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ABSTRACT Investigating sources of microbial contamination in urban streams, es-
pecially when there are no contributions from combined sewer overflows or sewage
effluent discharges, can be challenging. The objectives of this study were to identify
the sources of microbes in an urban stream and quantify their relative contributions
to the microbial community in the stream under dry and wet weather conditions. A
microbial source tracking method relying on the 16S rRNA gene was used to investi-
gate the microbial communities in water samples of an urban stream (i.e., from 11
dry and 6 wet weather events), as well as in streambed sediment, soils, street
sweepings, sanitary sewage, an upstream lake, and feces of animals and birds col-
lected between 2013 and 2015. The results showed that the Escherichia coli levels in
the stream were significantly higher in wet weather flow than in dry weather flow.
The upstream lake contributed approximately 93% of the microbes in dry weather
flows. Water discharged from storm drain outfalls was the biggest source of mi-
crobes in wet weather flows, with a median contribution of approximately 90% in
the rising limb and peak flow and about 75% in the declining limb of storms. Fur-
thermore, about 70 to 75% of the microbes in the storm drain outfall water came
from materials washed off from the street surfaces in the watershed. Fecal samples
did not appear to contribute substantially to the microbes in environmental sam-
ples. The results highlight the significance of street surfaces in contributing microbial
loads to urban streams under wet weather conditions.

IMPORTANCE Identifying the sources of microbial contamination is important for
developing best management practices to protect the water quality of urban
streams for recreational uses. This study collected a large number of water samples
from an urban stream under both dry and wet weather conditions and provided
quantitative information on the relative contributions of various environmental com-
partments to the overall microbial contamination in the stream under the two
weather conditions. The watershed in this study represents urban watersheds where
no dominant fecal sources are consistently present. The findings highlight the im-
portance of reducing the direct contribution of microbes from street surfaces in the
watershed to urban streams under wet weather conditions. The methods and find-
ings from this study are expected to be useful to stormwater managers and regula-
tory agencies.

KEYWORDS dry weather condition, microbial source tracking, urban stream, wet
weather condition

Fecal contamination can make urban streams unsuitable for recreational use (1, 2)
and create public health concerns (3, 4). Fecal bacteria in urban streams under dry

and wet weather conditions may originate from several different environmental
sources. In urban watersheds, fecal bacteria may originate from sources like sanitary
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sewage and feces of wild animals, birds, and domestic pets (5–7). Embankment soil and
streambed sediment may act as a repository of these fecal bacteria (8–10) and serve as
environmental sources of fecal bacteria to stream water during wet weather events.
Storm drainage from subwatersheds can be a major nonpoint source of microbes in
urban streams under wet weather conditions (11–13). Pollutant buildup via processes
like wind erosion and deposition during dry periods that precede storms may also
contribute to bacterial load (14, 15). Identifying the predominant sources of fecal
bacteria in a particular urban stream can be challenging (6, 13, 16).

Levels of fecal indicator bacteria (FIB) in urban streams often rise during storms (3,
17), and the elevated levels can persist from 24 h (18) to up to 5 days after a storm (19).
Levels of fecal bacteria in stormwater can vary within a wet weather event, too. Some
studies have reported that the earlier phases of a stormwater hydrograph typically have
the highest bacterial concentrations compared to later phases (20–22). A better un-
derstanding of the temporal variation in bacterial load and composition of stormwater
can be helpful for designing stormwater control measures and best management
practices.

Culture-based methods of enumerating FIB cannot differentiate fecal bacteria from
different sources (23, 24). Quantitative real-time PCR (qPCR)-based methods targeting
host-specific markers (25, 26) can detect and quantify fecal contamination from specific
hosts; however, they require separate analysis for each host (27) and cannot assess the
relative contributions of multiple sources (28). On the other hand, microbial source
tracking (MST) tools relying on 16S rRNA gene sequencing libraries have the potential
to quantify the relative contributions of multiple sources to the microbial composition
of an environment (29, 30). These methods often involve the characterization of
microbial communities in relevant samples by targeting the hypervariable region(s) of
the 16S rRNA gene, and they have been successfully used to identify the hosts of fecal
bacteria in water (24, 26, 31, 32). The use of DNA sequencing data with computational
mixing models, such as SourceTracker, enables the employment of Bayesian inference
for estimating the relative contributions of microbes from multiple sources to an
environment (33). In SourceTracker analyses, the relative contributions from different
sources to a sink environment are modeled as a probabilistic mixture of the compo-
sition of the sources. The microbial composition of the sink environment is assumed to
result from mixing of the given sources and an additional unknown source. The tool
assigns each taxon in the sink environment to different sources using Gibbs sampling
to generate the posterior distribution. SourceTracker has been used to track the sources
of microbial communities in sewage (30), public restrooms (35), indoor air (36), the skin
of newborn infants (37), and neonatal intensive care units (38), as well as lake estuaries
(39), coastal waters (40), and urban stormwater (41).

