. Instead,
changes in expression with N addition occurred primarily in general cell mainte-
nance areas, for example, in ribosome-related transcripts. Transcriptional changes
in functional gene abundance in response to N addition observed in longer-term
field studies likely result from changes in microbial composition.

IMPORTANCE Ecosystems are receiving increased nitrogen (N) from anthropogenic
sources, including fertilizers and emissions from factories and automobiles. High lev-
els of N change ecosystem functioning. For example, high inorganic N decreases the
microbial decomposition of plant litter, potentially reducing nutrient recycling for
plant growth. Understanding how N regulates microbial decomposition can improve
the prediction of ecosystem functioning over extended time scales. We found little
support for the conventional view that high N supply represses the expression of
genes involved in decomposition or alters the expression of bacterial genes for inor-
ganic N cycling. Instead, our study of pine forest soil 3 days after N addition showed
changes in microbial gene expression related to cell maintenance and stress re-
sponse. This highlights the challenge of establishing predictive links between micro-
bial gene expression levels and measures of ecosystem function.
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Most nitrogen (N) in microbial cells comes from organic material, and harvesting
this N requires breaking down complex polymers (1). Due to a low availability in

soils, inorganic forms of N, such as ammonium (NH4
�) or nitrate (NO3

�), only account
for a small proportion of total N assimilated by microbial cells. Thus, organic N mining
plays an important role in the decomposition process and is a key link between the
carbon (C) and N cycles. In recent years, terrestrial ecosystems have received more
inorganic N from anthropogenic sources, including fertilizers and emissions from
factories and automobiles—a phenomenon called N deposition (2, 3). In the past
century, N deposition has increased 3- to 5-fold globally and up to 100-fold locally, now
exceeding natural N deposition (2–4). Coupled C and N cycles in soils represent a major
path for nutrient cycling in terrestrial ecosystems. Additional N should alter this cycle,
but it is not yet known how this will happen or whether it will be positive or negative
for C or N sequestration. Given the potential impact of N deposition on coupled C and
N cycles, quantifying the effects and deciphering the underlying mechanisms of N
amendment can improve the predictions of ecosystem behavior as N deposition
continues to increase.

Numerous studies have examined the long-term effect of experimental N deposition
in terrestrial ecosystems. Over a decadal time frame, N deposition tends to increase
ecosystem productivity and reduce soil respiration; however, responses vary across
ecosystems (5–9). One mechanism underpinning reduced respiration involves the
decreased activity of Basidiomycota fungi. In pine forests, when N supply increases,
plants are believed to reduce sugar allocation to basidiomycete symbionts, resulting in
lower basidiomycete growth and decomposition of plant litter (5). Another mechanism
involves the direct repression of transcription of fungal genes involved in litter catalysis.
The repression of fungal gene expression under N fertilization has been demonstrated
with pure cultures, including those of Saccharomyces, Phanerochaete, Aspergillus, and
Neurospora (10–13). Likewise, lower transcript abundances for some litter decomposi-
tion genes and lower C-cycling enzyme activities have been measured in at least two
long-term field studies of N fertilization (14–17). In contrast, other long-term field
experiments found no evidence of changes in mechanistic gene markers (18, 19).
N-specific mechanistic markers in long-term studies are difficult to disentangle from
responses to other environmental changes that typically occur under N fertilization,
such as changes in soil chemistry and plant activity (20).

The clearest picture of N-responsive mechanistic markers is likely to arise from
measurements over a short (hours to days) time scale immediately after the deposition
of inorganic N. Inorganic N addition to soils, whether through atmospheric deposition
during rain events or through fertilizer application, occurs primarily in sporadic pulse
events that are rapidly processed (21–23). Short-term N tracer experiments have shown
that microbes absorb �50% of inorganic N during the first few days following N
addition (24–27), and soil respiration is reduced within days of N application (28),
indicating an immediate functional response.

To test the hypothesis that N fertilization represses the initial expression of fungal
and bacterial genes linked to N mining from plant litter, we performed a soil meta-
transcriptome study in laboratory microcosms. We examined the short-term (3-day)
transcriptional response of pine forest microbial communities in two soil strata to a
high dose of N fertilization (ca. 1 mg/g of soil material). A previous field study of the
same pine forest found that long-term N fertilization had a significant effect on fungal
community composition and function in these two strata (29–31). In both strata,
long-term N fertilization led to altered community composition, reduced extracellular
enzyme activity, and altered abundance of some N cycling genes (29–31). Given these
findings, we expected that dramatic changes in community gene expression would be
apparent immediately after an N deposition event.

RESULTS
Short-term water and N addition alter respiration. Cumulative respiration at 64

h differed by stratum (t test; P � 0.0003), with higher respiration in the litter layer (LL)
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than in the O horizon (OH) (Fig. 1). The two strata differed in their soil chemistries (see
Table S1 in the supplemental material), as expected from a previous characterization of
soil horizons at the Duke experimental forest site (29). Water addition stimulated
respiration in both the LL and the OH (t test; P � 0.0005 and P � 0.003, respectively),
while N addition suppressed respiration in both the LL and the OH (t test; P � 0.0004
and P � 0.07, respectively). At 64 h, microcosms with added water and N released 27%
and 25% less cumulative CO2 in the LL and OH, respectively, than microcosms with
added water only (compare circles to respective triangles in Fig. 1).

Stratum-specific taxonomic composition of microbial communities. Gene ex-
pression levels were higher in the OH stratum (104 � 96 ng/�l RNA per g of soil) than
in the LL (45 � 28 ng/�l RNA per g of soil) across all treatments. As found with previous
field studies at this site (29), the LL samples were dominated by fungal rRNAs (62%),
while the O horizon was dominated by bacterial rRNAs (81%) (Fig. 2A). We saw
significant differences in family level taxonomic composition for bacteria and fungi
between the two strata (permutational multivariate analysis of variance [PERMANOVA];
P � 0.001) (Fig. 3A). Differences in taxonomic compositions between the two strata
were driven by many taxa; 30% of the differences could be attributed to changes in the
relative abundances of eight families, including both fungi (Helotiaceae [Helotiales],
Pluteaceae [Agaricales], Paraglomeraceae [Pezizales], Mortierellaceae [Mucorales], Py-
ronemataceae [Pezizales]) and bacteria (Solibacteraceae [Solibacterales], Acidobacteri-
aceae [Acidobacteriales], Bradyrhizobiaceae [Rhizobiales]) (SIMPER analysis).

No significant taxonomic changes in either the fungal or bacterial communities were
detected in response to N fertilization. Samples were clustered by a location-by-
treatment interaction, but this was not significant, likely due to insufficient statistical
power. This is in contrast with field data looking at the effects of long-term N addition
on microbial communities at the Duke site, where fungal community richness increased
in response to N amendment (29, 32) and the relative abundance of Basidiomycota
decreased (29, 32).

We sequenced DNA/RNA coextractions for a number of LL strata samples to
compare the “seedbank” (metagenomes) versus “active” (metatranscriptomes) func-
tional and taxonomic compositions. The LL metatranscriptomes were dominated by
fungal reads (60%), whereas fungal reads in the LL metagenomes accounted for only
1% (Fig. 2A). This highlights a shortfall of using metagenomic data to assess the
performance and activity of soil microbial communities, particularly where fungi play an
important role. In metagenomics data, sequenced reads that are assignable to an
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FIG 1 Amount of CO2 produced in microcosms over 64 h. Microcosms are grouped by the two strata,
including litter layer and O horizon, and three treatments, including control, water addition, and water
and nitrogen addition. Each strata-by-treatment group is represented by four replicates.
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organism or Pfam are primarily bacterial. Increases in the number and diversity of
fungal genomes being sequenced may improve this in the near future. However, the
abundant fungi and bacteria were similar between the metagenomes and metatran-
scriptomes (Fig. 2B and C).

