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Abstract

A recent revolution in RNA biology has led to the identification of new RNA classes with 

unanticipated functions, new types of RNA modifications, an unexpected multiplicity of 

alternative transcripts and widespread transcription of extragenic regions. This development in 

basic RNA biology has spawned a corresponding revolution in RNA-based strategies to generate 

new types of therapeutics. Here, I review RNA-based drug design and discuss barriers to broader 

applications and possible ways to overcome them. Because they target nucleic acids rather than 

proteins, RNA-based drugs promise to greatly extend the domain of ‘druggable’ targets beyond 

what can be achieved with small molecules and biologics.

Twenty-five years ago, a relatively simple model of gene expression prevailed: DNA is 

transcribed to mRNA and then translated to protein. Gene transcription was thought to be 

largely regulated by protein transcription factors. This model was supposed to explain how 

cells with the same genetic code could carry out diverse functional programs. However, this 

simple model of RNA as a relatively passive carrier of genetic information from DNA to 

protein has been overturned1. In particular, we now know that much of extragenic DNA is 

transcribed into noncoding RNAs (ncRNAs) and that multiple transcripts, both coding and 

noncoding, are produced, the latter in both directions, from the same genes2,3. Long and 

short ncRNAs regulate gene expression at almost every step. This can occur 

transcriptionally, for example, by regulating chromatin modification, and post-

transcriptionally, for example, by affecting mRNA stability and translation.

This revolution in RNA biology began around the time that Nature Structural & Molecular 
Biology was born. Xist, the first well-described long noncoding RNA (lncRNA), responsible 

for X-chromosome inactivation in females, was identified a few years earlier4,5. In the same 

year as NSB’s first issue, Ambros, Ruvkun and colleagues identified lin-4, a microRNA 

(miRNA) gene encoding a precursor RNA processed into a short, 22-nucleotide double-

stranded RNA, as an important regulator of Caenorhabditis elegans development6,7. Lin-4 

suppresses the expression of a developmental gene by recognizing a partially 

complementary sequence in its 3’ UTR6,7. Since then, thousands of miRNAs have been 
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shown to inhibit protein translation and enhance mRNA decay8,9. Just as protein 

transcription factors regulate the transcription of gene networks that function synchronously 

to change cellular states, miRNAs each potentially regulate hundreds of transcripts to control 

cellular responses to changes in the environment or to developmental cues10. Small 

interfering RNAs (siRNAs) in lower eukaryotes and the closely related Piwi-interacting 

RNAs (piRNAs), present in both invertebrates and vertebrates, also regulate transcription, 

mostly by enhancing formation of heterochromatin11–15. Small ncRNAs can also activate 

gene expression16,17. Interestingly, miRNA profiling more accurately predicts a cell’s 

differentiation state than mRNA profiling, a clear sign of the importance of ncRNAs in 

regulating cellular function18.

Even before the discovery of new classes of ncRNAs, critical roles in protein synthesis and 

mRNA splicing were well established for small ncRNAs, such as tRNAs, rRNAs and small 

nuclear RNAs (snRNAs), as well as for longer heterogeneous nuclear RNAs (hnRNA)1. 

RNAs can assume many functions, including acting as switches or as RNA enzymes, termed 

ribozymes, that can catalyze peptide bond formation or cleave and ligate DNA and 

RNA19,20. Although ribozymes are generally enzymatically inferior to protein catalysts, 

theorists of the origin of life have postulated an early self-replicating and self-sustaining 

‘RNA world’ in which many of the functions now performed by DNA and proteins were 

entirely executed by RNA21,22.

RNAs can fold into complex 3D structures, partly mediated by Watson-Crick pairing of 

short stretches of complementary bases within their sequences, but also by noncanonical 

hydrogen bonds formed by Hoogsteen base-pairing and by hydrogen bonds between ribose-

phosphate backbone moieties23. Tertiary RNA structure can generate so-called aptamers, 

which recognize small-molecule ligands, other nucleic acids or proteins with high 

specificity, often with binding constants in the nanomolar range24,25. In naturally occurring 

bacterial riboswitches, the tertiary conformation of the aptamer is radically altered by ligand 

binding to generate RNAs that regulate protein expression in a ligand-gated manner19,26. 