The objectives of this study were to identify the sources of microbes in an urban
stream and quantify their relative contributions to the microbial community in the
stream under dry and wet weather conditions. The study site was a segment of
Antelope Creek, a concrete-lined urban stream located in Lincoln, Nebraska. Antelope
Creek is impaired due to high levels of Escherichia coli during summer months (42). The
microbial communities were characterized for water collected from multiple in-stream
locations in 11 dry weather events and multiple stages of six wet weather events, as
well as for samples representing storm drain outfall water, streambed sediment,
embankment soil along the stream, erodible soil around the watershed, street sweep-
ings from impervious surfaces, an upstream lake reservoir, and sanitary sewage and
feces of birds and animals in the watershed. Water quality parameters were also
monitored for the in-stream water samples. Bioinformatic and statistical analyses were
conducted to elucidate the relationships within the environmental samples and be-
tween environmental and fecal samples. Information from the study could be useful in
developing best management practices to reduce the levels of fecal contamination in
urban streams.
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RESULTS
E. coli in Antelope Creek. The E. coli levels in Antelope Creek water were signifi-

cantly higher in wet weather flow than in dry weather flow (Fig. 1). The median
concentrations of E. coli across the four sampling sites (AC1 to AC4) were 0.36 � 103 to
1.04 � 103 CFU/100 ml in dry weather flow, 0.20 � 105 to 1.05 � 105 CFU/100 ml in
rising limb, 4.6 � 104 to 6.5 � 104 CFU/100 ml in peak flow, and 0.91 � 104 to 4.79 �

104 CFU/100 ml in declining limb of wet weather flow (Fig. 1). The E. coli concentrations
in rising limb, peak flow, and declining limb were all significantly higher than those in
dry weather water (P � 0.001). The average E. coli concentrations among the four
sampling sites were not significantly different from each other under dry or wet
weather conditions (P � 0.05). The E. coli concentrations in the three stages of the wet
weather flows were also not significantly different from each other (P � 0.521).

General description of DNA sequences. The average length of DNA sequences
was 253 bp. The number of sequences per library ranged from 4,040 to 307,972. The
libraries were rarefied to 4,000 reads per sample for downstream analyses, and libraries
with �4,000 reads were discarded. The remaining 306 libraries consisted of more than
14 million reads representing 1,759 unique operational taxonomic units (OTUs). Rar-
efaction curves (see Fig. S2 in the supplemental material) suggest that the sequencing
effort covered the dominant taxa at a genetic distance of 3%.

Microbial composition in samples. Not surprisingly, Proteobacteria, Bacteroidetes,
and Actinobacteria were among the major bacterial phyla detected in most environ-
mental and fecal samples (Fig. S3 to S5). In addition to the phylum level, the taxonomic
composition of the samples at the family level is summarized in Table S3 and
presented in Fig. S6. Some major families in the environmental and fecal samples
include Comamonadaceae, Moraxellaceae, Oxalobacteraceae, and Enterobacteria-
ceae. The �-diversity indices (Chao1, Shannon index, and observed OTUs) of the fecal
samples were consistently lower than those of the environmental samples (Table S1).
Streambed sediment and wet weather water had higher �-diversity indices than dry
weather water. Embankment soil, street sweepings, and erodible soil in the watershed
had similar �-diversity indices. Finally, pairwise comparison using permutational anal-
ysis of variance (PERMANOVA) revealed that the microbial compositions between
samples were, in general, significantly different from one another (P � 0.05, Fig. S7).

Spatial and temporal variation. The results from PERMANOVA, also sometimes
referred to as adonis analysis, showed greater temporal variation than spatial variation
for the microbial community present in water samples from Antelope Creek (Table 1).