Stratum-specific functional composition of microbial communities. Functional
annotations were performed using several different databases to achieve a broad
overview of metabolic functions and to focus on specific functional categories of
interest, namely, N and C cycling (carbohydrate-active enzymes [CAZymes]). As with
taxonomy, at a broad level (KEGG functional level 2), the most abundant functions were

FIG 2 Relative abundances of taxonomic groups across the different sample averaged across replicates (n � 4).
Compositions are shown for fungi, bacteria, and archaea (A), fungi (order level) (B), and bacteria and archaea (order level)
(C). Sample types include metatranscriptome (MT) data from the two strata, litter layer (LL; yellow highlight) and O horizon
(OH; peach highlight), initial samples taken at 0 h (initial), and final samples taken at 64 h (control, water addition [�H2O],
water and nitrogen addition [�H2O�N]). Composition of metagenomic (MG) samples was also assessed for �H2O and
�H2O�N samples in the LL.
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similar across metatranscriptomes (Fig. 4). At higher levels of annotation resolution, as
with taxonomic composition, functional compositions differed by stratum, whether
annotations were performed through KEGG (function) or Pfam (PERMANOVA; strata,
P � 0.005 and P � 0.001, respectively) (Fig. 3B). Focusing on individual genes, across
all metabolic genes (annotated using the Pfam database), 1,139 of 9,479 were signifi-
cantly different by stratum, where 98% were higher in the OH than the LL. Only 354 of
9,479 differed significantly with N addition, where 19% of these were upregulated with
N addition. Significant differences were observed in only 8/291 (3%) of KEGG level 3
pathways. Half (n � 4) of these KEGG pathways that differed by treatment were related
to carbohydrate metabolism (discussed below). The other four pathways were related
to the regulation of gene expression (pathway [path]: ko00270), RNA degradation (path:
ko03018), base excision repair (path: ko03410), and phenylpropanoid biosynthesis
(path: ko00940) (see Fig. S1). Abundances were highest in the RNA degradation
pathway, where N and water addition increased RNA degradation expression levels
relative to only water addition.

Significant differences in functional compositions between the metatranscriptomes
and metagenomes (PERMANOVA; P � 0.001) were identified. The profiles of KEGG level
2 categories were different between the metatranscriptomes (n � 7) and metagenomes
(n � 2). For example, amino acid metabolism and membrane transport were higher in
the metagenomes than in the metatranscriptomes, and folding, sorting, and degrada-
tion categories were lower (SIMPER analysis) (Fig. 4).

Carbohydrate metabolism response to stratum and N addition. Location had a
significant effect on the abundance of genes expressed in carbohydrate metabolism
pathways, including glycolysis/gluconeogenesis, citrate cycle, fructose and mannose
metabolism, starch and sucrose metabolism, and amino sugar and nucleotide sugar
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FIG 3 Nonmetric multidimensional scaling (NMDS) ordinations showing transcriptional expression variability in
microbial community composition (RefSeq) (A), metabolic genes (Pfam) (B), and carbohydrate-active enzymes
(CAZymes) (C). Dissimilarity matrices were calculated using the Bray-Curtis metric.
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metabolism. In all cases, gene expression was higher in the LL than in the OH and
paralleled the fungal biomass (29). A significant treatment effect was found for carbo-
hydrate metabolism, where the expression of three pathways increased and the
expression of one pathway decreased under N addition. The upregulated pathways
were glycolysis/gluconeogenesis, the citrate cycle, and glyoxylate and dicarboxylate
metabolism; the downregulated pathway was C5-branched dibasic acid metabolism
(Fig. S1). Finally, there was a significant treatment-by-location interactive effect for
propanoate metabolism and C5-branched dibasic acid metabolism.

Stratum-specific carbon cycling (CAZymes). As with overall function, stratum had
a significant effect on the CAZyme composition (PERMANOVA, P � 0.001) (Fig. 3C), but
there was no effect of treatment and no location-by-treatment interaction. Twenty-five
individual CAZymes (13% of the total detected CAZymes) were more abundant in the
OH than in the LL, while only CBM52 (eukaryotic �-1,3-glucanase) was more abundant
in the LL (Fig. S1). Furthermore, CBM52 and CE14 (bacterial enzymes) increased while
CBM3 (cellulose binding, bacterial) decreased significantly with N addition in both
horizons (see Fig. S2). For another subset of CAZymes, we saw a treatment-by-location
interactive effect (see Fig. S3). For this subset, N addition decreased the expression in
the LL microcosms but increased the expression in the OH microcosms. Lastly, a
comparison of metatranscriptomes from the initial sampling time showed significantly
higher expression levels in the OH than in the LL for 44% of the CAZymes. This set of
CAZymes included those known to be present only in fungi, those known to be present
only in bacteria, and those known to be present in both bacteria and fungi (see Fig. S4).

Low abundances of N cycling genes. Inorganic N metabolism gene expression
(e.g., genes nifH, napA, nosZ, and amoB) did not change significantly in response to N
addition. Overall, N cycling gene abundances were very low across all metatranscrip-
tomes, averaging 108 raw annotated N metabolism sequences per metatranscriptome
across 43 genes, which was only approximately 0.1% of the annotated functional genes
(see Table S2). The average number of N metabolism reads was much lower in the LL
(28) than in the OH (213).

FIG 4 Relative abundances of functional groups (KEGG level 2) across the different samples averaged across replicates (n � 4). Sample
types include metatranscriptome (MG) data from the two strata, litter layer (LL) and O horizon (OH). Initial samples were taken at 0 h
(initial) and final samples at 64 h (control, water addition [�H2O], water and nitrogen addition [�H2O�N]). Compositions of metagenomic
(MG) samples were also assessed for �H2O and �H2O�N samples in the LL.
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When comparing our subset of metatranscriptomes across strata and N treatment,
in several cases we saw an increased abundance of N cycle genes in the OH relative to
that in the LL, which is probably due to increases in bacterial relative to fungal
sequences. This was the case whether the data were annotated with KEGG N metab-
olism pathways within the MG-RAST platform or through the Pfam database. We saw
a significant increase in norB, nosZ, and napG in the OH compared to the LL (Fig. S6A).
Furthermore, we saw a significant increase in archaeal AmoA and glutamine synthase
expression in the OH compared to that in the LL (Pfam) (see Fig. S6B). We also did not
observe any location-by-treatment effects with the Pfam or KEGG N cycle gene analysis.
Also of note, for N cycling metabolism, the average number of raw reads in the LL
metagenomes was 4,770, two orders of magnitude larger than the average number of
raw reads in the LL metatranscriptomes (n � 28).

Metatranscriptome assembly. The OH assembly was more successful than the LL
assembly. The number of contigs �1,000 bp was 3,743 for the LL and 32,561 for the OH.
As such, in the LL horizon differential analysis did not distinguish any significant
differences between water addition (plus H2O) and the water and N addition (plus H2O
plus N) treatments. In the OH horizon, 918 contigs were more abundantly expressed in
the plus H2O plus N treatment than in the plus H2O treatment. However, 80% (731) of
these could not be assigned a functional annotation in SEED. Of the contigs assigned
a functional annotation, most were broadly categorized as protein metabolism (33),
stress response (34), membrane transport (35), or RNA metabolism (23). Further analysis
of assembled data was discontinued due to low assembly and annotation success.

DISCUSSION

A large body of field research suggests that an elevated supply of inorganic N
should repress the expression of microbial genes linked to N mining of plant litter (8,
16, 36–38). Here, the goal was to identify N-deposition-linked molecular markers to
improve the monitoring of N responses in more complex settings. Despite obvious N
suppression of microbial respiration, we found little evidence of N changing the
expression levels of metabolic genes and, in particular, of genes associated with
carbohydrate degradation or inorganic nitrogen utilization (Fig. 1). The absence of a
strong transcriptional N response is striking because it failed to occur under simplified
and controlled conditions, a 64-h microcosm soil decomposition time course, where
microbial community activity should be near maximal (39), and responses were unob-
scured by other environmental variables.