They act via various mechanisms, such as catalyzing RNA cleavage or regulating translation, 

splicing or transcription. These tertiary structural interactions combined with the specificity 

conferred by base-pairing of linear sequences bestow on RNA the potential for incredibly 

precise interactions with its targets.

The revolution in RNA biology has been fueled in large part by the development of more 

sensitive and inexpensive methods to sequence RNAs expressed in cells and to isolate and 

characterize RNAs bound to DNA, protein and other RNAs3. These unbiased methods have 

revealed a myriad of ncRNAs, both small and long, transcribed in both sense and antisense 

directions from coding gene bodies and their regulatory regions, as well as thousands of 

transcripts from what was formerly considered ‘junk DNA’27. The numbers of ncRNAs (and 

possibly their functions) has increased with evolution, perhaps explaining how organisms 

developed complexity without a corresponding increase in protein-coding genes. It is still 

uncertain, however, how many of these transcripts, especially those that are of very low 

abundance, are functional or just transcriptional noise. Nonetheless, the numbers of 

annotated ncRNAs continues to expand, and they will probably eventually surpass the 

numbers of protein-coding genes.

Lieberman Page 2

Nat Struct Mol Biol. Author manuscript; available in PMC 2018 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For coding RNAs, alternative splicing and the choice of multiple transcription start sites or 

polyadenylation sites generate multiple transcripts from the same gene, spawning even more 

biological complexity. In addition, nucleotides can be modified with over one hundred 

chemical modifications. We now know that modification of mRNA bases, such as by N6-

adenine methylation (6mA), play an important role in regulating mRNA stability and 

translation28. Some lncRNAs resemble mRNAs in that they are capped, polyadenylated and 

sometimes (although not often) evolutionarily conserved, even though they do not contain 

open reading frames predicted to be translated into proteins longer than short peptides. The 

function and mechanism of action are understood for only a small number of lncRNAs29. 

Most of the mechanistic studies of lncRNAs involve lncRNAs that bind in cis, sometimes in 

trans, to regions of DNA to modulate the epigenetic landscape, often by recruiting or 

evicting transcriptional activators or repressors. However, lncRNAs can also act as 

extrachromosomal scaffolds that assemble proteins into functional complexes in the cytosol 

or nucleus. Some of these examples involve binding to proteins by short linear sequences, 

much as transcription factors bind to specific DNA sequence motifs. Understanding of the 

functions of lncRNAs is still at an early stage. It is, however, likely that they are just as 

diverse as those of proteins and will include functions that rely not only on binding to linear 

sequences but also on the ability of RNAs to assemble into tertiary structures capable of 

high-affinity interactions with other molecules. Undoubtedly, some lncRNAs will also utilize 

the ability of RNAs to function as ribozymes.

RNA-based therapeutic strategies

The explosion of new RNA classes has raised the possibility of new therapeutic strategies 

that mimic or antagonize the function of these novel RNAs. Attempts to therapeutically 

harness RNA pathways began as soon as they were discovered, even before their mechanism 

of action was well understood. In the past year, several RNA-based drugs have shown 

clinical benefits for treating previously intractable diseases. We are on the verge of an era of 

new drugs that tap into RNA biology. Most of these drugs use nucleic acid analogs and take 

advantage of complementary base-pairing to mimic or antagonize endogenous RNA 

processes (Fig. 1). Turning RNAs into drugs has required overcoming two major hurdles: the 

poor pharmacological properties of RNA, which is rapidly degraded by RNases that are 

active in all body fluids, and the need to devise methods to deliver charged nucleic acid 

analogs across hydrophobic cell membranes into the cytosol or nucleus where they need to 

act (Box 1). It has taken almost 40 years of painstaking work to overcome these obstacles 

since the initial observation in 1978 that a 13-mer DNA oligonucleotide could inhibit Rous 

sarcoma virus translation and proliferation in a sequence-specific manner30,31.