FIG 1 Boxplot showing E. coli concentrations in Antelope Creek water under dry weather conditions and
in the three stages under wet weather conditions. The bottom and top of each box represent the 25th
and 75th percentiles, respectively. The bold line inside each box represents the median concentration,
while the dot represents the average concentration. Whiskers on either side of each box represent data
within 1.5 times of the interquartile range (25th percentile to 75th percentile).
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For dry weather water samples, grouping by sampling event explained 80.6% of the
variation (P � 0.001), while grouping by sampling site explained only 3.0% of the
variation and was not significant (P � 0.997). Similarly, for wet weather water samples,
grouping by sampling event better explained the variation than grouping by sampling
site (36.7% versus 3.0%; Table 1). The grouping of the three stages of wet weather flows
explained 16.9% of the variation in the structure of the microbial community (P �

0.001). For the microbial community in storm drain outfall water, groupings by site and
event were both significant.

Correlation with water quality parameters. Mantel tests were carried out to test
the correlation of the microbial community in water with water quality parameters and
environmental factors (Fig. 2). A summary of the water quality parameters is provided
in Table S2. The microbial composition in dry weather water samples had a moderate
correlation (0.3 � r � 0.7, P � 0.05) with flow rate at the time of sampling. The
microbial composition in rising limb samples had moderate correlations with total
Kjeldahl nitrogen (TKN), total phosphorus (TP), total suspended solids (TSS), and E. coli.
The microbial composition in peak flow samples had moderate correlations with
ammonia (NH3-N), nitrate (NO3-N), chemical oxygen demand (COD), flow rate, and
antecedent dry period. The microbial composition in declining limb samples had strong
correlations (0.7 � r � 1.0, P � 0.05) with NO3-N and antecedent dry period and
moderate correlations with chloride, E. coli, and flow rate.

SourceTracker analysis. (i) Conceptual models. Two conceptual models were
established to define the sinks and sources of microbes in the watershed (Fig. 3). For dry
weather conditions, water in Antelope Creek (i.e., dry weather water) was considered a

TABLE 1 PERMANOVA results showing the significance of spatial and temporal grouping
factors for the microbial community in the water samples collected from Antelope Creek
and storm drain outfalls along the creek

Sample type Grouping factora No. of groups R2 P

Dry weather water Site 4 0.030 0.997
Event 11 0.806 �0.001

Wet weather water Site 4 0.030 0.918
Event 6 0.367 �0.001
Stage (rising limb, peak

flow, declining limb)
3 0.169 �0.001

Storm drain outfalls Site 8 0.395 0.039
Event 3 0.215 0.006

aSite and event information for each sample type can be found in Table 2.

FIG 2 Mantel test results showing significant correlation (P � 0.05) between weighted UniFrac distance
for overall microbial community and Bray-Curtis dissimilarity coefficient for water quality parameters and
environmental factors. The sizes of the boxes and the fill color both represent the r value. Boxes are
shown only for significant correlations (P � 0.05).
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sink, while the base flow from Holmes Lake and the resuspension of streambed
sediment were considered two sources of microbes (Fig. 3A). For wet weather condi-
tions, water in Antelope Creek (i.e., wet weather water) was considered a sink, while the
flow from Holmes Lake, the resuspension of streambed sediment, the erosion of
embankment soil, and the storm drain outfall water were considered sources of
microbes (Fig. 3B). In the wet weather model, erodible soil, sanitary sewage, and street
sweepings were considered the sources of microbes in storm drain outfall water. The
storm drains receive runoff from impervious surfaces (i.e., street sweepings from road
and parking lots) as well as pervious surfaces (i.e., erodible soils in the subwatershed).
Even though the Antelope Creek watershed does not have combined sewer overflows
(CSOs) and Antelope Creek does not receive discharge from wastewater treatment
plants, sanitary sewage was included as a potential source of microbes to account for
sanitary sewage leakage and accidental cross-connections (12).