Stratum-specific responses. The most pronounced differences in functional gene
expression were between strata rather than in response to N addition. Overall, �4% of
functional genes changed in expression with N addition, while three times as many
(�12%) were significantly different across the different soil strata in the microcosms.
This is congruent with field studies focused on responses to N addition across different
soil horizons at the Duke Forest experimental field site (29, 32). As found in previous
studies, microbial activity in the LL was dominated by fungi, while the OH was
dominated by bacteria. In the field, the LL and OH strata differed in responses to N
input, where the response was highest in the LL (29, 32). Furthermore, in both our
microcosm study and field studies, interactive effects were observed between N
addition and stratum, where gene expression increased in one horizon and decreased
in the other horizon in response to N addition. Both horizons are shallow and well
within the depth realm of standard sampling assays. Respired CO2 from both these
horizons will contribute to atmospheric climate feedbacks.

In microcosms, the gene expression levels were overwhelmingly higher in the OH
stratum across all treatments. Twenty-two percent of the CAZymes, including those
known to be present in bacteria, fungi, and both domains, were higher in OH, where
respiration was consistently lower. Furthermore, when differences in functional genes
between the two strata were observed, this was primarily (98% of cases) due to
increases in transcript expression in the OH. Differences between strata are likely due
to the combined effects of soil chemistry and microbial community composition
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differences. For example, the OH may have more readily available substrates to
metabolize, or the OH subsurface microbial community may be more stable than the
surface LL community. In either case, this might provide the OH community with the
opportunity for more rapid growth under “ideal” lab conditions.

Weak transcriptional response to N addition. Although we expected that N
fertilization would repress the initial expression of fungal and bacterial genes linked to
N mining from plant litter, the observed transcriptional response to N addition was
extremely weak. Few CAZyme marker genes displayed a coherent response to N
addition. This contrasted with long-term N addition field studies that have documented
changes in CAZyme expression in N-amended versus ambient plots (29, 30, 32) and
suggests that changes in CAZyme profiles in these field studies are likely indirectly
related to N addition. N metabolism is an essential component of cellular metabolism
and is intimately associated with C uptake and cycling; thus, it is reasonable to assume
that C decomposition enzymes are affected by changes in inorganic N content. These
changes in metabolic expression may be linked to long-term changes in community
composition through selection processes and/or changes in soil chemistry related to N
addition. Thus, the relationship between short-term biogeochemical pulses and micro-
bial community patterns, such as those observed in gene presence and abundance,
remains obscure.

While few CAZymes responded directly to N addition, a number of central carbo-
hydrate metabolism pathways were upregulated. This suggests that instead of complex
carbohydrates, initial N addition stimulated the more rapid use of simple sugars. Thus,
in the short-term, N addition may change the carbon use efficiency (CUE), increasing
the fraction of carbon allocated to growth while decreasing the fraction respired as CO2

(40).
No N cycle marker gene expression changed in response to N addition. However, the

low abundance of metatranscriptomic reads (for many genes there were zero mapped
reads) for common N cycling marker genes in all samples prevented a robust compar-
ison between treatments (see Table S2 in the supplemental material). N cycle marker
gene reads were approximately 150-fold lower in metatranscriptomes than in meta-
genomes. This was contrary to our expectation that we would observe more N cycle
genes in metatranscriptomes than in metagenomes, because metatranscriptomes are
an enriched subset of all the genes present in metagenomes.

The lack of a response in N cycle marker genes to N addition in the microcosm
experiment may be explained a number of different ways. Since N availability varies
widely in time and space, most bacteria tightly control N acquisition through the
assimilation of ammonia or other sources (41). Furthermore, bacteria constantly mon-
itor intracellular N status. Thus, a response to changes in environmental N may
sometimes involve other regulatory phenomena instead of gene expression changes
for N cycling enzymes (13, 35, 42). The regulation of N metabolism across bacteria and
archaea is incredibly diverse. For example, six genes encoding different transcriptional
regulators (GlnR, TnRA, NitR, GlnRII, AmtR, and NtrC) are key in nitrogen regulation
across six commonly studied bacterial families (Bacillales, Lactobacillales, Clostridiales,
Streptomycetes, Mycobacteria, and Corynebacteria) (43). Single organisms often possess
multiple ways to react to changes in N supply (41).

To add to the complexity, regulation in response to N availability might not always
occur at the transcriptional level. Molecular and physiological studies with model
organisms suggest a complex hierarchical network of intracellular processes contrib-
uting to central N metabolism. This network includes a combination of transport,
metabolism, and signaling controls (41). Additionally, even in physiology literature, the
metabolic N state of cells is often poorly and qualitatively defined. The underlying
problem is that the N state of a cell is a multidimensional space which is often
oversimplified into a few “key” enzymes (41, 44). While reductionist approaches are
common with molecular data within molecular biology (34, 45) and within community
ecology, emergent functional properties of a cell or a community may only be visible
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at higher levels of complexity and lost at the level of isolated components (46, 47). In
essence, all of the catabolic enzymes may be abundantly present in a complex
community of fungi and bacteria, but the measured abundance of these may not
correlate with community activity. It may instead be the regulation of these enzymes
that is the critical parameter for correlation with activity. Alternatively, we may have
missed the transcriptional response of N cycling genes, as mRNA can be extremely
short-lived. However, this is unlikely, as we observed the maximum differences in
respiration between 40 to 64 h compared to that between 0 to 16 or 16 to 40 h
(Fig. 1).

Relevance of targeted metatranscriptomics. Short-term environmental perturba-
tions often have large impacts on biogeochemical rate measurements. For example, as
seen in this microcosm experiment and in field studies, N pulse deposition decreased
respiration, while water addition stimulated respiration (28, 48–50). However, results
from this study and other studies (51, 52; B. Steven and C. R. Kuske, submitted for
publication) suggest that biogeochemical flux responses to short-term environmental
perturbations may be invoked by highly complex responses and/or mechanisms not
represented by conventional genomic markers. A recent study of soil biocrust commu-
nities found that wetting soils primarily induced changes in the abundance of
ribosome-related transcripts rather than specific biogeochemical cycling genes (Steven
and Kuske, submitted). In this study, in addition to a few central metabolism pathways,
RNA degradation had a significantly higher relative abundance in microcosms with N
addition treatment (Fig. S1). RNA decay plays an important role in enabling cells to
quickly react to changing growing conditions, and RNA degradation pathways are
invoked as a stress response (33). Thus, changes in gene expression immediately
following a perturbation may reveal common microbial community regulatory re-
sponses to deal with general stress and environmental fluctuations (nutrient availabil-
ity, temperature, and precipitation).

Conclusion. Results from this study contradict the conventional views of the
response of soil microbial communities to N deposition and demonstrate the challenge
of linking biogeochemical fluxes to community gene expression levels. While correla-
tions between the abundance of biogeochemical marker genes or transcripts with
environmental gradients are common (53–57), both determining the mechanisms
driving changes in marker abundance and demonstrating consistent links between
genes and process rates have been less successful (58, 59). If mechanistic links between
marker genes and biogeochemical fluxes are not apparent in controlled short-term
perturbation experiments, what type of studies are needed? How can changes in
marker abundance over environmental gradients be interpreted? A large area of
research is currently focused on the goal to use trait-based genomics to model
biogeochemistry (60–63). Ultimately, relating gene presence or abundance to ecosys-
tem processes will require understanding what is driving changes in gene abundances
across gradients.