When NSMB was launched, virtually all drugs were small molecules that bound to 

druggable targets—the active-site pockets of protein receptors or enzymes—to inhibit or 

potentiate their function. However, only approximately one third of the roughly 20,000 

proteins in the human genome are potentially druggable32,33. Biologicals (monoclonal 

antibodies (mAbs), immune modulators, replacement enzymes), which have become an 

increasing proportion of the pharmacopoeia, target these same druggable proteins. It has 

been only 30 years since the first mAb drug, anti-CD3 to treat transplant rejection, was 

approved. Now, new mAb drugs make up a large and growing proportion of new drugs. In 

Lieberman Page 3

Nat Struct Mol Biol. Author manuscript; available in PMC 2018 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2016, the US Food and Drug Administration approved 22 new drugs (rather than variations 

of previously approved products). Of these 22 drugs, seven were mAbs and two (nusinersen 

(Spinraza) and eteplirsen (Exondys 51)) were antisense oligonucleotide (ASO) drugs that 

alter mRNA splicing of genes implicated in previously untreatable genetic 

neurodegenerative diseases (spinal muscular atrophy and Duchenne’s muscular dystrophy, 

respectively)34,35. It is likely that these are just the first examples of RNA-based medicines. 

Conceptually, nucleic acid-based drugs can be divided into two groups: those whose specific 

activity is mediated by an antisense mechanism36, namely by recognizing a complementary 

sequence on DNA or RNA and modulating its processing or function (Fig. 1), and all 

‘others’ (Fig. 2).

ASO drugs

ASOs are usually single-stranded, highly modified and stabilized nucleic acid analogs. They 

can act on precursor mRNAs (pre-mRNAs) in the nucleus to modulate splicing (for instance, 

by binding to and blocking a splice junction, like the recently approved drugs mentioned 

above). They can cause sequence-specific degradation (by binding to an intronic sequence 

and recruiting nuclear RNase H) and potentially bind to polyadenylation recognition sites to 

block polyadenylation and accelerate RNA decay (Fig. 1a). ASOs could also be designed to 

bind to translation initiation sites on mRNAs in the cytosol to block translation.

Alterations in the chemistry of the basic nucleotide building blocks of ASOs were essential 

to turning the ASO concept into drugs, leading to more stable nucleic acid analogs that bind 

to their target with higher specificity and with improved cell penetration (reviewed in refs 
37–41). Advances in ASO chemistry culminated in the first approved ASO drug to treat 

cytomegalovirus retinitis, fomivirsen, in 1998. This drug was only briefly marketed because 

the disease declined precipitously when effective anti-HIV drugs became available. More 

recently, mipomersen, targeting APOB, a gene encoding the apolipoprotein B-100 in LDL 

cholesterol particles, was approved for treating familial hypercholesterolemia42. Although 

ASOs have mostly been designed to inhibit gene expression, a recent study suggests that 

ASOs that bind to and inhibit inefficient upstream open reading frames could be used to 

increase translation43, potentially providing a way to address diseases caused by inadequate 

gene expression. It is also possible to design ASOs that cleave mRNAs at specific sites by 

inserting an RNA-cleaving ribozyme sequence between sequences complementary to the 

targeted cleavage site (Fig. 1a). However, this strategy is not actively being developed 

because of poor in vivo activity. ASOs complementary to mature miRNAs (‘antagomirs’) are 

also being developed to counteract miRNAs implicated in disease pathogenesis44. An 

example is miravirsen, an antagomir to miR-122, the most abundant liver miRNA, which 

binds to hepatitis C virus genomic RNA and protects it from degradation. Although a phase 

2 study published in 2013 showed impressive viral suppression by miravirsen45, the clinical 

need for the drug was largely eliminated when potent curative hepatitis C small-molecule 

antivirals became available.
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siRNA-based drugs

The discovery of miRNAs6,7 and RNA interference (RNAi)46 opened up a new mechanism 

for RNA therapeutics:gene silencing (reviewed in ref.47). In 2001, Tuschl and colleagues 

showed that RNAi operates in mammalian cells48. Previously, RNAi was thought to be 

limited to plants and invertebrates. Transfection of siRNAs, 21–23 nucleotides long 

containing an mRNA sequence (sense strand) and its complement (antisense active 

strand)48, could harness this ubiquitous pathway to degrade target-gene mRNAs and 

suppress their expression with high specificity.