(ii) Dry weather conditions. Based on SourceTracker analyses, the base flow from
Holmes Lake was predicted to be the largest contributor of microbes to Antelope Creek
under dry weather conditions, with the median value of the relative contribution being
between 93% and 94% based on five separate runs of SourceTracker analysis (Fig. 4).
Streambed sediment and the unknown sources each contributed to less than 5% of the
microbes in dry weather water. The families with a relative contribution greater than
0.50% to dry weather water are presented in Table S4. For example, both Holmes Lake
and streambed sediment contributed Comamonadaceae to the dry weather water, with
relative contributions of 6.42% and 0.51%, respectively.

(iii) Wet weather conditions. For wet weather events, the rising limb, peak flow,
and declining limb were separately treated as sinks in SourceTracker analyses. The
microbes in runoff water from storm drain outfalls accounted for 88 to 90%, 89 to 91%,
and 75 to 76% of the microbes in the rising limb, peak flow, and declining limb,
respectively (Fig. 5). A closer look at the SourceTracker data reveals that the relative
contribution of Comamonadaceae from the runoff water in storm drain outfalls in-
creased from 5.13%, to 9.55%, and to 18.65% over the three phases (Tables S5 to S7).
The relative contributions of microbes from Holmes Lake, embankment soil, and
streambed sediment to wet weather flows were generally less than 5% (Fig. 5). The
family Comamonadaceae from Holmes Lake and streambed sediment made 1.24% and
0.77%, respectively, relative contributions to the microbial communities in the declin-
ing limb of wet weather flow (Table S7).

FIG 3 Conceptual model for SourceTracker analysis showing major sources of microbes to Antelope
Creek for dry weather conditions (A) and wet weather conditions (B).
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When water from storm drain outfalls was treated as a sink, the median relative
contribution from street sweepings ranged from 70% to 75%, while those from the
sanitary sewage and unknown sources accounted for 4 to 6% and 18 to 23%, respec-
tively (Fig. 6). The top three families that made the highest relative contributions from
street sweepings to the water in storm drain outfalls were Pseudomonadaceae (7.78%),
Oxalobacteraceae (6.66%), and Comamonadaceae (5.62%) (Table S8).

(iv) Hosts of fecal contamination. In the SourceTracker analysis of fecal contami-
nation, the feces of animals and birds were treated as sources, and different environ-
mental compartments were treated as sinks (Fig. S8 to S12). Contributions from any
fecal samples were predicted to be trivial in embankment soil, erodible soil, streambed
sediment, and Holmes Lake samples, while the largest contributions were attributed to
unknown sources. Pigeon feces was predicted to account for a median of 14 to 21% of
the microbial community in street sweepings.

DISCUSSION
Microbial communities in Antelope Creek water. Temporal variation in the micro-

bial composition of dry weather and wet weather water samples collected from Antelope
Creek was found to be more pronounced than spatial variation (Table 1). This suggests that
in Antelope Creek, event-based environmental characteristics can better explain the mi-
crobial community in water samples than location-based characteristics can. Since Ante-
lope Creek is mostly composed of concrete-lined straight channels, the retention time for
water is fairly short, and the flow is well connected throughout. There are no known
hotspots of microbial contamination, as evidenced by similar E. coli levels at different
sampling sites along the stream (Fig. 1). In the absence of localized site-specific factors,
environmental factors affect microbial composition throughout the stream in a similar
manner. The absence of hotspots of microbial contamination also suggests that the
microbial contamination in Antelope Creek is likely from nonpoint sources.

Environmental conditions that can affect the temporal variation of microbial com-
position include parameters, such as antecedent weather, rainfall amount, temperature,
and exposure to sunlight UV radiation (43, 44). In this study, an antecedent dry period
was found to be correlated with microbial community in dry weather, peak flow, and
declining limb water samples, suggesting that an antecedent dry period has an
influence on microbial composition of urban water bodies. Nutrient concentrations

FIG 4 Five runs of SourceTracker analysis showing the relative contributions of potential environmental
sources to the overall microbial community in dry weather water.
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may also vary seasonally (45, 46). Noticeably, NO3-N had moderate to strong correla-
tions with the water from dry weather flows as well as the peak flow and declining limb
of wet weather flows (Fig. 2), indicating that the nitrate and microbial community in
Antelope Creek may originate from similar environmental sources. The lack of correla-
tion between NO3-N and the microbial community in rising limb may be due to the
contribution of atmospheric NO3-N to Antelope Creek, which was likely to be substan-
tial in the initial stage and negligible in the later stages of the storm (47, 48). Flow rate
was found to correlate well with microbial composition, particularly in dry weather and
declining limb samples, suggesting that contributing flows brought both water and
microbes to Antelope Creek. The E. coli levels in Antelope Creek had significant
correlations with microbial composition in dry and wet weather water. This suggests
that the same environmental sources could be responsible for both the overall micro-
bial community and the E. coli population in Antelope Creek.

