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ABSTRACT Algal biofuels have the potential to curb the emissions of greenhouse
gases from fossil fuels, but current growing methods fail to produce fuels that meet
the multiple standards necessary for economical industrial use. For example, algae
grown as monocultures for biofuel production have not simultaneously and eco-
nomically achieved high yields of the high-quality lipid-rich biomass desired for the
industrial-scale production of bio-oil. Decades of study in the field of ecology have
demonstrated that simultaneous increases in multiple functions, such as the quantity
and quality of biomass, can occur in natural ecosystems by increasing biological di-
versity. Here, we show that species consortia of algae can improve the production of
bio-oil, which benefits from both a high biomass yield and a high quality of biomass
rich in fatty acids. We explain the underlying causes of increased quantity and qual-
ity of algal biomass among species consortia by showing that, relative to monocul-
tures, species consortia can differentially regulate lipid metabolism genes while
growing to higher levels of biomass, in part due to a greater utilization of nutrient
resources. We identify multiple genes involved in lipid biosynthesis that are fre-
quently upregulated in bicultures and further show that these elevated levels of
gene expression are highly predictive of the elevated levels in biculture relative to
that in monoculture of multiple quality metrics of algal biomass. These results show
that interactions between species can alter the expression of lipid metabolism genes
and further demonstrate that our understanding of diversity-function relationships
from natural ecosystems can be harnessed to improve the production of bio-oil.

IMPORTANCE Algal biofuels are one of the more promising forms of renewable en-
ergy. In our study, we investigate whether ecological interactions between species
of microalgae regulate two important factors in cultivation—the biomass of the crop
produced and the quality of the biomass that is produced. We found that species
interactions often improved production yields, especially the fatty acid content of
the algal biomass, and that differentially expressed genes involved in fatty acid me-
tabolism are predictive of improved quality metrics of bio-oil. Other studies have
found that diversity often improves productivity and stability in agricultural and
natural ecosystems. Our results provide further evidence that growing multispecies
crops of microalgae may improve the production of high-quality biomass for bio-oil.
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Just as early humans were hunter-gatherers with respect to food, modern humans
remain hunter-gatherers with respect to energy. We drill, mine, or extract wherever

we can find resources. To become a sustainable society, we must transition from this
hunter-gatherer mode to one that provides a continuous, stable, and abundant supply
of energy. Bio-oil derived from microalgae is one of the more promising forms of
renewable energy, as algae can produce more oil per acre than land plants and can be
grown nearly anywhere, including in degraded habitats and nonarable lands (1, 2).
Fatty acid methyl esters (FAMEs) are the main constituent of biodiesel produced by the
extraction and transesterification of fatty acids from algal biomass. Thus, the key
metrics of the quality of algal biomass for bio-oil production are the proportion of the
biomass composed of fatty acids and the composition of different types of fatty acids.
Also, high FAME yields lead to improved bio-oil yield and quality from newer more
promising technologies such as hydrothermal liquefaction that transform the entire
wet algal biomass into biocrude oil (3).

A key bottleneck that limits the economic viability of energy cultivation by algae is
our inability to maximize biomass quality, based on fatty acid content, while at the
same time maximizing biomass quantity. The physiological reasoning behind this
limitation is that organisms with finite resources choose either to use energy to grow
or to store energy in the form of lipids for future growth (4–6). One approach that has
proven moderately successful has been to genetically engineer microalgal strains (7),
but these strains are expensive to produce and unlikely to thrive under the variable
field conditions inherent in outdoor commercial-production facilities. However, there is
an alternative approach that uses principles in ecology to engineer communities of
multiple species (1, 4, 8, 9). This approach is based on ecological research that has
shown that multispecies ecosystems regularly outperform monocultures in many func-
tions, including biomass production (10–14).

These positive causal relationships between biodiversity and function are especially
strong when considering multiple functions at once (15). While simultaneously improv-
ing multiple functions would have clear benefits for the extraction of sustainable
resources, our knowledge of biodiversity-ecosystem function relationships in natural
systems has yet to be applied to commercial applications such as biofuels and
bioproducts. For example, a biorefinery, in which plant biomass is grown and
refined to yield multiple products such as biofuel and biochemicals, would benefit
from simultaneous improvements of multiple functions (16). Specific for biofuels,
studies suggest that algal species richness may influence the quantity or quality of
the biomass (13, 17). However, the simultaneous effects of species richness on the
biomass yield and biomass quality needed for improved bio-oil production, along
with the genomic drivers underlying such a phenomenon, remain to be rigorously
investigated.

Here, we incorporated new data and analyses into an experiment that was previ-
ously analyzed to test the effect of evolutionary relatedness and gene expression on
community stability and coexistence (18–20). In this experiment, we grew monocul-
tures of eight species of green freshwater microalgae, Chlorella sorokiniana, Closteriopsis
acicularis, Cosmarium turpinii, Pandorina charkowiensis, Scenedesmus acuminatus, Sele-
nastrum capricornutum, Staurastrum punctulatum, and Tetraedron minutum, and all 28
of the possible species pairs under controlled laboratory conditions for 48 days until the
majority of the communities had reached steady-state biomass. These species were
specifically selected to span a large gradient in phylogenetic distances on our molec-
ular phylogeny (21). The charophytes included the two desmids Cosmarium turpinii and
Staurastrum punctulatum, while the remaining species belong to the chlorophytes. At
the end of the experiment (i.e., day 48), for each species, we quantified the total cell
density and RNA transcription levels. For each culture, we measured the biomass
quality as total fatty acid methyl ester (FAME) content, which consisted of a mixture of
28 different fatty acids. The proportions of these different fatty acids were used to
calculate two important qualities of extracted total FAME, cetane number and higher
heating value. Previously, these data were used to show that bicultures consisting of
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more closely related species generally exhibited more similar gene expression, weaker
competitive interactions, and greater temporal stability of biomass (19, 20). In our
current analyses, we show that multispecies communities of freshwater microalgae
outperform monocultures in producing a high quantity and quality of biomass repre-
sentative of algal feedstock for bio-oil production. To assess the causes underlying our
observation that species richness simultaneously improved the algal biomass yield and
quality, we also measured gene expression in each algal population in each com-
munity. We used these data to contrast lipid metabolism, nutrient assimilation, and
photosynthetic gene expression of each algal species alone in monoculture versus
those in each biculture growing condition, and related genome-wide expression
patterns to the biomass attained by each algal population and our metric for
biomass quality, FAME.