MATERIALS AND METHODS
Field site. Soil was collected from the Duke Forest pine FACE site (35°58=41.430�N, 79°05=39.087�W,

NC, USA) in November 2016, immediately placed on ice, shipped on ice overnight to Los Alamos National
Laboratory (Los Alamos, NM, USA), and stored at 4°C for 2 weeks until use. The Duke site soil is
characterized as a low-fertility acidic clay-loam, and the dominant overstory vegetation is loblolly pine
(Pinus taeda L.). The mean annual temperature is 15.5°C and the mean annual precipitation is 1,145 mm,
with periodic rainfall throughout the year (64). Relevant to this study, previous research at this site found
differences in microbial compositions and functions across multiple soil strata in response to N addition
(29–31). Soil cores were collected from three locations from a “control” plot that did not have a history
of N fertilization. Cores were divided into two strata, litter layer (LL) and organic horizon (OH), also
commonly referred to as the Oe and Oa horizons, respectively. Cores were then pooled by strata (29). Soil
chemistry was assessed on a subsample of the LL and OH strata (Colorado State University Soil, Water
and Plant Testing Laboratory) using standard procedures.

Microcosm experiment. Replicate microcosms were constructed with 250-ml serum bottles, each
containing 6 g of soil material. Three experimental treatments included a control, water addition (1 ml/g
soil material), and water and N addition (1 ml/g soil material, with NH4NO3 at 1 mg/ml), with four
replicates per treatment and two soil strata. Microcosms were destructively sampled at four time points
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(0, 16, 40, and 64 h); thus, altogether, the experiment included 80 microcosms. We expected that the
water addition would change global gene expression and that water plus N addition would cause
additional changes due to the increased N.

Carbon dioxide (CO2) measurements were collected on a random set of four control microcosms for
each stratum at time zero, immediately prior to water and N additions. Subsequently, every microcosm
(all treatments and strata) was measured at 16, 40, and 64 h. At each time point, four replicates of each
treatment were destructively sampled by placing the entire microcosm in storage at �80°C. For each of
the remaining microcosms that were not measured at that time point, the air was evacuated with a
vacuum pump and replaced with sterile-filtered ambient air to prevent oxygen depletion. CO2 measure-
ments were performed with a micro-gas chromatograph (Agilent Technologies).

Metatranscriptomic and metagenomic sequencing. Four replicate microcosms per treatment were
destructively sampled at 0 h (before treatments) and 64 h. Soil was stored at �80°C. RNA was extracted
using an RNA/DNA coextraction protocol detailed in reference 30. Briefly, following extraction, RNA was
isolated (Ambio Turbo DNase kit) and purified (Qiagen RNeasy Mini kit). rRNA was removed from the
samples using a combination of Illumina RiboZero H/M/R and Bacteria kits. Libraries were prepared using
a ScriptSeq v2 library preparation kit (Illumina) and validated using a Qubit dsDNA HS assay (Thermo
Fisher), BioAnalyzer DNA high-sensitivity assay (Agilent), and library quantification kit (KAPA; Illumina/
Universal). The libraries were diluted, pooled, and denatured before being run on a NextSeq 500 system
(high-output v2 kit for 300-cycle sequencing).

Metatranscriptomic and metagenomic unassembled annotation. Metatranscriptomes and met-
agenomes were processed and annotated using multiple methods and databases. Each annotation
process is subject to biases, so using multiple approaches enabled a more confident search for changes
in C and N cycling genes in response to experimental treatments. Sequences were uploaded to the
metagenomics analysis server (MG-RAST) for annotation and are publically available (mgp82200, https://
metagenomics.anl.gov/) (65). For the metatranscriptomes, an average of 3.96 million sequences per
sample passed quality control. Of these sequences, 20.2% � 8.5% were known predicted proteins,
55.5% � 3.3% unknown predicted proteins, and 24.3% � 8.2% ribosomal genes. From the MG-RAST
server, RefSeq (66) and KEGG (67) data were downloaded for analysis of taxonomy and function
assignments, respectively (default parameters, E value 	 10�5, identity � 60%). Once downloaded, reads
annotated as nonfungal eukaryotes and viruses were manually removed from the data set being used for
taxonomic comparisons. For each library and data type, data were then standardized using the propor-
tion of reads of each taxon compared to the total. KEGG-annotated functional data were visualized at a
broad level, and further analyses were performed with genes classified under N metabolism (path:
ko00910) and carbohydrate metabolism (path: ko00650, ko00660, ko00640, ko00630, ko00620, ko00562,
ko00520, ko00500, ko00053, ko00052, ko00051, ko00040, ko00030, ko00020, and ko00010).

In addition to automated analysis through MG-RAST, metatranscriptomes were processed in a
separate pipeline to focus on metabolic genes, in particular, carbohydrate-binding modules of enzymes
that degrade, modify, or create glycosidic bonds. Paired-end library reads were joined using PEAR (68).
Joined reads and the remaining unmerged forward reads were combined and filtered using fastq-mcf
in the EA-UTILS software package (69). Coding regions of the filtered reads were generated with
FragGeneScan-Plus (70). A functional profile for each library was generated by searching translated reads
using HMMER v3.1b2 (71, 72) against the Pfam database (73), where top sequence matches with an E
value 	�05 were retained. An additional carbohydrate-active enzyme (CAZyme) functional profile for
each library was generated by searching the translated reads, again using HMMER v3.1b2 against the
dbCAN database (74). For each metatranscriptome, Pfam and CAZyme reads were standardized by the
total number of translated reads.

Statistical analyses. To test for changes in the taxonomic and functional compositions of genes
expressed in response to N addition, we used a subset of the metatranscriptomic data. This included the
libraries from the 64-h (final) sampling time point that received the water addition (plus H2O) and the
water and N addition (plus H2O plus N) in the litter layer (LL) and O horizon (OH) strata, with four
replicates for each sample type. Using these samples for taxonomic and functional compositions, we
performed a permutational multivariate analysis of variance (PERMANOVA; vegan package, R) (75). The
model included strata (LL and OH) and treatment (plus H2O and plus H2O plus N) as the main fixed factors
and a strata-by-treatment interaction. The model was run using the Bray-Curtis method with 999
permutations. Our PERMANOVA analysis identified significant differences in taxonomic composition by
stratum; thus, we used a similarity percentage (SIMPER) analysis (vegan package) to test for which taxa
accounted for the majority of differences between the strata.

In addition to looking for differences in the overall metabolic (Pfam) and carbohydrate-active enzyme
(CAZyme) compositions, we also tested for differences in the relative abundances of individual metabolic
genes between the two strata and the N treatment. Here, we used a two-way analysis of variance
(ANOVA) design (type III), again with strata and N treatment as fixed effects. The ANOVA analysis was
conducted in the R software environment (76).

Lastly, we tested for differences in metabolic compositions between the metagenomes and meta-
transcriptomes with our subset of paired LL samples, again using a PERMANOVA. Here, the model
compared data type (metagenome versus metatranscriptome). Again, we ran a post hoc SIMPER analysis
to identify which functions contributed most to differences in the abundances of potential versus
expressed functional genes.

Metatranscriptome assembly and annotation. Metatranscriptomes were assembled as described
by Steven and Kuske (submitted). First, the BBDuk tool in the BBmap package (http://sourceforge.net/
projects/bbmap) was used to quality-trim sequences to only include bases with a Phred quality score of
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at least 10, and adaptor sequences were removed with the included reference file. Next, any remaining
16S rRNA sequences were removed using BBDuk and Kmers derived from the SILVA 16S rRNA database
(ribokmers.fa). Finally, any potential human contaminants were also removed with the BBDuk tool using
the hg19_main_mask_ribo_animal_allplant_allfungus.fa reference file.

The remaining sequences were assembled with MEGAHIT (version 1.1.2 [77]) in paired-end mode.
Because we had a priori knowledge of differences in microbial communities between the soil strata (LL
and OH), microbial communities were assembled independently by horizon. The resulting assembly
quality was assessed using the MetaQuast package with the de novo evaluation of sequence statistics
(78). All contigs less than 500 bp were removed prior to pseudoalignment and statistical analyses.