Soon after its discovery, RNAi became an important and widely used research tool by 

providing a relatively simple and fairly specific method to probe the importance of 

individual genes by knocking down gene expression. RNAi was also rapidly harnessed for 

unbiased genome-wide screening to identify genes important in biological processes, first in 

invertebrate cells49–52 and then in mammalian cells53–57, using transfection of siRNAs or 

vectored expression of short hairpin RNAs (shRNAs) that mimic endogenous miRNAs. 

These knockdown techniques provide a valuable way to identify novel drug targets.

The potential for siRNA therapeutics was demonstrated almost immediately after its 

discovery, first in vitro, in inhibiting HIV replication by depleting viral genes or host 

receptors58–62, and soon thereafter in vivo, when injection of Fas siRNAs protected mice 

from autoimmune hepatitis63. Drug development since then has been rapid. The obstacles of 

turning siRNAs into drugs are similar to those faced with ASO drugs41. Some of the ASO 

chemical modification strategies and experience could be adapted to siRNA therapeutics, 

accelerating siRNA preclinical drug development and clinical evaluation. Simple chemical 

modifications of the 2’ position of the ribose and substitution of phosphorothioate linkages 

or DNA bases at the ends protected siRNAs from nuclease digestion and prolonged half-life 

in serum64 and other bodily fluids. 2’ modifications also prevent recognition by innate 

immune receptors64,65 and limit off-target effects, owing to suppression of partially 

complementary sequences66.

Intracellular delivery of double-stranded siRNAs is more challenging than delivery of single-

stranded ASOs. This difficulty is partly mitigated by the fact that RNAi is a catalytic 

mechanism in which the same siRNA is used over and over again to degrade many mRNA 

molecules. By contrast, most ASO drugs act on a one-to-one basis. As a consequence of this 

catalytic mechanism of action, the best estimates suggest that delivery of only a few hundred 

siRNAs into the cytosol of a target cell causes complete gene knockdown67,68. Moreover, 

once the active antisense strand is taken up by the RNA-induced silencing complex (RISC), 

it is remarkably stable under most circumstances, unless it is diluted by cell division. In 

recent human clinical studies, gene knockdown by highly chemically modified siRNAs 

persisted for many months, suggesting that siRNA therapeutics might only need to be given 

every 3–6 months69. The reasons for such clinical durability are not completely understood.
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Delivery of siRNA-based drugs

Most of the initial clinical development of siRNA therapeutics was focused on 

developinglipid nanoparticles (LNP) to introduce siRNAs into hepatocytes. The liver is a 

major filtering organ that traps nanoparticles. It is also the primary site of synthesis of many 

circulating proteins. Therefore, the liver has been the target organ in most early clinical 

attempts at translating RNAi. Results of a recently completed phase 3 study that used LNP-

encapsulated siRNAs to knock down transthyretin (TTR), which, when mutated, causes a 

fatal familial amyloidotic neurodegenerative syndrome, showed impressive improvement of 

neurological symptoms and safety (J. Gollob (Alnylam), personal communication). It is 

likely that this formulation (patisiran) will be approved as the first siRNA drug.