RESULTS

We first tested whether algal bicultures outperformed monocultures in the produc-
tion of bio-oil, considering the metrics of biomass quantity and quality. We considered
these measures, on average, in bicultures versus monocultures, but also tested whether
bicultures overyield with respect to monocultures. Overyielding refers to a biculture
that significantly exceeds expectations on the basis of monoculture yields. Second, we
evaluated differential expression in bicultures relative to that in their monocultures,
focusing specifically on gene functions involved in lipid metabolism that we hypoth-
esized would be important for the production of bio-oil. We first considered these
genes categorized into broad Gene Ontology functional groups and then identified
specific sets of orthologous genes. Lastly, we linked differential expression of genes
involved in lipid metabolism with the overyielding and relative composition of fatty
acids, which are key indicators of fuel quality.

We found that bicultures, on average, produced significantly higher levels of algal
biomass and of FAMEs, which we measured in two ways: FAME yield as a weight
percentage of the biomass, and the total yield of FAMEs calculated by multiplying
FAME yield and algal biomass (Fig. 1A to C). We found that bicultures frequently
overyielded with respect to their comprising monocultures in the individual func-
tion of either biomass yield or quality. Nearly half of all bicultures produced a
biomass of significantly higher quality (i.e., FAME yields) relative to the quality of
the biomass produced by their constituent monocultures (FAME overyielding oc-
curred in 13 of 28 combinations). Additionally, five bicultures significantly overy-
ielded in biomass. Further, bicultures generated greater biomass than monocul-
tures in part through a greater utilization of nutrient pools from the growth
medium. This trend was significant throughout the experiment (NO3: F1,34 � 6.42,
P � 0.012; PO4: F1,34 � 15.32, P � 0.001), but was greater in magnitude toward the
end of the experiment, when PO4 levels were 51% lower and NO3 levels were 35%
lower in bicultures than in monocultures.

Furthermore, we found that bicultures significantly outperformed monocultures
when simultaneously considering biomass yield and quality, as they were, on average,
closer to the optimum than monocultures (nested linear model on the Euclidean
distances from the 1:1 “optimum” point; F1,34 � 2.9, P � 0.01) (Fig. 1D). The optimum
was defined as the combination of the highest biomass observed across all experiments
(i.e., biomass of the Closteriopsis, Staurastrum biculture) with the highest FAME yield
observed (i.e., FAME yield of the Chlorella, Staurastrum biculture). This conclusion that
bicultures outperformed monocultures was robust using either the “threshold” or
“averaging” method for calculating multifunctionality (see Fig. S1 in the supple-
mental material). While bicultures, on average, significantly outperformed monocul-
tures when considering multifunctionality, and the best biculture exceeded the
function of the best monoculture when considering each function separately, the
best biculture was not significantly better than the best monoculture when simul-
taneously considering both functions (Euclidean distance to optimum of the best
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monoculture fell within 0.27 standard deviations of a bootstrapped distribution of
the top three bicultures).

We also found that biomass quality can be predicted by gene expression. Results
from our genetic analyses in part explain how species richness promotes multifunc-
tionality: 64% of all bicultures that overyielded in FAME also contained at least one algal
species that was differentially expressing genes involved in lipid metabolism (Fig. 2).
The relative FAME yield was calculated as the mean FAME yield of A plus B biculture/
(mean [mean yield of species A in monoculture and mean yield of species B in
monoculture]). We indicate an overyielding in FAME only where the biculture yield was
significantly higher than the average of the two monocultures. Differential expression
indicates that the algal species expressed significantly greater or lower levels of the
gene in the biculture growing condition relative to that in the monoculture growing

FIG 1 Bicultures outperform monocultures in three measures of bio-oil production. Bicultures, on average, yield greater algal biomass
(A), fatty acid methyl ester as a weight percentage of the algal biomass (B), and total estimated mass of fatty acids (C). (D) Bicultures
outperform monocultures when simultaneously considering quantity and quality of algal biomass (nested linear model on Euclidean
distance to optimum: F1,34 � 2.9, P � 0.01). The “optimum” is the top rank of each metric observed in the study. As illustrated with
the multifunctionality threshold approach, 43% of bicultures versus 25% of monocultures fall within the upper quadrant, indicating
higher than average biomass yield and quality, via FAME percentage of biomass. Numbers indicate species identities: 1, Chlorella
sorokiniana; 2, Closteriopsis acicularis; 3, Cosmarium turpinii; 4, Pandorina charkowiensis; 5, Scenedesmus acuminatus; 6, Selenastrum
capricornutum; 7, Staurastrum punctulatum; 8, Tetraedron minutum.
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condition. We identified candidate genes that we can infer are involved in lipid
metabolism using a keyword search of lipid-relevant terms in the Gene Ontology
annotation database. For conciseness, we refer to these genes as “lipid metabolism
genes.” Importantly, one-half of the algal populations that were differentially express-
ing their lipid genes were also growing at biomass levels greater than those produced