To quantify contig abundance in the transcriptomes, raw sequence reads were pseudoaligned with
the contigs to generate estimated counts of each contig using the kallisto software package v.0.43.1 (79).
Significant differences in estimated counts between water addition (plus H2O) and the water and N
addition (plus H2O plus N) for each horizon were identified by using the sleuth package v.0.29.0 in R (80).
P values were adjusted for multiple testing using the Benjamini-Hochberg procedure, and contigs with
an adjusted P value of �0.05 and at least a 2-fold change in abundance were considered significant. The
resulting contigs were aligned with the NCBI nonredundant (NR) protein database (downloaded 9 July
2017) using DIAMOND (81). The alignments were uploaded to the community version of MEGAN 6 (82),
and contigs were matched to SEED subsystems (83) within MEGAN using the long-read-enabled
sequence assignment and the May 2015 accession to SEED mapping file.

Data availability. The metatranscriptomic and metagenomic sequence data generated that support
the findings of this study are available through the MG-RAST server (mgp82200; http://metagenomics
.anl.gov/mgmain.html?mgpage�project&project�mgp82200). All other relevant data are available from
the corresponding author on request.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
.00598-18.

SUPPLEMENTAL FILE 1, PDF file, 0.4 MB.

ACKNOWLEDGMENTS
This work was supported by the U.S. Department of Energy, Office of Science,

Biological and Environmental Research Division, under award number F260LANL2018,
and by an Office of Science Graduate Student Research (SCGSR) Fellowship to M.B.N.A.

J.D. and C.R.K. designed the study. R.J., D.L., and L.V.G.-G. carried out the experiments
and lab work. M.B.N.A. and B.S. carried out the data analyses. M.B.N.A. wrote the
manuscript, and C.R.K. and J.D. contributed to manuscript revisions.

The authors declare no conflict of interest.

REFERENCES
1. Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a

changing paradigm. Ecology 85:591– 602. https://doi.org/10.1890/03
-8002.

2. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitz-
inger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM,
Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ. 2004. Nitrogen
cycles: past, present, and future. Biogeochemistry 70:153–226. https://
doi.org/10.1007/s10533-004-0370-0.

3. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW,
Schlesinger WH, Tilman D. 1997. Human alteration of the global nitrogen
cycle: sources and consequences. Ecol Appl 7:737–750. https://doi.org/
10.2307/2269431.

4. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE,
Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachan-
dran S, da Silva Dias PL, Wofsy SC, Zhang X. 2007. Chapter 7. Couplings
between changes in the climate system and biogeochemistry. In Solo-
mon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller
HL (ed), Climate change 2007: the physical science basis. Contribution of
Working Group I to the fourth assessment report of the Intergovern-
mental Panel on Climate Change. Cambridge University Press, Cam-
bridge, United Kingdom.

5. Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceule-
mans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL,
Schulze ED, Tang J, Law BE. 2010. Reduction of forest soil respiration in
response to nitrogen deposition. Nat Geosci 3:315–322. https://doi.org/
10.1038/ngeo844.

6. Liu XJ, Song L, He CE, Zhang FS. 2010. Nitrogen deposition as an

important nutrient from the environment and its impact on ecosystems
in China. J Arid Land 2:137–143. https://doi.org/10.3724/SP.J.1227.2010
.00137.

7. Stursova M, Crenshaw CL, Sinsabaugh RL. 2006. Microbial responses to
long-term N deposition in a semiarid grassland. Microb Ecol 51:90 –98.
https://doi.org/10.1007/s00248-005-5156-y.

8. Waldrop MP, Zak DR, Sinsabaugh RL. 2004. Microbial community re-
sponse to nitrogen deposition in northern forest ecosystems. Soil Biol
Biochem 36:1443–1451. https://doi.org/10.1016/j.soilbio.2004.04.023.

9. Treseder KK. 2008. Nitrogen additions and microbial biomass: a meta-
analysis of ecosystem studies. Ecol Lett 11:1111–1120. https://doi.org/
10.1111/j.1461-0248.2008.01230.x.

10. Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J,
Andre B. 2007. Effect of 21 different nitrogen sources on global gene
expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:
3065–3086. https://doi.org/10.1128/MCB.01084-06.

11. Keyser P, Kirk TK, Zeikus JG. 1978. Ligninolytic enzyme system of Phan-
erochaete chrysosporium: synthesized in absence of lignin in response to
nitrogen starvation. J Bacteriol 135:790 –797.

12. Li D, Alic M, Gold MH. 1994. Nitrogen regulation of lignin peroxidase
gene transcription. Appl Environ Microbiol 60:3447–3449.

13. Marzluf GA. 1997. Genetic regulation of nitrogen metabolism in the
fungi. Microbiol Mol Biol Rev 61:17–32.

14. Eisenlord SD, Freedman Z, Zak DR, Xue K, He ZL, Zhou JZ. 2013. Microbial
mechanisms mediating increased soil C storage under elevated atmo-
spheric N deposition. Appl Environ Microbiol 79:1191–1199. https://doi
.org/10.1128/AEM.03156-12.

Short-Term Response of Microbes to N Fertilization Applied and Environmental Microbiology

August 2018 Volume 84 Issue 15 e00598-18 aem.asm.org 11

http://metagenomics.anl.gov/mgmain.html?mgpage=project&project=mgp82200
http://metagenomics.anl.gov/mgmain.html?mgpage=project&project=mgp82200
https://doi.org/10.1128/AEM.00598-18
https://doi.org/10.1128/AEM.00598-18
https://doi.org/10.1890/03-8002
https://doi.org/10.1890/03-8002
https://doi.org/10.1007/s10533-004-0370-0
https://doi.org/10.1007/s10533-004-0370-0
https://doi.org/10.2307/2269431
https://doi.org/10.2307/2269431
https://doi.org/10.1038/ngeo844
https://doi.org/10.1038/ngeo844
https://doi.org/10.3724/SP.J.1227.2010.00137
https://doi.org/10.3724/SP.J.1227.2010.00137
https://doi.org/10.1007/s00248-005-5156-y
https://doi.org/10.1016/j.soilbio.2004.04.023
https://doi.org/10.1111/j.1461-0248.2008.01230.x
https://doi.org/10.1111/j.1461-0248.2008.01230.x
https://doi.org/10.1128/MCB.01084-06
https://doi.org/10.1128/AEM.03156-12
https://doi.org/10.1128/AEM.03156-12
http://aem.asm.org


15. Freedman Z, Zak DR. 2014. Atmospheric N deposition increases
bacterial laccase-like multicopper oxidases: implications for organic
matter decay. Appl Environ Microbiol 80:4460 – 4468. https://doi.org/
10.1128/AEM.01224-14.

16. Edwards IP, Zak DR, Kellner H, Eisenlord SD, Pregitzer KS. 2011. Simulated
atmospheric N deposition alters fungal community composition and sup-
presses ligninolytic gene expression in a northern hardwood forest. PLoS
One 6:e20421. https://doi.org/10.1371/journal.pone.0020421.

17. Sinsabaugh RL, Carreiro MM, Repert DA. 2002. Allocation of extracellular
enzymatic activity in relation to litter composition, N deposition, and mass
loss. Biogeochemistry 60:1–24. https://doi.org/10.1023/A:1016541114786.

18. Weber CF, Balasch MM, Gossage Z, Porras-Alfaro A, Kuske CR. 2012. Soil
fungal cellobiohydrolase I gene (cbhI) composition and expression in a
loblolly pine plantation under conditions of elevated atmospheric CO2

and nitrogen fertilization. Appl Environ Microbiol 78:3950 –3957. https://
doi.org/10.1128/AEM.08018-11.

19. Blackwood CB, Waldrop MP, Zak DR, Sinsabaugh RL. 2007. Molecular
analysis of fungal communities and laccase genes in decomposing litter
reveals differences among forest types but no impact of nitrogen de-
position. Environ Microbiol 9:1306 –1316. https://doi.org/10.1111/j.1462
-2920.2007.01250.x.