Interestingly, for the microbial composition in storm drain outfall water, spatial
variation was more pronounced than temporal variation (Table 1). This highlights the
existence of site-specific factors that were distinct among the subwatersheds contrib-

FIG 5 Five runs of SourceTracker analysis showing the relative contributions of potential environmental
sources to the overall microbial community in the three stages of wet weather flow.
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uting flow to each storm drain outfall. Some of these factors could be related to storm
drainage infrastructure in the neighborhood (30), specific land use within the contrib-
uting area (49), and tree cover (50).

Microbial community in street sweepings. DNA sequence data show that the
microbial communities in street sweeping samples had the following major families (Table
S3): Rhodobacteraceae (8.1% relative abundance), Comamonadaceae (7.3%), Enterobacteri-
aceae (7.3%), and Oxalobacteraceae (7.0%). The high relative abundance of Enterobacteria-
ceae is noticeable, as this is a large family of Gram-negative bacteria that includes many
familiar pathogens, such as Salmonella spp., Klebsiella spp., Shigella spp., and E. coli.

SourceTracker analysis. (i) Dry weather conditions. Holmes Lake was the biggest
contributor of microbes in dry weather flow. The lack of substantial contribution from
streambed sediments is likely due to the fact that the dry weather flow in Antelope
Creek does not contain a large amount of suspended sediments. Only very fine particles
are likely to enter the stream from Holmes Lake, as larger particles settle upstream of
the dam. The mean particle size in typical dry weather flows was measured to be
approximately 1 �m (Fig. S13). On the other hand, the mean particle size in typical
streambed sediment was measured to be about 2 mm. This explains why the resus-
pension of bed sediments into the water column was not substantial during dry
weather flow and why dry weather water and streambed sediment formed separate
clusters in the principal-coordinate analysis plot shown in Fig. S14 (9, 51).

(ii) Wet weather conditions. Field observation and model simulation suggest that
streambed sediment could be a major source of fecal bacteria in wet weather flows due
to resuspension (52–55). Streambed sediment can act as a repository of bacteria
because it provides favorable growth conditions (8–10) and protection from UV radi-
ation (56). However, the streambed sediment in Antelope Creek was not a major
contributor of the microbes in wet weather flows, likely because Antelope Creek is
concrete-lined and does not contain a large amount of erodible streambed sediment.

A large portion of the stormwater in urban streams comes from the impervious areas in
the watershed. This partially explains why the flow rate in Antelope Creek was up to 300
times higher during storms than during dry periods (Fig. S1). Indeed, SourceTracker
analyses showed that the runoff discharged at the storm drain outfalls accounted for a large

FIG 6 Five runs of SourceTracker analysis showing the relative contributions of potential environmental
sources to the overall microbial community in storm drain outfall water.
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proportion of the microbial community in wet weather water in Antelope Creek, with the
highest contribution to the peak flow, followed by the rising limb and the declining limb.
Conversely, the contribution from Holmes Lake was lowest in the peak flow and highest in
the declining limb, suggesting that contributions from Holmes Lake become increasingly
important during the later parts of the flow hydrograph.

According to SourceTracker analyses, street sweeping samples, which represent
materials deposited on impervious surfaces, were the largest contributors to the
microbes in the storm drain outfall water. Connected imperious surfaces can directly
convey water to a stream through a network of pipes and lined channels (57). In
addition to affecting chemical parameters, such as electrical conductivity, total phos-
phorus, and filterable reactive phosphorus (57, 58), impervious areas in residential areas
were found to contribute 78% of the fecal coliform load in an urban watershed in
Wisconsin (59). A simulation study suggested that a combination of structural man-
agement practices and regular street sweepings can reduce fecal coliform loads by
7.5% to 17% in urban stormwater (60). The findings of this study also suggest that
connected impervious surfaces can serve as an immediate source of microbes to urban
streams and should be targeted for implementing best management practices.