FIG 2 Significant differential expression of lipid metabolism genes was observed only in communities overyielding in biomass quantity
and/or quality. Solid lines connect populations growing together in biculture, symbol color indicates species identities in each biculture,
and symbol fill indicates whether that biculture is overyielding in biomass quality (i.e., wt % FAMEs). Location on the x axis indicates
whether those populations significantly differentially express their lipid genes via Kolmogorov-Smirnov tests on the distributions of
log2-fold change values of lipid versus nonlipid genes. Populations differentially expressing their lipid genes and maintaining biomass at
levels greater than those attained in monoculture are marked with asterisks. Bicultures are ranked from high (top) to low (bottom) on the
y axis on the basis of their FAME yield in biculture relative to that in monocultures. Overyielding in FAME is designated where biculture
yield was significantly higher than the average of the two monocultures. Missing symbol pairs are for those populations with insufficient
gene-library sizes for inclusion in transcriptome analyses.
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in monoculture (Fig. 2). The differential expression of genes involved in lipid metabo-
lism was predictive of FAME overyielding in bicultures relative to the expectations
based on monoculture yields (logistic regression: relative FAME, �2 � 6.9, P � 0.01).
Furthermore, the differential expression of these genes was predictive of the total FAME
yield in bicultures (logistic regression: total FAME, �2 � 4.8, P � 0.027). We directly
assessed the effect of species richness on lipid metabolism by measuring the gene
expression in each algal population in each biculture compared to the expression
by that species in monoculture. For example, a community can contain either two
species that do not differentially express lipid genes (i.e., Chlorella and Cosmarium), one
species that does differentially express lipid genes and one that does not (i.e., Chlorella
and Tetraedron), or two species that both differentially express lipid genes (i.e., Chlorella
and Staurastrum). With this approach, we identified 10 occasions in which at least one
of the two species in biculture differentially expressed genes with known lipid functions
compared to all other genes (Kolmogorov-Smirnov tests, all false-discovery-rate-
corrected P values were �0.05) (Fig. 2) and found that overyielding in FAME and/or
biomass occurred in all 10 of these occasions. Furthermore, among the top 10 bicul-
tures with the highest relative FAME yields, six bicultures had one or both species
differentially regulating their lipid genes (Fig. 2). Lastly, we confirmed the reproducible
effects of these treatment conditions on algal gene expression by calculating Euclidean
distances between biological replicates that were visualized with multidimensional
scaling. We show that Euclidean distances among biological replicates within the same
species combination were significantly less than the distances among biological
replicates of different combinations (see Table S2).

We also found that the expression of genes known to regulate specific lipid
functions was a significant predictor of overyielding in FAME (Fig. 3). Specifically,
overyielding bicultures diverged from nonoveryielding bicultures via the overexpres-
sion of genes regulating the saponifiable lipids, including glycerophospholipids and
lipid A, as well as the regulation of dihydrolipoyllysine-residue succinyltransferase
activity, which is essential for the production of coenzyme A and fatty acid synthesis
(22). Overyielding bicultures also diverged from nonoveryielding bicultures via the
underexpression of genes regulating the metabolism of steroids, which are nonsaponi-
fiable lipids (Fig. 3, PC2 and PC3). This trend was common across multiple species, with
overyielding bicultures diverging significantly from nonoveryielding bicultures in lipid
gene expression, as summarized using the mean change in gene expression of 28 Gene
Ontology terms involved in lipid metabolism (see principal-component analysis [PCA]
in Fig. 3) (logistic regression: �2 � 10.7, P � 0.0047; multivariate analysis of variance:
F1,38 � 16.0, P � 0.001) (see Table S3 for variable loadings and Fig. S2 for a PCA plot
of PC1 versus PC2).

We then identified orthologous sets of genes across all eight species of microalgae
by searching for best matches in Chlorella variabilis, a more-well-studied species of
algae. With this approach, we found that differential expression of orthologous sets of
genes in the monoculture versus biculture growing conditions was predictive of the
elevated FAME yields observed in bicultures relative to that in monocultures. Specifi-
cally, the upregulation of a set of orthologous genes involved in peroxisome biogen-
esis, where fatty acid oxidation occurs, was predictive of elevated FAME yields (Fig. 4).
Furthermore, the downregulation of a set of orthologous genes involved in the
modification of phospholipids was predictive of an elevated FAME yield among bicul-
tures (Fig. 4). In addition to searching for orthologs in Chlorella variabilis, we searched
Arabidopsis thaliana for two enzymes that were poorly described in algae but are
especially notable for fatty acid biosynthesis (diacylglycerol acyltransferase [DGAT] and
phospholipid diacylglycerol acyltransferase [PDAT]). Differential expression levels of
DGAT and PDAT genes were not predictive of an elevated FAME yield (Fig. 4). However,
we found that the differential expression of several other orthologous sets of genes
was predictive of the fold change in other important metrics of biomass quality
measured in the monoculture versus biculture conditions. The differential expres-
sion among four orthologous sets of genes was predictive of the fold change in
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cetane number, a measure of fuel ignition delay (see Fig. S3), and differential
expression among five orthologous sets of genes was predictive of the fold change
in higher heating value, a measure of the quantity of heat released during fuel
combustion (see Fig. S4). Cetane number and higher heating value are largely
determined by the relative composition of fatty acids that differ in carbon chain
length and saturation.