20. van der Wal A, Geydan TD, Kuyper TW, de Boer W. 2013. A thready affair:
linking fungal diversity and community dynamics to terrestrial decom-
position processes. FEMS Microbiol Rev 37:477– 494. https://doi.org/10
.1111/1574-6976.12001.

21. Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA. 2005. Linkages
between microbial and hydrologic processes in arid and semiarid wa-
tersheds. Ecology 86:298 –307. https://doi.org/10.1890/03-0567.

22. Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova
M, Zeglin LH. 2008. Pulse dynamics and microbial processes in aridland
ecosystems. J Ecol 96:413– 420. https://doi.org/10.1111/j.1365-2745
.2008.01362.x.

23. Schaeffer SM, Homyak PM, Boot CM, Roux-Michollet D, Schimel JP. 2017.
Soil carbon and nitrogen dynamics throughout the summer drought in
a California annual grassland. Soil Biol Biochem 115:54 – 62. https://doi
.org/10.1016/j.soilbio.2017.08.009.

24. Jackson LE, Schimel JP, Firestone MK. 1989. Short-term partitioning of
ammonium and nitrate between plants and microbes in an annual
grassland. Soil Biol Biochem 21:409 – 415. https://doi.org/10.1016/0038
-0717(89)90152-1.

25. Schimel JP, Jackson LE, Firestone MK. 1989. Spatial and temporal effects
on plant microbial competition for inorganic nitrogen in a California
annual grassland. Soil Biol Biochem 21:1059 –1066. https://doi.org/10
.1016/0038-0717(89)90044-8.

26. Kaye JP, Hart SC. 1997. Competition for nitrogen between plants and soil
microorganisms. Trends Ecol Evol 12:139 –143. https://doi.org/10.1016/
S0169-5347(97)01001-X.

27. Norton JM, Firestone MK. 1996. N dynamics in the rhizosphere of Pinus
ponderosa seedlings. Soil Biol Biochem 28:351–362. https://doi.org/10
.1016/0038-0717(95)00155-7.

28. Ramirez KS, Craine JM, Fierer N. 2010. Nitrogen fertilization inhibits soil
microbial respiration regardless of the form of nitrogen applied. Soil Biol
Biochem 42:2336 –2338. https://doi.org/10.1016/j.soilbio.2010.08.032.

29. Weber CF, Vilgalys R, Kuske CR. 2013. Changes in fungal community
composition in response to elevated atmospheric CO2 and nitrogen
fertilization varies with soil horizon. Front Microbiol 4:78. https://doi.org/
10.3389/fmicb.2013.00078.

30. Hesse CN, Mueller RC, Vuyisich M, Gallegos-Graves L, Gleasner CD, Zak
DR, Kuskel CR. 2015. Forest floor community metatranscriptomes iden-
tify fungal and bacterial responses to N deposition in two maple forests.
Front Microbiol 6:337. https://doi.org/10.3389/fmicb.2015.00337.

31. Hesse CN, Torres-Cruz TJ, Tobias TB, Al-Matruk M, Porras-Alfaro A, Kuske
CR. 2016. Ribosomal RNA gene detection and targeted culture of novel
nitrogen-responsive fungal taxa from temperate pine forest soil. Myco-
logia 108:1082–1090.

32. Mueller RC, Balasch MM, Kuske CR. 2014. Contrasting soil fungal com-
munity responses to experimental nitrogen addition using the large
subunit rRNA taxonomic marker and cellobiohydrolase I functional
marker. Mol Ecol 23:4406 – 4417. https://doi.org/10.1111/mec.12858.

33. Condon C. 2007. Maturation and degradation of RNA in bacteria. Curr
Opin Microbiol 10:271–278. https://doi.org/10.1016/j.mib.2007.05.008.

34. Westerhoff HV, Winder C, Messiha H, Simeonidis E, Adamczyk M, Verma
M, Bruggeman FJ, Dunn W. 2009. Systems biology: the elements and

principles of life. FEBS Lett 583:3882–3890. https://doi.org/10.1016/j
.febslet.2009.11.018.

35. Airoldi EM, Miller D, Athanasiadou R, Brandt N, Abdul-Rahman F, Ney-
motin B, Hashimoto T, Bahmani T, Gresham D. 2016. Steady-state and
dynamic gene expression programs in Saccharomyces cerevisiae in re-
sponse to variation in environmental nitrogen. Mol Biol Cell 27:
1383–1396. https://doi.org/10.1091/mbc.e14-05-1013.

36. Aro N, Pakula T, Penttila M. 2005. Transcriptional regulation of plant cell
wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719 –739.
https://doi.org/10.1016/j.femsre.2004.11.006.

37. Chen DM, Bastias BA, Taylor AFS, Cairney JWG. 2003. Identification of
laccase-like genes in ectomycorrhizal basidiomycetes and transcriptional
regulation by nitrogen in Piloderma byssinum. New Phytol 157:547–554.
https://doi.org/10.1046/j.1469-8137.2003.00687.x.

38. Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR. 2005. Extra-
cellular enzyme activities and soil organic matter dynamics for northern
hardwood forests receiving simulated nitrogen deposition. Biogeo-
chemistry 75:201–215. https://doi.org/10.1007/s10533-004-7112-1.

39. Rinkes ZL, Sinsabaugh RL, Moorhead DL, Grandy AS, Weintraub MN.
2013. Field and lab conditions alter microbial enzyme and biomass
dynamics driving decomposition of the same leaf litter. Front Microbiol
4:260. https://doi.org/10.3389/fmicb.2013.00260.

40. Blagodatskaya E, Blagodatsky S, Anderson TH, Kuzyakov Y. 2014. Micro-
bial growth and carbon use efficiency in the rhizosphere and root-free
soil. PLoS One 9:e93282. https://doi.org/10.1371/journal.pone.0093282.

41. van Heeswijk WC, Westerhoff HV, Boogerd FC. 2013. Nitrogen assimila-
tion in Escherichia coli: putting molecular data into a systems perspec-
tive. Microbiol Mol Biol Rev 77:628 – 695. https://doi.org/10.1128/MMBR
.00025-13.

42. Wang JL, Yan DL, Dixon R, Wang YP. 2016. Deciphering the principles of
bacterial nitrogen dietary preferences: a strategy for nutrient contain-
ment. mBio 7:e00792-16. https://doi.org/10.1128/mBio.00792-16.

43. Amon J, Titgemeyer F, Burkovski A. 2010. Common patterns - unique
features: nitrogen metabolism and regulation in Gram-positive bacteria.
FEMS Microbiol Rev 34:588 – 605. https://doi.org/10.1111/j.1574-6976
.2010.00216.x.

44. Westerhoff HV, Plomp PJAM, Groen AK, Wanders RJA. 1987. Thermody-
namics of the control of metabolism. Cell Biophys 11:239 –267. https://
doi.org/10.1007/BF02797123.

45. Cornish-Bowden A, Cardenas ML. 2005. Systems biology may work when
we learn to understand the parts in terms of the whole. Biochem Soc
Trans 33:516 –519. https://doi.org/10.1042/BST0330516.

46. Boogerd FC, Bruggeman FJ, Richardson RC, Stephan A, Westerhoff HV.
2005. Emergence and its place in nature: a case study of biochemical
networks. Synthese 145:131–164. https://doi.org/10.1007/s11229-004
-4421-9.

47. Abram F. 2015. Systems-based approaches to unravel multi-species
microbial community functioning. Comput Struct Biotechnol J 13:24 –32.
https://doi.org/10.1016/j.csbj.2014.11.009.

48. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta
DA, Schaeffer SM. 2004. Water pulses and biogeochemical cycles in arid
and semiarid ecosystems. Oecologia 141:221–235. https://doi.org/10
.1007/s00442-004-1519-1.

49. Unger S, Maguas C, Pereira JS, David TS, Werner C. 2010. The influence
of precipitation pulses on soil respiration–assessing the “Birch effect” by
stable carbon isotopes. Soil Biol Biochem 42:1800 –1810. https://doi.org/
10.1016/j.soilbio.2010.06.019.