Conclusions. The high E. coli levels in Antelope Creek likely resulted from nonpoint
sources. Holmes Lake, the lake located upstream of the study area, contributed �90%
of the microbes in Antelope Creek during dry weather flows, while the contribution of
streambed sediment was less than 5%. Stormwater runoff discharged into Antelope
Creek from the storm drain outfalls contributed more than 75% of the microbes in
Antelope Creek during wet weather flows, while the runoff mostly consisted of mi-
crobes washed off from streets in the watershed. Feces of pets, animals, and wild birds
were not found to be major contributors of microbial contamination in Antelope Creek.

MATERIALS AND METHODS
Study area. The study area is an approximately 5.8 km (3.6 mile) long reach within Antelope Creek

located in Lincoln, NE. The reach is bounded at the upstream end by Holmes Lake, a 45-ha (112-acre)
flood control reservoir, and by a weir at the downstream end (Fig. 7). The stream channel in the study

FIG 7 Map of the study area (in green) marked with in-stream sampling sites, storm drain outfalls, and
a USGS gaging station. Direction of flow in Antelope Creek is from Holmes Lake toward AC1. Open-
StreetMap was used to create this figure (https://www.openstreetmap.org/).
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area is fairly straight, and nearly 80% of the channel is concrete lined. The E. coli levels in summer months
routinely exceed the bacteriological water quality standard of 126 CFU/100 ml (61).

The Antelope Creek watershed is primarily a residential watershed, with more than 75% of the land
use classified as residential area and roads. Under dry weather conditions, the reach in the study area
receives base flow from Holmes Lake and intermittent flows, such as landscape irrigation. There are no
combined sewers or known industrial and municipal discharges into Antelope Creek. With the exception
of the main channel, the storm drainage system in the area consists of subsurface pipes and culverts. In
the study area, the sediment layer on the bed of Antelope Creek is generally thin, patchy, and composed
of mostly sand and gravel.

Sampling. Sampling sites along Antelope Creek consisted of, from downstream to upstream, AC1,
AC2, AC3, and AC4. Storm drain outfalls sampled consisted of, from downstream to upstream, C1, C4, C5,
C6, C7, C12, C15, and C18 (Fig. 7). Time series data for precipitation, flow, and stage were collected from
the U.S. Geological Service (USGS) no. 0680330 gaging station in Antelope Creek.

All sampling events are summarized in Table 2. Specifically, grab samples of dry weather water and
streambed sediment were collected from four sites (AC1 to AC4) in 11 sampling events between 2013
and 2015. Dry weather water samples were collected in 1-liter Nalgene bottles from about 3 cm below
the water surface. Streambed sediment samples were collected in sterile 50-ml centrifuge tubes from the
top 3 cm of sediment in the streambed at the same location and time as the dry weather water samples.
In the four dry weather sampling events of 2015, embankment soil samples were also collected from the
stream embankment above the concrete lining of the channel, 100 m and 200 m upstream of each
sampling site (AC1 to AC4), totaling 64 soil samples (4 sites � 4 events � 2 banks � 2 distances). The
embankment soils were collected because they may be transported to the stream through overland
runoff during storms.

Wet weather water samples were collected from four sites (AC1 to AC4) in six storms. The wet
weather water samples were collected in 1-liter Nalgene bottles using rope-suspended samplers from
bridges over the sampling sites. The water samples were classified as rising limb, peak flow, or declining
limb based on the timing of the sample collection in relation to the flow hydrograph generated at the
USGS gaging station (Fig. S1). Out of the 72 wet weather water samples, 16 samples were from rising limb
(4 events � 4 sites), 36 samples were from peak flow (9 events � 4 sites), and 20 samples were from
declining limb (5 events � 4 sites).

Grab samples of water (n � 21) were collected from Holmes Lake under dry weather conditions. Grab
samples of water (n � 24) were collected at eight storm drain outfalls (from downstream to upstream, C1, C4,
C5, C6, C7, C12, C15, and C18) during storm one time in the summer of 2014 and two times in the summer
of 2015 (3 events � 8 outfalls). Samples were collected at the storm drain outfalls as early as possible after
the start of rain events in 1-liter Nalgene bottles using either rope-suspended samplers or sampling poles.