Nevertheless, siRNA therapeutics is rapidly moving away from LNPs, which are 

complicated to produce and have some immune-stimulatory side effects. Instead, next-

generation drugs are targeted to the liver by chemical conjugation to trivalent N-

acetylgalactosamine (GalNAc)70–73, which is recognized by the hepatocyte-restricted 

asialoglycoprotein receptor (ASGPR) (Fig. 3). The GalNAc-ASGPR ligand-receptor pair 

works much better than other siRNA conjugates tested thus far. Although other conjugates 

were generally taken up into cells, they did not result in efficient knockdown, possibly 

because of inefficient endocytosis or endocytic release. The success of the GalNAc 

conjugate may be due to its hepatocyte specificity, the high cell surface expression of the 

receptor and rapid and continuous receptor recycling. Although a phase 3 study using 

GalNAc-conjugated siRNAs targeting TTR for cardiac amyloidosis74 had to be terminated 

because of increased deaths of treated patients75, multiple other GalNAc conjugates to 

siRNAs, further chemically modified for enhanced stability and activity and directed against 

other gene targets, have shown impressive results (~80–95% knockdown lasting for as long 

as 3–6 months after a single injection without significant safety concerns in thousands of 

patients69). This suggests that the platform as a whole will be adaptable for developing drugs 

against multiple liver targets.

So far, human clinical studies have shown that GalNAc-conjugated siRNAs have been able 

to strongly knock down genes in the liver, sometimes with impressive clinical benefit in 

early phase trials. Mainly, these studies evaluated treatment of genetic orphan diseases for 

which effective therapy is lacking or inadequate. Examples include knockdown of PCSK9 to 

treat hypercholesterolemia69; anti-thrombin III to improve clotting in patients with 

hemophilia76; ALAS1, the gene encoding the first enzyme in heme biosynthesis, to treat 

porphyria77; the complement component C5 to treat hemolytic-uremic syndrome and 

paroxysmal hemoglobinuria, and glycolate oxidase to treat primary hyperoxaluria78,79. It is 

likely that GalNAc-siRNA conjugates will eventually replace most therapeutic LNP efforts 

for liver targets. GalNAc conjugates have also been adapted for liver delivery of ASOs and 

antagomirs, which are currently in early phase clinical trials80–82.

Therapeutic gene knockdown outside the liver is still an area of active development. Some of 

the most attractive approaches in mouse models include siRNA conjugation to RNA or DNA 

aptamers that recognize cell surface receptors83–85, siRNA conjugation to CpG nucleotides 

that bind to an innate immune receptor on dendritic cells or macrophages86, antibody fusion 
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protein complexed siRNAs87,88, antibody-coated LNPs89–91 and siRNA conjugation to a 

fatty acid constituent of neuronal membranes for nerve cell delivery92 (Fig. 3). Some of 

these strategies, which have not yet been tested in the clinic, show exquisite targeting 

specificity and provide the possibility of knocking down genes in narrowly defined subsets 

of immune cells (i.e., only activated lymphocytes or only regulatory T cells)88,93 or only in 

cancer cells94. Targeted gene knockdown is also likely to reduce bystander cell toxicity and 

require lower doses. The same strategies that deliver siRNAs to the liver or elsewhere in the 

body can also be employed to deliver miRNA mimics, either as stem-loops or as double-

stranded ~22-nucleotide modified RNAs that resemble the endogenous Dicer-cleaved 

miRNA80,95. The lessons learned about delivering siRNAs will probably facilitate the 

development of ways to deliver the larger cargo being contemplated for therapeutics using 

modified mRNAs96,97 or CRISPR-Cas-mediated gene editing98–104. However, the delivery 

obstacles for these approaches are greater than those for siRNAs and should not be 

underestimated.