Overall, our differential expression analyses contribute to understanding the under-
lying mechanism by identifying which algal species within the community contributes
to total fatty acid generation. Linking lipid gene expression to specific community
members enabled us to merge these data with population densities to determine that
lipid overyielding does not necessitate a reduction in growth. To further elucidate
mechanistically how bicultures may be outperforming monocultures in fatty acid
production, we evaluated whether differential expression among genes regulating
photosynthesis and nutrient assimilation was associated with increased FAME produc-
tion or total fatty acid production, which accounts for both increased biomass produc-
tion and increased FAMEs as a weight percentage of the biomass. The genes we tested
for their role in regulating photosynthesis included those encoding carbonic anhy-
drases, glutamate semialdehyde aminotransferases, and light harvesting chlorophyll
a-b complexes. We tested iron permeases, nitrite transporters, nitrite reducers, nitrate
transporters, nitrate reducers, and phosphate transporters for their roles in regulating
nutrient assimilation. Although we found that 39% of bicultures contained at least one
algal species upregulating photosynthesis genes (see Fig. S7), and 25% of bicultures

FIG 3 Bicultures overyielding versus nonoveryielding in FAME production exhibit notably distinct expression patterns of genes regulating synthesis and
oxidation of fatty acids and other lipids. These patterns are conserved across multiple algal species. We illustrate these patterns via principal-component analysis
incorporating mean log2-fold change values in the monoculture versus biculture conditions for each algal species of 28 different Gene Ontology groups
involved in lipid regulatory functions.
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contained at least one algal species upregulating nutrient assimilation genes (see Fig.
S8), we found no systematic association between genes regulating photosynthesis or
nutrient assimilation with the magnitude of FAME overyielding or production of total
fatty acids (see Fig. S9).

FIG 4 Across multiple species of algae, the relative change in gene expression between monoculture and biculture growing conditions significantly predicts
the relative change in FAMEs. Correlations between log2-fold changes of gene expression and FAME in biculture relative to those in monoculture were
evaluated via simple linear regression models with false discovery rate significance corrections. Orthologs in Chlorella variabilis were used for gene
annotation when possible. Occasionally, we note orthologs from other model organisms from which we needed to infer gene annotation. For genes
especially notable for fatty acid biosynthesis (DGATs and PDATs inferred from Arabidopsis thaliana), we show a lack of correlation.
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DISCUSSION

Our results illustrate that in addition to improving each aspect of bio-oil production
individually, species richness can simultaneously improve biomass yield and quality.
Our findings are consistent with the majority of studies that have found that species
richness enhances biomass yield (10, 13, 14), though there are exceptions (23). Our
study is also consistent with a prior study that suggests richness may help improve
biomass quality (17). However, our study shows that species richness can help us
accomplish both of these at once. Furthermore, our results demonstrate that key
metrics of bio-oil quality have significant transcriptomic correlates that are common
across the multiple species of algae studied here. We show that species richness directly
affects the regulation of fatty acid metabolic processes that are known to be key for the
production of high-quality bio-oil based on both a fundamental understanding of fatty
acid biosynthesis (22) and the validation here from finding correlations of gene
expression with our measurements of bio-oil quality. By tracing lipid gene expression
to individual populations of algae, we found that species richness can simultaneously
improve both the biomass yield and the fatty acid content of algal biomass.

Our results add to several other studies that document numerous advantages of
incorporating diversity. For example, compared to monocultures, multispecies crops
are more stable, require less fertilizer, generate less nutrient pollution, and are more
resistant to pest invasions (23–26). While recent studies have used gene engineering
approaches to improve fatty acid production under controlled laboratory conditions
(7), few monocultures thrive when exposed to the abiotic and biotic stressors of
outdoor conditions that are essential for commercially scaled production. Our results
show that ecological engineering is a promising approach that harnesses multispecies
communities to improve the quantity, quality, and environmental sustainability of
bio-oil production. However, while diversity improves the production of bio-oil on
average, we did not find evidence that the best diverse crop significantly outperformed
the best monoculture crop. An important next step is to apply our findings toward
identifying whether diversity would improve yields among our best-performing mon-
oculture crops, for example by using a more diverse group of algal species beyond
green algae.

Lipid content is arguably the most important measure of quality for an algal
feedstock, regardless of whether the biofuel industry relies on direct lipid extraction or
adopts newer methods, such as hydrothermal liquefaction, that use the entire algal
biomass. By experimentally introducing interactions among species, we show that
algae frequently respond to interspecific interactions by differentially expressing genes
that regulate lipid biosynthesis. Although it is challenging to definitively identify the
functions of genes in nonmodel organisms, we show that the degree of differential
expression of our genes that were purportedly involved in lipid metabolism was indeed
significantly predictive of the degree of overyielding in FAME in bicultures relative to
that in monocultures. We used a cautious approach for these transcriptomics analyses
by focusing only on a subset of transcripts that were most taxonomically relevant and
functionally informative. By retaining only those transcripts mapping to taxa in the
Diaphoretickes (i.e., the Plants�Hacrobia�SAR [stramenopiles, alveolates, and Rhizaria]
megagroup of photosynthetic organisms) that have Gene Ontology annotations, we
avoided the possible inclusion of transcripts with unknown lipid functions in our
“nonlipid” category of genes and minimized the possible misinterpretations from
functions inferred from taxa outside the Diaphoretickes megagroup, as the algal
cultures we used have associated bacteria and fungi. However, this approach could
exclude genes that may be poorly annotated but biologically relevant, which could
explain why certain bicultures overyielded in FAMEs but showed no underlying
genomic signature (i.e., the Cosmarium-Closteriopsis biculture). We note that our study
did not exclude bacteria and fungi in the algal “phycosphere”: those microbes residing
in the mucilaginous layer immediately surrounding the algal cell that are known to be
facilitating or even essential for algal growth (27–29). Further efforts to improve the
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cultivation of outdoor algal biofuels should test the effects of these bacteria and fungi,
which will inevitable colonize ponds, on the outcomes of biofuel production.