Other samples included street sweepings, sanitary sewage, and erodible soil in the watershed. Street
sweepings refer to the residuals collected by motorized sweeping equipment from sweeping the streets
(62) and represent materials that have deposited on streets. Street sweepings (n � 3) were collected in
collaboration with the City of Lincoln street sweeping crew from stockpiles of freshly collected sweep-
ings. Twenty-four-hour composite samples of untreated sanitary sewage (n � 7) were collected from a
local wastewater treatment plant. Erodible soil samples (n � 20) were collected from exposed (i.e.,
without grass cover) surfaces in the watershed.

Fecal samples were collected from the Antelope Creek watershed and its vicinity. Samples of horse feces
were obtained from a nearby horse riding stable. Fecal samples from other hosts were identified at the time
of collection based on reconnaissance surveys, animal sightings, surrounding evidence, and field guides
(63–65). A total of 30 fecal samples were collected from pigeons (n � 3), swallows (n � 6), ducks (n � 4), geese
(n � 5), dogs (n � 4), horses (n � 4), and small mammals (e.g., opossums, raccoons, and mice; n � 4).

All the samples were transported to the lab on ice within 2 h after sampling. The water samples were
filtered through 0.45-�m nitrocellulose filters (Millipore, Billerica, MA) to retain the microbial cells on the
filters (66). The filter papers, along with other samples, were frozen at �20°C until DNA extraction.

Water quality analysis. For water samples collected from Antelope Creek, ammonia (NH3-N), nitrate
(NO3-N), total Kjeldahl nitrogen (TKN), soluble reactive phosphorus (SRP), total phosphorus (TP), total sus-
pended solids (TSS), turbidity, surfactants, chloride, conductivity, and chemical oxygen demand (COD) were
measured according to the standard methods (67). E. coli enumeration was performed using the Quanti-
Tray/2000 method (Idexx Laboratories, ME). Particle size analysis for selected dry weather water samples was
carried out using a Zeta potential analyzer (ZetaPALS; Brookhaven Instruments Corporation, NY). Grain size
analysis for selected streambed sediment samples was carried out using the ASTM D422-63(2007)e2 method
(68).

DNA extraction and sequencing. DNA was extracted from the filters and source samples using the
Mo Bio PowerSoil DNA isolation kit (Carlsbad, CA) and purified using the Zymo OneStep PCR inhibitor
removal kit (Irvine, CA). To ensure that the PCR inhibitors were successfully removed, PCR tests were
carried out on the purified DNA extracts using the 27F-1492R primer set (69). Purified DNA extracts were
sent to Argonne National Laboratory to sequence the V4 region of the 16S rRNA gene on an Illumina
MiSeq platform using the 515F/806R primer set reported in the Earth Microbiome project (70).

Bioinformatic and statistical analyses. Sequence data were analyzed using QIIME (71), an open-
source bioinformatic pipeline. Demultiplexing and quality filtering were carried out in QIIME using the
default settings. Chimeric sequences were identified and removed from the demultiplexed reads using
Usearch6.1 (72). Taxonomy was assigned to sequences using the RDP Classifier based on the Greengenes
database v13_8 with 97% sequence similarity (72). Sequences were further filtered to remove operational
taxonomic units (OTUs) that accounted for less than 0.005% of the total sequence counts (73).

Baral et al. Applied and Environmental Microbiology

August 2018 Volume 84 Issue 15 e00896-18 aem.asm.org 10

http://aem.asm.org


The relative contributions of microbes from potential sources to sink environments were estimated
using SourceTracker 1.0.1, a computational tool that performs Bayesian inference using the Markov chain
Monte Carlo (MCMC) method (33). For each SourceTracker analysis, five independent runs were carried
out to reduce the effect of false predictions (40).

Statistical analysis and data visualization were carried out using R version 3.41 (74). E. coli concentrations
for the Antelope Creek water and the results of SourceTracker analysis were visualized as box plots using the
package ggplot2 (version 2.2.1) in R (75). Permutational analysis of variance (PERMANOVA) (76) and a mantel
test (77) were carried out using the package vegan version 2.4.3 (78). The package APE version 4.1 was used
to carry out principal-coordinate analysis based on weighted UniFrac distance (79).

Accession number(s). The DNA sequences have been deposited in the NCBI repository with the
accession number SRP073625.
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