Advantages of RNA-based drugs

Some of the siRNA drug targets are also targeted by ASO or mAb drugs that are approved or 

under development. As they compete to treat the same diseases, it will become clearer which 

of these strategies offers better therapeutics. Examples are the approved ASO mipomersen 

and PCSK9 mAbs versus the siRNA-based drug incli-siran, now in phase 3 trials, all three 

designed to lower cholesterol by targeting the same enzyme69,105,106, and the Ionis ASO 

inotersen versus Alnylam patisiran, both targeting TTR to treat amyloidosis (J. Gollob 

(Alnylam), personal communication and ref. 107). For gene knockdown strategies, siRNAs 

will probably be more effective drugs than ASOs, provided that they can be effectively 

delivered to the tissue or cell of interest. siRNAs and ASOs that use RNase H to degrade 

target RNA are catalytic (i.e., one molecule can destroy multiple target RNAs), unlike ASOs 

that modulate splicing or translation, which only inactivate a single target RNA. This 

catalytic mechanism, particularly for siRNAs that harness the efficient RISC machinery, 

leads to high potency and unusually sustained activity. However, ASOs have more potential 

mechanisms of action and are easier to deliver to cells and the nucleus. The best class of 

nucleic acid therapeutic for addressing a particular disease and gene target will vary with the 

target. RNA-based drugs have several advantages compared to therapeutic antibodies 

directed against the protein product of the target gene (Box 2). For now, antibodies can only 

recognize targets that are both druggable and secreted or extracellular, because there is no 

good strategy to deliver them into cells. By contrast, siRNAs and ASOs can in principle 

suppress any gene, even if it is highly expressed, including noncoding genes. Unlike 

antibodies, RNAs can be chemically synthesized, thus leading to cheaper and more easily 

manufactured drugs than biologics, which can have batch-to-batch variability. Antibodies 

need to be administered every few weeks, and patients often develop immunological 

responses, which can limit the effectiveness of antibody therapy with continued use. Thus 

far, there is no evidence of adaptive immune responses to RNA therapeutics. Another 

potential advantage of drugs that operate by an antisense mechanism, compared to 

antibodies, is that they can be rapidly identified, and antidotes are straightforward to design 

using the complementary sequence to specifically bind and inactivate the drug.
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CRISPR-Cas gene editing

Like siRNA and shRNA research tools and drug candidates that rapidly evolved from the 

discovery of RNAi, the discovery of the CRISPR-Cas immune defense mechanism in 

bacteria and archaea108–111 was swiftly harnessed to develop relatively facile and specific 

methods for genomic DNA editing. This includes activation and suppression of gene 

expression and genome-wide screening98–104. Like RNAi, the specificity of CRISPR-Cas 

relies on the antisense pairing of sgRNAs to specific genes, but on chromosomal DNA rather 

than RNA (Fig. 1e). Genomic targeting creates indels that provide the exciting possibility of 

stable genomic editing. This method could be used to correct mutations in coding or 

regulatory regions of genes in somatic and possibly eventually in germline cells in order to 

treat and cure disease. However, because CRISPR-Cas modifies the genome, ethical and 

safety concerns are amplified enormously. Like all antisense technologies, there is potential 

for both on- and off-target toxicity. Moreover, the Cas endonuclease creates double-stranded 

DNA breaks, which can possibly lead to oncogenic gene translocations and trigger a DNA 

damage response, causing cell-cycle arrest or cell death. Depending on which DNA repair 

pathway is activated, gene editing can be imprecise. Moreover, transfection of both sgRNAs 

and Cas mRNA or protein is currently not very efficient. However, in the 5 years since 

methods to harness this bacterial mechanism for mammalian gene manipulation were first 

reported, improvements that reduce off-target effects, offer better control and enhance the 

efficiency of gene editing have been rapidly developed112.

Effective sgRNAs are easier to design than shRNAs. Furthermore, unlike siRNAs, sgRNAs 

induce stable changes in gene expression, which are invaluable for in vivo screening. 