We found that overyielding bicultures could be differentiated from nonoveryielding
bicultures on the basis of the differential expression of genes that regulated the
synthesis of different types of lipids. Genes regulating the saponifiable lipids, including
glycerophospholipids and lipid A, tended to be upregulated among overyielding
bicultures. While lipid A is best known from bacterial systems, studies have confirmed
that plant mitochondrial membranes contain the full biosynthetic pathway for lipid A
(30, 31). Also notable is that overyielding and nonoveryielding bicultures diverged
significantly in the expression of the enzyme dihydrolipoyllysine-residue succinyltrans-
ferase. This enzyme catalyzes the reaction generating coenzyme A, which is a key player
in the synthesis of fatty acids (22). Specifically, the amounts of coenzyme A and its close
derivatives, such as malonyl-CoA, that have accumulated in plant plastids are directly
predictive of the rate of fatty acid biosynthesis (32). In contrast, overyielding bicultures
also diverged from nonoveryielding bicultures via the underexpression of genes reg-
ulating the metabolism of steroids, which are nonsaponifiable lipids that are not
convertible to FAMEs (33).

Our results also identified several sets of orthologous genes for which differential
expression caused by the diversity treatment was strongly predictive of improved
biofuel quality metrics among bicultures. Interestingly, we found that the upregulation
of peroxisome biogenesis protein 16 (PEX16) was positively associated with the overy-
ielding of FAMEs. This is notable because the peroxisome and PEX genes are best
described for their role in the �-oxidation or degradation of fatty acids, which is often
induced in plants under stress from pathogens or herbivores (34). However, PEX16 has
been implicated in the synthesis of fatty acids in Arabidopsis (35). Lin et al. hypothesized
that peroxisomes may therefore be involved in both the degradation and the synthesis
of fatty acids, perhaps with some degradation necessary to sustain net synthesis (35).
We also identified genes involved in phospholipid metabolism that were predictive of
fuel metrics; however, the directional effects were mixed. Phospholipids themselves,
with only two fatty acid tails, yield less bio-oil than triglycerides. Resources dedicated
toward modifications among the diverse forms of glycerophospholipids or the synthe-
sis of additional phospholipids at the expense of triglycerides may decrease bio-oil
yields. For example, triglycerides yield more than 99% bio-oil, while phospholipids
typically yield less than 70% bio-oil (36, 37). However, the genes involved in increasing
glycerophospholipid transformations into free fatty acids, such as those encoding
phospholipase A2s (PLA2s), may improve the bio-oil yield (38). This may explain
why some genes, such as those involved in phospholipid translocation, were
positively associated with bio-oil production, while others were negatively associated
with production. Lysophospholipid acyltransferase and CDP-diacylglycerol-glycerol-3-
phosphate 3-phosphatidyltransferase, which are involved in modifications within phos-
pholipids, were both negatively associated with bio-oil production. Such modifications
to the phosphate head of the phospholipid that leave the fatty acid tails unchanged
may still affect bio-oil yield by changing the proportional mass of the molecule
comprising the fatty acids tails.

Lastly, we found that the differential expression of several orthologous sets of genes
was associated with changes in cetane number and higher heating value. A main
predictor of cetane number is the relative composition of saturated, monounsaturated,
and polyunsaturated fatty acids. Our algal diversity treatment drove the differential
expression of fatty acid desaturases, which significantly increased cetane number in
bicultures. The upregulation of PEX16 also significantly predicted greater cetane num-
ber among bicultures. Several findings further suggested that algal diversity contrib-
uted to the long-term storage of lipids. Diversity caused an upregulation in lipid-
droplet-associated hydrolases, which have been shown with experimental work in cell
lines to increase triacylglycerol levels (39). Diversity also upregulated very-long-chain
3-ketoacyl-coenzyme A synthases, which are involved in elongating lipids prior to
storage (40). The upregulation of these genes involved in lipid storage corresponded
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to increased cetane number and higher heating value metrics in bicultures relative to
those in monocultures.

Combined, our ecological and transcriptomics analyses show that algal populations
growing within overyielding communities are differentially regulating lipid metabolism
while frequently maintaining growth at biomass levels above those attained in mon-
oculture. This finding provides an underlying explanation for our observation of a
beneficial effect of species richness on both biomass yield and quality, which is
somewhat contrary to expectations from within-species tradeoffs. Indeed, attempts to
improve multiple functions within monocultures have been met with failure due to an
inability to overcome tradeoffs that are inherent to biological populations. One such
tradeoff that has been proposed is between the biomass that a population of organ-
isms produces versus the quality of this biomass for bio-oil production. Organisms with
access to excess resources tend to grow, while those under nutrient stress instead tend
to accumulate lipids that improve the quality of algal biomass (5, 41, 42). It has
therefore been argued that populations can increase either biomass quantity or quality
or produce suboptimal levels of both. In contrast, our findings suggest that species
consortia can better utilize nutrient resources for an improved production of biomass.
While our data indeed showed that there was a greater utilization of available nutrients
in bicultures, this was unlikely to be causing nutrient stress, because nutrient levels
remained orders of magnitude higher than the levels typically reported as the lowest
at which green algal species can maintain a stable population (resource ratio [R*]
values) (43, 44).