50. Yan GY, Xing YJ, Xu LJ, Wang JY, Meng W, Wang QG, Yu JH, Zhang Z,
Wang ZD, Jiang SL, Liu BQ, Han SJ. 2016. Nitrogen deposition may
enhance soil carbon storage via change of soil respiration dynamic
during a spring freeze-thaw cycle period. Sci Rep 6:29134. https://doi
.org/10.1038/srep29134.

51. Gilbert JA, Field D, Huang Y, Edwards R, Li WZ, Gilna P, Joint I. 2008.
Detection of large numbers of novel sequences in the metatranscrip-
tomes of complex marine microbial communities. PLoS One 3:e3042.
https://doi.org/10.1371/journal.pone.0003042.

52. de Menezes A, Clipson N, Doyle E. 2012. Comparative metatranscrip-
tomics reveals widespread community responses during phenanthrene
degradation in soil. Environ Microbiol 14:2577–2588. https://doi.org/10
.1111/j.1462-2920.2012.02781.x.

53. Satinsky BM, Smith CB, Sharma S, Landa M, Medeiros PM, Coles VJ, Yager
PL, Crump BC, Moran MA. 2017. Expression patterns of elemental cycling
genes in the Amazon River Plume. ISME J 11:1852–1864. https://doi.org/
10.1038/ismej.2017.46.

Albright et al. Applied and Environmental Microbiology

August 2018 Volume 84 Issue 15 e00598-18 aem.asm.org 12

https://doi.org/10.1128/AEM.01224-14
https://doi.org/10.1128/AEM.01224-14
https://doi.org/10.1371/journal.pone.0020421
https://doi.org/10.1023/A:1016541114786
https://doi.org/10.1128/AEM.08018-11
https://doi.org/10.1128/AEM.08018-11
https://doi.org/10.1111/j.1462-2920.2007.01250.x
https://doi.org/10.1111/j.1462-2920.2007.01250.x
https://doi.org/10.1111/1574-6976.12001
https://doi.org/10.1111/1574-6976.12001
https://doi.org/10.1890/03-0567
https://doi.org/10.1111/j.1365-2745.2008.01362.x
https://doi.org/10.1111/j.1365-2745.2008.01362.x
https://doi.org/10.1016/j.soilbio.2017.08.009
https://doi.org/10.1016/j.soilbio.2017.08.009
https://doi.org/10.1016/0038-0717(89)90152-1
https://doi.org/10.1016/0038-0717(89)90152-1
https://doi.org/10.1016/0038-0717(89)90044-8
https://doi.org/10.1016/0038-0717(89)90044-8
https://doi.org/10.1016/S0169-5347(97)01001-X
https://doi.org/10.1016/S0169-5347(97)01001-X
https://doi.org/10.1016/0038-0717(95)00155-7
https://doi.org/10.1016/0038-0717(95)00155-7
https://doi.org/10.1016/j.soilbio.2010.08.032
https://doi.org/10.3389/fmicb.2013.00078
https://doi.org/10.3389/fmicb.2013.00078
https://doi.org/10.3389/fmicb.2015.00337
https://doi.org/10.1111/mec.12858
https://doi.org/10.1016/j.mib.2007.05.008
https://doi.org/10.1016/j.febslet.2009.11.018
https://doi.org/10.1016/j.febslet.2009.11.018
https://doi.org/10.1091/mbc.e14-05-1013
https://doi.org/10.1016/j.femsre.2004.11.006
https://doi.org/10.1046/j.1469-8137.2003.00687.x
https://doi.org/10.1007/s10533-004-7112-1
https://doi.org/10.3389/fmicb.2013.00260
https://doi.org/10.1371/journal.pone.0093282
https://doi.org/10.1128/MMBR.00025-13
https://doi.org/10.1128/MMBR.00025-13
https://doi.org/10.1128/mBio.00792-16
https://doi.org/10.1111/j.1574-6976.2010.00216.x
https://doi.org/10.1111/j.1574-6976.2010.00216.x
https://doi.org/10.1007/BF02797123
https://doi.org/10.1007/BF02797123
https://doi.org/10.1042/BST0330516
https://doi.org/10.1007/s11229-004-4421-9
https://doi.org/10.1007/s11229-004-4421-9
https://doi.org/10.1016/j.csbj.2014.11.009
https://doi.org/10.1007/s00442-004-1519-1
https://doi.org/10.1007/s00442-004-1519-1
https://doi.org/10.1016/j.soilbio.2010.06.019
https://doi.org/10.1016/j.soilbio.2010.06.019
https://doi.org/10.1038/srep29134
https://doi.org/10.1038/srep29134
https://doi.org/10.1371/journal.pone.0003042
https://doi.org/10.1111/j.1462-2920.2012.02781.x
https://doi.org/10.1111/j.1462-2920.2012.02781.x
https://doi.org/10.1038/ismej.2017.46
https://doi.org/10.1038/ismej.2017.46
http://aem.asm.org


54. Nelson MB, Martiny AC, Martiny JBH. 2016. Global biogeography of
microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci U S A 113:
8033– 8040. https://doi.org/10.1073/pnas.1601070113.

55. Zhao MX, Xue K, Wang F, Liu SS, Bai SJ, Sun B, Zhou JZ, Yang YF. 2014.
Microbial mediation of biogeochemical cycles revealed by simulation of
global changes with soil transplant and cropping. ISME J 8:2045–2055.
https://doi.org/10.1038/ismej.2014.46.

56. Tu QC, He ZL, Wu LY, Xue K, Xie G, Chain P, Reich PB, Hobbie SE, Zhou
JZ. 2017. Metagenomic reconstruction of nitrogen cycling pathways in a
CO2-enriched grassland ecosystem. Soil Biol Biochem 106:99 –108.
https://doi.org/10.1016/j.soilbio.2016.12.017.

57. Hawley AK, Nobu MK, Wright JJ, Durno WE, Morgan-Lang C, Sage B,
Schwientek P, Swan BK, Rinke C, Torres-Beltran M, Mewis K, Liu WT,
Stepanauskas R, Woyke T, Hallam SJ. 2017. Diverse Marinimicrobia bac-
teria may mediate coupled biogeochemical cycles along eco-
thermodynamic gradients. Nat Commun 8:1507. https://doi.org/10
.1038/s41467-017-01376-9.

58. Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M,
Yannarell A, Bemans JM, Abell G, Philippot L, Prosser J, Foulquier A,
Yuste JC, Glanville HC, Jones DL, Angel F, Salminen J, Newton RJ,
Burgmann H, Ingram LJ, Hamer U, Siljanen HMP, Peltoniemi K, Potthast
K, Baneras L, Hartmann M, Banerjee S, Yu RQ, Nogaro G, Richter A,
Koranda M, Castle SC, Goberna M, Song B, Chatterjee A, Nunes OC,
Lopes AR, Cao YP, Kaisermann A, Hallin S, Strickland MS, Garcia-Pausas
J, Barba J, Kang H, Isobe K, Papaspyrou S, Pastorelli R, Lagomarsino A,
Lindstrom ES, Basiliko N, Nemergut DR. 2016. Microbes as engines of
ecosystem function: when does community structure enhance predic-
tions of ecosystem processes? Front Microbiol 7:214. https://doi.org/10
.3389/fmicb.2016.00214.

59. Prosser JI. 2015. Dispersing misconceptions and identifying opportuni-
ties for the use of “omics” in soil microbial ecology. Nat Rev Microbiol
13:439 – 446. https://doi.org/10.1038/nrmicro3468.

60. Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC, Moran MA, Paul JH,
Satinsky BM, Yager PL, Zielinski BL, Hood RR. 2017. Ocean biogeochem-
istry modeled with emergent trait-based genomics. Science 358:
1149 –1154. https://doi.org/10.1126/science.aan5712.