Therefore, CRISPR-Cas-mediated gene knockout has rapidly replaced other techniques for 

many research uses, including screens to identify dependency genes, synthetic lethal 

interactions and novel gene targets. In addition, CRISPR-Cas gene knockout in zygotes 

provides a greatly accelerated method for making gene knockout or knock-in mice compared 

to homologous recombination. The method can also be applied to develop knockout strains 

of almost any species, including non-human primates. The resulting animal models will be 

invaluable for preclinical drug development. However, clinical CRISPR-Cas studies, which 

will undoubtedly be initiated using ex vivo editing of differentiated cells that will then be 

infused into patients, will need to be both more efficient and better controlled for specificity 

and genetic modification. Yet the first gene editing drug strategies were approved this year 

for producing CAR-T cells113,114 and for treating a congenital cause of blindness 

(Luxturna)115 using an engineered adeno-associated virus. Experiences with non-RNA-

based gene editing tools, such as zinc-finger nucleases, and with siRNA drug delivery will 

facilitate development of CRISPR-Cas-based drugs112,116.

mRNA-based drugs

In addition to RNA drugs based on antisense mechanisms, several other mechanisms of 

action are also potential strategies for new classes of drugs. One approach is to introduce 

chemically modified, stabilized mRNAs into cells to be translated to protein96,117–119 (Fig. 

2a). mRNA therapies have the safety advantage of not modifying the genome, but also the 

disadvantages of transient expression and difficult in vivo intracellular delivery. If 
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transfection of small RNAs in vivo is challenging, the problem is magnified for large 

mRNAs, which will probably require encapsulation into nanoparticles to avoid RNases 

present in bodily fluids and to aid cellular uptake. So far, despite intense efforts by the 

biotech and pharmaceutical industries to develop this approach, there are no truly convincing 

examples of high and sustained gene expression in vivo. The application that looks most 

promising is using stabilized mRNAs for vaccination, a setting for which high or sustained 

gene expression is not required because of the exquisite sensitivity of immune cells to low 

levels of foreign antigens120–123.

Aptamer-based therapeutics

Aptamers are another potential class of RNA therapeutics. These folded RNAs behave like 

nucleic acid antibodies in that they bind with high affinity and specificity to target 

molecules. They can be selected from large libraries of short random nucleotide sequences 

for binding to all types of molecules by repeated rounds of enrichment by a process called 

SELEX24,25,85,124,125. Recent advances in SELEX technology, in particular the introduction 

of chemically modified bases and use of deep sequencing to analyze enriched RNAs in early 

rounds of selection, have greatly reduced the time needed and the likelihood of identifying 

high-affinity aptamers85,124,125. SomaLogic, which develops aptamer-based diagnostics to 

measure levels of many serum proteins simultaneously, has identified modified aptamers 

specific for thousands of human proteins126,127. Although drug development of aptamers is 

currently not very active, these RNAs or DNAs could substitute for some applications of 

therapeutic antibodies with reduced risk of developing immunological responses. They could 

also be used for targeted intracellular delivery of other molecules, including RNA-based 

drugs85,124,128. Because aptamers can be chemically synthesized, their manufacture is much 

cheaper and more reproducible than that of antibodies. Moreover, the flexibility of 

chemically linking RNAs should easily enable the design of combinations of aptamers, 

functionally resembling bifunctional antibodies, or their reversible linkage to more than one 

therapeutic small RNA, toxin, peptide or conventional small-molecule drug (Fig. 2b).

Concluding remarks

Our increased understanding of the versatile roles of RNAs has sparked the development of 

new classes of RNA-based drugs. Drugs in development are based on antisense mechanisms 

that can be used to inhibit gene expression (ASOs, siRNAs, miRNA mimics and 

antagomirs), alter splicing to produce functional proteins (ASOs) or edit mutated DNA 

(CRISPR-Cas). Novel approaches also utilize sense mechanisms (modified mRNA 

replacement therapy or vaccines) or tertiary structures of RNA that can be selected for 

specific binding (aptamers, riboswitches). The first RNA-based drugs to modify splicing 

were just approved, and the first siRNA-based drug is likely to be approved within the year. 

Although harnessing these RNA mechanisms and turning RNAs into drugs is challenging, it 

is likely that we are on the brink of a revolution in drug development. Expanding the range 

of targeted cells and tissues will require developing robust strategies for cytosolic delivery to 

tackle the twin hurdles of getting across the plasma membrane and out of the endosome. 