Thus, interspecific interactions evidently trigger the accumulation of fatty acids
without necessarily compromising biomass yield. While tradeoffs may be an inherent
aspect of biology at the species level, our results begin to show that we can harness
what decades of research is seeming to prove as an inherent aspect of ecology:
diversity improves functions, and quite often, improves functions simultaneously. By
rooting our findings in the genomic foundation of species interactions, our results
contribute to our understanding of the drivers of elevated function in nature and may
increase our ability to both predict when and where to expect such patterns to occur
and apply these phenomena to agricultural and biotechnological uses.

MATERIALS AND METHODS
Culture growth and sampling. Species cultures were supplied either from the University of Texas

Culture Collection of Algae (UTEX; Austin, Texas, USA) or from the Sammlung von Algenkulturen
Göttingen (SAG; Göttingen, Germany) culture collections. For each species, we grew batch cultures from
laboratory stocks in 125-ml Erlenmeyer flasks filled with 100 ml of COMBO growth medium, which
contained 1 mM NaNO3, 0.05 mM K2HPO4, 0.1 mM KCl, and 30 �M NH4Cl at the beginning of the
experiment (45). We then measured declines in nitrate and phosphate by repeated measures over eight
time points throughout the experiment, but levels remained orders of magnitude above what is
considered the lowest at which green algae can maintain a stable population (i.e., N* and P*). We also
verified each species grew well in COMBO by running a smaller scale study of each species inoculated
into multiple types of growth media (see Fig. S6 in the supplemental material). To minimize contami-
nation, we transferred algae from stock to batch cultures with a flame-sterilized loop or an autoclave-
sterilized pipette in a laminar flow cabinet and capped batch cultures with a breathable 0.22-�m vented
lid. We filled 108 1-liter media bottles (Wheaton, borosilicate glass) with 1 liter of the modified COMBO
growth medium and inoculated bottles with one of the 8 monocultures or 28 biculture combinations at
a total initial cell density of 200 cells · ml�1. Bicultures were prepared in a 1:1 ratio substitutive design
with each species in biculture inoculated at 100 cells · ml�1. All species combinations were grown in
triplicates and placed on Wheaton roller racks (349000-A; Millville, NJ, USA) at 0.75 rotations per min, on
a 16:8 h light/dark cycle at 20°C under a light intensity of 81 �E. We completed 10% medium exchanges
every second day with 100 ml of sterile COMBO beginning 4 days after the initial inoculation. When
cultures reached steady-state densities as indicated by chlorophyll a fluorescence measures, we exam-
ined each replicate via compound microscopy to confirm species identification and the absence of visible
contaminants.

We measured biomass at the community level every second day by counting cell density, where we
estimated total biomass (�g/ml) as the population cell density counts (cells/ml) � volume of algal cells
based on the equivalent circle diameter (�m3/cell) � specific gravity of water (1 g/1012 �m3) � (1 � 106

�g/g). For this calculation, we used mean volume estimates from our culture stocks (see Table S1). To
measure the cell densities of each population, samples of 1 ml of algae were preserved with 250 �l of
sugared buffered Formalin every second day until day 30, and then every fourth day until day 46. Algal
densities (either cells or colonies depending on the natural unit for each algal species) were measured
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via a FlowCam (Fluid Imaging Technologies Inc., Scarborough, ME, USA). Phosphate concentrations were
measured using the automated ascorbic acid-molybdenum blue EPA method 365.1, and nitrate was
assayed using the automated Cd reduction EPA method 353.2 on a SEAL AutoAnalyzer 3 segmented flow
nutrient analyzer at the University of Michigan Biological Station (46).

RNA extraction, transcriptome sequencing, de novo transcriptome assembly, and transcript
quantification. We obtained a pellet of algal cells on day 48 from 100 to 900 ml of the culture medium
via serial centrifugation. The growth curve data indicated that the majority of algal monocultures and
bicultures were at steady state during this collection period (see Fig. S5). We extracted mRNA from the
algal pellet using an Ambion RNAqueous kit (Thermo Fisher Scientific, Waltham, MA, USA). RNA was
poly(A)-selected, and we constructed libraries using an Illumina TruSeq RNA sample preparation kit, v2.
The sequencing of 91-base pair paired-end reads was performed on an Illumina HiSeq 2000 platform at
Beijing Genome Institute (BGI; Shenzhen, Guangdong, China). We assessed the quality of sequence
libraries using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We removed Illu-
mina primers and adapters from raw sequencing reads using cutadapt v1.1, trimmed low quality bases
below a Phred score of 20 with the SeqTrim Python module (https://github.com/bastodian/
Dimensions/blob/master/QC-and-Assembly/IpythonNotebooks/QTrim.ipynb), and retained reads
greater than or equal to 45 base pairs for further analysis. To assemble reference transcriptomes for all
eight species, we combined all of the short reads from our monoculture replicates and assembled
references using the de Bruijn graph assembler, Trinity, using default settings (47). We then mapped
short read sets back to the assembled transcriptomes using Bowtie and estimated the abundance of
reads for each species in monoculture and biculture using an expectation-maximization algorithm, RSEM
(48, 49). Previous measures of the phylogenetic distances between algal species have shown that the
number of shared 25-bp sequences between species in their metatranscriptomes is negligible (50).
Therefore, our mapping methods of reads of at least 45 bp in length minimize the potential for
misassigning reads between species in biculture. We then identified genes by only retaining sequences
with an open reading frame that contained known domains by using hidden Markov model searches
against the Pfam A database with Transdecoder (47) and HMMER (51). See supplements in reference 20
and https://github.com/bastodian/Dimensions for further details.

Lipid quantification. Biocrude and biodiesel are the two renewable liquid fuels that can be
produced directly from microalgal biomass. Biocrude can be produced via hydrothermal liquefaction.
This thermochemical process uses the entire wet biomass; however, a biomass rich in lipid content
produces higher biocrude yield and quality (52, 53). Biodiesel uses the lipid fraction of the algal biomass.
Lipid content is therefore a strong proxy for both biocrude and biodiesel yield.