61. Louca S, Hawley AK, Katsev S, Torres-Beltran M, Bhatia MP, Kheirandish
S, Michiels CC, Capelle D, Lavik G, Doebeli M, Crowe SA, Hallam SJ. 2016.
Integrating biogeochemistry with multiomic sequence information in a
model oxygen minimum zone. Proc Natl Acad Sci U S A 113:
E5925–E5933. https://doi.org/10.1073/pnas.1602897113.

62. Mock T, Daines SJ, Geider R, Collins S, Metodiev M, Millar AJ, Moulton V,
Lenton TM. 2016. Bridging the gap between omics and earth system
science to better understand how environmental change impacts ma-
rine microbes. Glob Chang Biol 22:61–75. https://doi.org/10.1111/gcb
.12983.

63. Mackelprang R, Saleska SR, Jacobsen CS, Jansson JK, Tas N. 2016. Per-
mafrost meta-omics and climate change. Annu Rev Earth Planet Sci
44:439 – 462. https://doi.org/10.1146/annurev-earth-060614-105126.

64. McCarthy HR, Oren R, Johnsen KH, Gallet-Budynek A, Pritchard SG, Cook
CW, LaDeau SL, Jackson RB, Finzi AC. 2010. Re-assessment of plant
carbon dynamics at the Duke free-air CO2 enrichment site: interactions
of atmospheric [CO2] with nitrogen and water availability over stand
development. New Phytol 185:514 –528. https://doi.org/10.1111/j.1469
-8137.2009.03078.x.

65. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T,
Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA. 2008. The
metagenomics RAST server - a public resource for the automatic phy-
logenetic and functional analysis of metagenomes. BMC Bioinformatics
9:386. https://doi.org/10.1186/1471-2105-9-386.

66. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput
B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao
Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell
CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali

VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K,
Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz
SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C,
Webb D, Wu W, Landrum MJ, Kimchi A, et al. 2016. Reference sequence
(RefSeq) database at NCBI: current status, taxonomic expansion, and
functional annotation. Nucleic Acids Res 44:D733–D745. https://doi.org/
10.1093/nar/gkv1189.

67. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG
as a reference resource for gene and protein annotation. Nucleic Acids
Res 44:D457–D462. https://doi.org/10.1093/nar/gkv1070.

68. Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate
Illumina Paired-End reAd mergeR. Bioinformatics 30:614 – 620. https://
doi.org/10.1093/bioinformatics/btt593.

69. Aronesty E. 2011. ea-utils: command-line tools for processing biological
sequencing data. https://github.com/ExpressionAnalysis/ea-utils.

70. Kim D, Hahn AS, Wu SJ, Hanson NW, Konwar KM, Hallam SJ. 2015.
FragGeneScan-Plus for scalable high-throughput short-read open reading
frame prediction. 2015 IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology, Niagara Falls, ON, Canada, 12 to
15 August 2015. https://doi.org/10.1109/CIBCB.2015.7300341.

71. Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14:
755–763. https://doi.org/10.1093/bioinformatics/14.9.755.

72. Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol
7:e1002195. https://doi.org/10.1371/journal.pcbi.1002195.

73. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC,
Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A.
2016. The Pfam protein families database: towards a more sustainable
future. Nucleic Acids Res 44:D279 –D285. https://doi.org/10.1093/nar/
gkv1344.

74. Yin YB, Mao XZ, Yang JC, Chen X, Mao FL, Xu Y. 2012. dbCAN: a web
resource for automated carbohydrate-active enzyme annotation. Nu-
cleic Acids Res 40:W445–W451. https://doi.org/10.1093/nar/gks479.

75. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D,
Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H,
Szoecs E, Wagner H. 2017. vegan: community ecology package. R pack-
age version 2.4-4. https://CRAN.R-project.org/package�vegan.

76. Team RC. 2013. R: a language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. http://www.R
-project.org/.

77. Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast
single-node solution for large and complex metagenomics assembly via
succinct de Bruijn graph. Bioinformatics 31:1674 –1676. https://doi.org/
10.1093/bioinformatics/btv033.

78. Mikheenko A, Saveliev V, Gurevich A. 2016. MetaQUAST: evaluation of
metagenome assemblies. Bioinformatics 32:1088 –1090. https://doi.org/
10.1093/bioinformatics/btv697.

79. Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabi-
listic RNA-seq quantification. Nat Biotechnol 34:525–527. https://doi.org/
10.1038/nbt.3519.

80. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. 2017. Differential
analysis of RNA-seq incorporating quantification uncertainty. Nat Meth-
ods 14:687– 690. https://doi.org/10.1038/nmeth.4324.

81. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment
using DIAMOND. Nat Methods 12:59 – 60. https://doi.org/10.1038/nmeth
.3176.

82. Huson DH, Beier S, Flade I, Gorska A, El-Hadidi M, Mitra S, Ruscheweyh
HJ, Tappu R. 2016. MEGAN community edition - interactive exploration
and analysis of large-scale microbiome sequencing data. PLoS Comput
Biol 12:e1004957. https://doi.org/10.1371/journal.pcbi.1004957.

83. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA,
Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia FF, Stevens R.
2014. The SEED and the Rapid Annotation of microbial genomes using
Subsystems Technology (RAST). Nucleic Acids Res 42:D206 –D214.
https://doi.org/10.1093/nar/gkt1226.

Short-Term Response of Microbes to N Fertilization Applied and Environmental Microbiology

August 2018 Volume 84 Issue 15 e00598-18 aem.asm.org 13

https://doi.org/10.1073/pnas.1601070113
https://doi.org/10.1038/ismej.2014.46
https://doi.org/10.1016/j.soilbio.2016.12.017
https://doi.org/10.1038/s41467-017-01376-9
https://doi.org/10.1038/s41467-017-01376-9
https://doi.org/10.3389/fmicb.2016.00214
https://doi.org/10.3389/fmicb.2016.00214
https://doi.org/10.1038/nrmicro3468
https://doi.org/10.1126/science.aan5712
https://doi.org/10.1073/pnas.1602897113
https://doi.org/10.1111/gcb.12983
https://doi.org/10.1111/gcb.12983
https://doi.org/10.1146/annurev-earth-060614-105126
https://doi.org/10.1111/j.1469-8137.2009.03078.x
https://doi.org/10.1111/j.1469-8137.2009.03078.x
https://doi.org/10.1186/1471-2105-9-386
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/bioinformatics/btt593
https://doi.org/10.1093/bioinformatics/btt593
https://github.com/ExpressionAnalysis/ea-utils
https://doi.org/10.1109/CIBCB.2015.7300341
https://doi.org/10.1093/bioinformatics/14.9.755
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1093/nar/gkv1344
https://doi.org/10.1093/nar/gkv1344
https://doi.org/10.1093/nar/gks479
https://CRAN.R-project.org/package=vegan
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv697
https://doi.org/10.1093/bioinformatics/btv697
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nmeth.4324
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1371/journal.pcbi.1004957
https://doi.org/10.1093/nar/gkt1226
http://aem.asm.org

	RESULTS
	Short-term water and N addition alter respiration. 
	Stratum-specific taxonomic composition of microbial communities. 
	Stratum-specific functional composition of microbial communities. 
	Carbohydrate metabolism response to stratum and N addition. 
	Stratum-specific carbon cycling (CAZymes). 
	Low abundances of N cycling genes. 
	Metatranscriptome assembly. 

	DISCUSSION
	Stratum-specific responses. 
	Weak transcriptional response to N addition. 
	Relevance of targeted metatranscriptomics. 
	Conclusion. 

	MATERIALS AND METHODS
	Field site. 
	Microcosm experiment. 
	Metatranscriptomic and metagenomic sequencing. 
	Metatranscriptomic and metagenomic unassembled annotation. 
	Statistical analyses. 
	Metatranscriptome assembly and annotation. 
	Data availability. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