There is a lot of room for optimizing these steps and for improving the drug-like properties 

of therapeutic nucleic acids. As the first generation of nucleic acid therapeutics become 
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drugs, the barrier for investing in nucleic acid therapeutics will be lowered, and resources 

will become available for exploring the option of harnessing other mechanisms of action 

aside from interfering with splicing and knocking down a single gene. The flexibility of 

RNA design should allow for the facile construction of potent multifunctional drugs that 

have more than one mode of action and disrupt multiple targets that could substitute for drug 

cocktails in the future. There is also the largely unexplored potential of targeting other RNA 

species and disrupting their functions. In the near future, RNA-based drugs may become an 

increasing component of the pharmacopoeia, greatly expanding the universe of druggable 

targets to provide treatment for previously untreatable diseases and potentially curing 

genetic diseases.
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Box 1 |

Challenges for developing RNA-based drugs

• Intracellular delivery across cell and endosomal membranes

• Poor pharmacokinetic properties, partly due to urinary excretion and 

ubiquitous RNases

• Activation of innate immune nucleic acid sensors

• Off-target effects:

Suppression of unintended homologous targets Activation of DNA repair 

pathways Translocations or imprecise gene editing
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Box 2 |

Advantages of RNA-based drugs

• Active on ‘undruggable targets

• Easy and rapid design

• Chemical synthesis without the variability of biologics

• Cost effective

• Stable without refrigeration

• Stable, unfluctuating suppression of target protein for up to 6 months

• Easy to combine into drug cocktails, providing flexibility for personalized 

drugs

• Low immunogenicity
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Fig. 1 |. Antisense mechanisms of RNA-based drugs.
Most RNA-based drugs take advantage of complementary base-pairing of RNA analogs. 

They are generally extensively modified to improve their resistance to RNases and innate 

immune sensors and to potentially increase binding affinity to their nucleic acid or protein 

targets, which mediate their intracellular activity. These drugs bind to complementary 

sequences in endogenous genomic DNA or its RNA transcripts. The major classes are ASOs 

(usually single-stranded with a central DNA gapmer region) (a), double-stranded siRNAs 

(b), miRNA mimics (c) or antagomirs (d) and, most recently, single guide RNAs (sgRNAs) 

for gene editing using CRISPR-Cas (e). Although the targets are depicted in the diagram as 

pre-mRNAs, mRNAs or genomic DNA, in principle, these strategies could also be used to 

target ncRNAs. Credit: Debbie Maizels/Springer Nature
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Fig. 2 |. Additional RNA-based drug mechanisms.
a, Sense-RNA drugs can be used for transient in vivo transcription of mRNAs to replace 

mutated proteins or for vaccination without the risk of genomic alteration. b, Aptamers take 

advantage of selection for high-affinity binding to molecular ligands, often in the nanomolar 

or subnanomolar range. They can be thought of as nucleic acid antibodies and have many of 

the advantages of conventional protein antibodies. They can be agonists or antagonists, 

linked for bifunctional targeting and conjugated to other RNAs, small-molecule drugs, 

toxins or peptides. However, unless modified, they are rapidly excreted and do not activate 

immune functions via binding to Fc receptors. Credit: Debbie Maizels/Springer Nature
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Fig. 3 |. RNA-based drug delivery strategies.
Intracellular delivery is the most challenging obstacle to RNA-based drug development. 

Most siRNA drugs need to act in the cytoplasm, where their target RNAs are located. ASOs, 

acting on pre-mRNA, and sgRNAs, acting on genomic DNA, have the additional challenge 

of getting into the nucleus. Drug development is moving away from using particles or 

complexes, which have a tendency to get trapped in the liver, are complicated to 

manufacture and have side effects. Instead, conjugation of nucleic acid analogs to sugars, 

lipids, peptide or nucleic acid ligands that bind to the cell membrane or surface receptors is 

used. Binding activates cellular uptake and provides the opportunity for cell-specific 

delivery. Credit: Debbie Maizels/Springer Nature
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