To determine total lipid content, we simultaneously extracted and catalytically (trans)esterified all
classes of lipids in algal biomass. We use this analytical-scale acid-catalyzed in situ transesterification
method, because this procedure recovers more fatty acids than the traditional two-step extraction and
transesterification procedure (54–56). We weighed 20 to 100 mg of dry solids into 16 mm by 100 mm
glass tubes sealed with Teflon-lined screw caps. We vigorously stirred solids for 90 min with 2 ml of 99%
methanol (MeOH) containing 5% acetyl chloride at 100°C. We stopped the reaction with 1 ml of water
and extracted FAMEs into 4 ml total of n-heptane spiked with an internal standard of 100 to 200 mg ·
liter�1 tricosanoic methyl ester (C23:0 FAME; Supelco, Sigma). We injected 1-�l aliquots onto an HP-
InnoWax column (30 m by 0.32 mm by 0.25 �m; J&W 1909BD-113) at an initial oven temperature of
150°C, 10 to 100:1 pulsed split ratio, and 260°C inlet temperature. The temperature was held constant for
3 min and then increased at 6°C · min�1 to 260°C. The flame ionization detector (FID) temperature was
300°C. We used helium as the carrier gas, with a constant flow rate of 1.0 ml · min�1, and N2 as the
make-up gas. FAME retention times were identified against a Supelco 37 component FAME mix analytical
standard (Sigma). We converted the peak area to mass quantity using the following formula: mg
esterx � (mg/liter ISTD in solvent/area ISTD)(liter workup solvent)(area esterx)(RRFISTD,x), where esterx

refers to each of the fatty acid groups identified in the algal lipids, ISTD refers to the internal standard
used (tricosanoic methyl ester), and RRFISTD,x is the theoretical response factor for each esterx relative to
the appropriate internal standard (57).

Total FAME content consisted of 28 different fatty acids. The proportions of these different fatty acids
were used to calculate two important qualities of extracted total FAME, cetane number and higher
heating value. These measures of fuel ignition delay and the quantity of heat released during fuel
combustion can be predicted by the molecular weight of the fatty acid methyl ester and the number of
double bonds using the equations detailed by Ramírez-Verduzco et al. (58).

Overyielding and multifunctionality statistical analyses. To determine which bicultures overy-
ielded in biomass and/or FAME yields, we calculated the expected yields for biculture production by
summing the 0.5� monoculture yield produced for each species. As we had multiple biological replicates
for each monoculture and biculture combination, we calculated all possible pairwise combinations to
obtain a range of expected values. The observed versus expected yields were compared via two-sample
t tests. We infer “overyielding” when the biculture yield was significantly higher than the average of the
two monocultures, in contrast to “underyielding,” when the biculture yield was significantly lower than
the average of the two monocultures. Given the rarity at which we observed significant underyielding,
we refer to both nonsignificant differences and underyielding as a combined category of “nonovery-
ielding” bicultures.

High bio-oil production requires both high biomass yield and quality, and so we have now applied
newly developed methods for simultaneously assessing multiple functions. We use two of these
“multifunctionality” metrics, including a threshold approach that considers whether each function for a
particular community exceeds a predefined threshold of functionality and an averaging approach that
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reduces multiple functions to a single standardized measure per community (15, 59). Our threshold
multifunctionality metric was calculated by standardizing the scales for each function by ranking each
culture and dividing each rank by the total number of cultures (n � 99 rather than 108 due to incomplete
sampling). The culture with the highest performance for a function has rank 1, and the culture with the
lowest performance has a rank of 1/99. We calculated the “distance from optimum” for each culture,
defined as the Euclidean distance between the performance ranks for a given culture and the point
where both ranks are equal to 1 (i.e., the maximum possible multifunction performance). Smaller
distances indicate more optimal performance considering both functions. We also calculated the
“maximum performance threshold,” defined as the highest performance rank at which a culture can
perform both functions simultaneously. We calculated the percentage of monocultures versus bicultures
that performed both functions greater than each threshold (between 0 and 1 at 0.01 increments). To
calculate multifunctionality via the averaging index, we converted FAME (wt % of sample) and biomass
(i.e., log-transformed values of population cell density multiplied by estimates of cell biovolume) values
to standardized Z-scores. Standard scores were averaged together to yield a multifunctionality index. For
both multifunctionality methods, we assessed the effect of species richness on multifunctionality via a
nested analysis of variance (ANOVA) in which species combination was nested within our monoculture
versus biculture variable of interest. To compare the best performing monoculture against the top
performing bicultures, we subsampled the six biculture replicates across the top three performing
bicultures in groups of two with replacement and iterated 10,000 times. We calculated the Z-score for
the mean monoculture value (i.e., Euclidean distance to optimum in our multifunctionality metric) within
the distribution of mean biculture values.

Transcriptome statistical analyses. Assembled transcripts were aligned via BLAST to a UniProt
custom database that contains sprot and trembl for fungi and plants (obtained 30 August 2013). We
discarded all transcripts with UniProt identifiers (IDs) matching outside the green plant taxa (Diapho-
retickes or Plant�SAR�HA megagroup) from further analysis. All remaining transcripts were assigned
Gene Ontology terms via their UniProt IDs. The transcripts assigned to UniProt IDs with no known Gene
Ontology assignments were excluded from further analyses. After this Gene Ontology filtering step, we
excluded nine populations from our bicultures from further analyses, because their sequence libraries
averaged fewer than 500,000 total read counts (i.e., sequence depth). The transcript data were analyzed
via the EdgeR package in R using standard procedures (60). The transcript counts were normalized using
the calcNormFactors function, and read counts for each gene were fit with negative binomial generalized
log-linear models using the glmFit function in EdgeR. Model contrasts of the monoculture condition
against each biculture condition were used to generate log-fold change values of each transcript in
monoculture versus biculture. The standard EdgeR modeling procedure for the calculation of differential
expression automatically accounts for variation in sequencing depth or library size between the
monoculture and biculture growing conditions. Therefore, the variation in the relative abundance of
each algal species due to the treatment condition does not interfere with the evaluation of differential
expression.

A primary aim of our study was to determine the effect of growing condition on fatty acid
metabolism and the genes involved in this function. We chose to use Gene Ontology terms as a method
for identifying genes likely playing important roles in fatty acid metabolism in nonmodel organisms. We
note that any interpretation of gene function from nonmodel organisms should always be interpreted
with caution. The Gene Ontology database categorizes functions using a hierarchy of descriptive terms.
These categorizations are supported by scientific literature either from direct experimental evidence,
phylogenetically inferred annotations, or computationally inferred annotations (61). These annotations
identify the most specific function for each gene that can be inferred using currently available data.
Indeed, for many algal species, more than 40% of their genes could not be reliably assigned to any Gene
Ontology (GO) term. We used GO term categorizations as the currently best available means of cautiously
predicting function in nonmodel organisms. We divided all Gene Ontology terms into two categories. We
designated GO terms as “lipid terms” if the term names contained any of the following keywords or
partial words: “fat,” “stero,” “lip,” “steryl,” and “wax.” These key terms were chosen to encompass different
classes of fats and their enzymes, such as lipid, lipase, lipoate, steroid, and sterol.

To detect shifts in lipid gene expression compared to that for all other gene functions, we
categorized genes and their log-fold change (logFC) values into either the lipid or nonlipid group based
on Gene Ontology assignments. For each algal species in each biculture condition, the distributions of
logFC values between the lipid and nonlipid groups were compared with a Kolmogorov-Smirnov test. We
tested whether significant differential expression of lipid genes was positively associated with relative
and total FAME levels using logistic regression.

We measured gene expression similarity among algal populations within and among species
combinations using multidimensional scaling plots for each algal species independently (plotMDS
function, R package “Limma”). The Euclidean distances between points within versus among treatments
were compared via two-sample t tests. To visualize broader patterns across all algal species simultane-
ously, we calculated mean logFC values of transcripts within each lipid GO term and then used these 28
GO terms as variables in a principal-component analysis. We tested whether clusters of FAME overyield-
ing versus nonoveryielding bicultures were significantly divergent in principal-component (PC) space via
multiple analysis of variance on principal-component scores as well as logistic regression.

Since we found these lipid GO terms significantly separated FAME overyielding bicultures from
nonoveryielding cultures, we then tested whether sets of orthologous genes within these GO terms were
significant predictors of FAME yield via linear regression. To test the effects of specific gene functions
across multiple algal species, we first needed to identify gene orthologs. We completed a more restricted
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BLASTp search of transcripts in the lipid Gene Ontology group to the single algal species that most
frequently appeared in our unrestricted blast matches (Chlorella variabilis) to identify orthologs across
species. We then completed linear regression on each gene, now restricted to a CHLVA UniProt ID, that
was present in two or more of our eight algal species. We were especially interested in two genes
involved in fatty acid production, diacylglycerol acyltransferase and phospholipid diacylglycerol acyl-
transferase, yet we did not find orthologs for each species to Chlorella variabilis. We therefore completed
a second BLASTp search using genes annotated as DGATs and PDATs from the Arabidopsis thaliana
genome and queried these genes against our reference transcriptome. Lastly, to elucidate whether other
physiological processes may explain why certain bicultures overyielded in FAMEs while others did not,
we determined whether differential expression among genes regulating photosynthesis and nutrient
assimilation were predictive of FAME yields in biculture relative to that in monoculture. We identified
genes annotated as photosynthesis regulatory genes (including those encoding carbonic anhydrase,
glutamate semialdehyde aminotransferase, and light harvesting chlorophyll a-b complexes), and nutrient
assimilation genes (including those encoding iron permease, nitrite transporters, nitrite reducers, nitrate
transporters, nitrate reducers, and phosphate transporters) in the Chlamydomonas reinhardtii genome.
We identified these genes in our study species using BLASTp searches of C. reinhardtii queries against our
reference transcriptomes. To detect shifts in photosynthesis gene expression compared to those for all
other gene functions, and nutrient assimilation gene expression compared to that for all other gene
functions, we compared the distributions of gene logFC values between groups using Kolmogorov-
Smirnov tests as described above for our lipid gene differential expression analysis.

We calculated relative changes in FAMEs, higher heating values, and cetane numbers as log-fold
changes to correspond to the standard log-fold change measure for reporting gene differential expres-
sion. For all figures referring to relative FAME yield, we calculated a combined relative FAME yield per
biculture. These combined relative FAME values were calculated as log2FC {[mean biculture yield]/[mean
(mean yield of species A in monoculture, mean yield of species B in monoculture)]}. In addition to testing
the effects of gene logFC on FAME yields, we also tested the effects of gene logFC on the bio-oil quality
metrics cetane number and higher heating value. Log ratios of these two metrics were calculated in the
same way as described for FAME levels. All significance values reported in the above analyses account
for multiple comparisons via false discovery rate corrections (62). All analyses were completed in R Studio
(version 0.99.903).

Data availability. Data and analyses can be found at https://github.com/sjackrel/Biofuel-genomics.
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